\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1994/09\hfil A Rad\'o type theorem for $p$-harmonic functions \hfil\folio} \def\leftheadline{\folio\hfil Tero Kilpel\"ainen \hfil EJDE--1994/09} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations\hfil\break Vol. {\eightbf 1994}(1994), No. 09, pp. 1-4. Published December 6, 1994. \hfil\break ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfil\break ftp (login: ftp) 147.26.103.110 or 129.120.3.113 \bigskip} } \topmatter \title A Rad\'o type theorem for $p$-harmonic functions in the plane \endtitle \thanks \noindent {\eighti1991 Mathematics Subject Classifications:} 35J60, 35B60, 31C45, 30C62. \hfil\break {\eighti Key words and phrases:} $p$-harmonic functions, $p$-Laplacian, removable sets. \hfil\break \copyright 1994 Southwest Texas State University and University of North Texas.\hfil\break Submitted: September 29, 1994.\hfil\break \endthanks \author Tero Kilpel\"ainen \endauthor \address Department of Mathematics\newline University of Jyv\"askyl\"a \newline P.O. Box 35, 40351 Jyv\"askyl\"a\newline Finland\newline \newline E-mail: TeroK\@ math.jyu.fi \endaddress \redefine\div{\operatorname{div}} \abstract We show that if $u\in C^1(\Omega)$ satisfies the $p$-Laplace equation $$\div(|\nabla u|^{p-2}\nabla u)=0$$ in $\Omega\setminus \{x\:u(x)=0\}$, then $u$ is a solution to the $p$-Laplacian in the whole $\Omega\subset\Bbb R^2$. \endabstract \endtopmatter \define\loc{\operatorname{loc}} \document Throughout this paper we let $\Omega$ be an open set in $\Bbb R^n$, $n\ge 2$ and $12$ is different, for then not even single points are removable for bounded $p$-harmonic\ functions in general. b) If $n\ge3$ and $p\not=2$, then it is not known whether the set $\{\nabla u=0\}$ can contain interior points, even if we knew {\it a priori\/} that $u$ is nonconstant and $p$-harmonic\ in $\Omega$. \subheading{5. Nonvanishing gradient} Next we treat the case where the gradient of $u$ does not vanish. It appears to be simpler than the general case and our proof works in all dimensions. We are going to employ a change of variables argument. For the reader's convenience we state a removability result for slightly more general equations of the $p$-Laplacian type: \proclaim{\bf 6. Lemma\/} Suppose that $\Cal A\:\Omega\times\Bbb R^n\to\Bbb R^n$ is a continuous mapping such that $$ \Cal A(x,\xi)\cdot\xi\approx|\xi|^p $$ with equivalence constants independent of $x$. If $H$ is a hyperplane in $\Bbb R^n$ and $u\in C^1(\Omega)$ is a function that satisfies the equation $$ \div\Cal A(x,\nabla u)=0\tag{7} $$ in $\Omega\setminus H$, then $u$ verifies equation (7) in $\Omega$. \endproclaim Lemma 6 was proven by Martio in \cite{8, 2.22} for $p=n$, but his proof can be extended verbatim to cover all values of $p$. We now return to our issue and show: \proclaim{\bf 8. Proposition\/} Suppose that $u\in C^1(\Omega)$ is such that $\nabla u\not=0$ in $\Omega$. If $u$ is $p$-harmonic\ in $\Omega\setminus\{x\:u(x)=0\}$, then $u$ is $p$-harmonic\ in $\Omega$. \endproclaim \demo{Proof} Since the problem is local we may assume that $|\nabla u|$ is bounded away from zero in $\Omega$. Hence the set $$ S=\{x\in \Omega\: u(x)=0\} $$ is a regular $C^1$-hypersurface. By localizing further, if necessary, we find an open neighborhood $G$ of $S$ in $\Omega$ and a bilipschitz diffeomorphism $g$ from $G$ onto an open set $V$ in $\Bbb R^n$ such that $S$ is mapped into the hyperplane $$ H=\{(x_1,x_2,\dots,x_n)\in\Bbb R^n\: x_n=0\}\,. $$ If $f=g^{-1}$, then the pull-back of the $p$-Laplacian under $f$ is $\div\Cal A =0$, where $$ \Cal A(x,\xi)= J(x,f) f'(x)^{-1}|{f'(x)^{-1}}^*\xi|^{p-2}{f'(x)^{-1}}^*\xi\,; $$ here $B^*$ stands for the transpose of the matrix $B$. Then it is easily checked that $\Cal A$ satisfies the assumptions of Lemma 6 (cf\. \cite{3, 14.90}). Moreover, we have that $u$ is $p$-harmonic\ in $G$ if and only if $v=u\circ f$ satisfies the equation $$ \div\Cal A(x,\nabla v)=0\tag{9} $$ in $V$ (see \cite{3, 13.2 \& 14.92}). Since $v$ satisfies equation (9) in $V\setminus H$ we conclude from Lemma 6 that $v$ is a solution of (9) in $V$. Consequently, $u$ is $p$-harmonic\ in $G$ and hence in $\Omega$ as desired. \enddemo \subheading{Proof of Theorem 1} By Proposition 8 $u$ is $p$-harmonic in $$ \Omega\setminus\{x\:u(x)=0\text{ and }\nabla u(x)=0\}\,. $$ Hence the theorem follows from Proposition 3. \Refs \ref\no 1 % {\bf BI} \by B. Bojarski and T. Iwaniec \paper $p$-harmonic equation and quasiregular mappings \book Partial differential equations \bookinfo Banach Center Publications Vol 19 \publ PWN-Polish Scientific Publishers \publaddr Warsaw\yr1987\pages 25--38 \endref \ref\no 2 % {\bf HK} \by J. Heinonen and T. Kilpel\"ainen \paper $\Cal{A}$-superharmonic functions and supersolutions of degenerate elliptic equations \jour Ark. Mat. \vol 26 \pages 87--105 \yr 1988 \endref \ref\no 3 % {\bf HKM} \by J. Heinonen, T. Kilpel\"ainen, and O. Martio \book Nonlinear potential theory of degenerate elliptic equations \publ Oxford University Press\publaddr Oxford\yr 1993 \endref \ref\no 4 % {\bf KKM} \by T. Kilpel\"ainen, P. Koskela, and O. Martio \paper On the fusion problem for degenerate elliptic equations \jour Comm. P.D.E.\toappear \endref \ref\no 5 % {\bf K} \by J. Kr\'al \paper Some extension results concerning harmonic functions \jour J. London Mat. Soc\yr 1983\vol 28\pages 62--70 \endref \ref\no 6 % {\bf LV} \by O. Lehto and K.I. Virtanen \book Quasiconformal mappings in the plane \bookinfo(2nd ed.) \publ Springer-Verlag\publaddr Berlin\yr 1973 \endref \ref\no 7% {\bf M} \by J. J. Manfredi \paper $p$-harmonic functions in the plane \jour Proc. Amer. Math. Soc. \yr 1988\pages 473--479\vol 103 \endref \ref\no 8 % {\bf OM} \by O. Martio \paper Counterexamples for unique continuation \jour Manuscripta Math. \yr 1988\vol 60 \pages 21--47 \endref \ref\no 9 % {\bf R} \by Yu. G. Reshetnyak \book Space mappings with bounded distortion \bookinfo Translations of Mathematical monographs, Vol. 73 \publ American Mathematical Society \yr 1989 \endref \endRefs \enddocument \bye