
Electronic Journal of Differential Equations

Vol. 1995(1995), No. 05, pp. 1-13. Published May 2, 1995.
ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp (login: ftp) 147.26.103.110 or 129.120.3.113

Eigenvalue Computations for Regular Matrix

Sturm-Liouville Problems ∗

H.I. Dwyer & A. Zettl

Abstract

An algorithm is presented for computing eigenvalues of regular self-
adjoint Sturm-Liouville (SL) problems with matrix coefficients and sepa-
rated boundary conditions.

Introduction

In his book Discrete and Continuous Boundary Problems [1], F.V. Atkinson
characterizes eigenvalues of matrix Sturm-Liouville (SL) problems in terms of
eigenvalues of certain unitary matrices. Based on this characterization the team
of Atkinson, Krall, Leaf, and Zettl (AKLZ) developed an algorithm, and con-
structed a prototype FORTRAN code for the numerical computation of eigen-
values of SL problems. A description of the algorithm, with some test results,
was published in an Argonne Laboratory Report [2]. While clearly demon-
strating the feasibility of this algorithm, the tests showed that there were some
difficulties remaining. Dwyer, in his dissertation as a student of Zettl, refined
and significantly extended the algorithm, and corrected the difficulties in the
original code.

In this paper, the completed algorithm for computing the eigenvalues for
a regular Sturm-Liouville problem with separated boundary conditions is pre-
sented.

Problem Definitions

A SL problem consists of the second order linear ordinary differential equation

−(py′)′ + qy = λwy on (a, b) (1)

∗1991 Mathematics Subject Classifications: 34B24, 34L15, 34L05.
Key words and phrases: Sturm-Liouville problem, matrix coefficients, eigenvalues,
numerical computation of eigenvalues
c©1995 Southwest Texas State University and University of North Texas.
Submitted: August 25, 1994.

1

2 Eigenvalue Computations EJDE–1995/05

together with boundary conditions. For the case when both endpoints a, b are
regular, these have the form

C

(
y(a)

(py′)(a)

)
+D

(
y(b)

(py′)(b)

)
=

(
0
0

)
. (2)

Theorem 1 Let p, q, w be complex m × m matrix functions defined on the
interval [a, b], −∞ < a < b <∞, satisfying the following conditions:

1. The matrix p(t) is invertible for almost all t ∈ (a, b).

2. Each component of p−1, q, w is in L1(a, b).

3. The matrices p(t), q(t), w(t) are hermitian for almost all t ∈ (a, b).

4. The matrices p(t) and w(t) are positive definite for almost all t ∈ (a, b).

Assume that the complex constant 2m × 2m matrices C and D satisfy:

5. The 2m × 4m matrix (C|D) has full rank.

6. CJC∗ = DJD∗, where J =

(
0 Im
−Im 0

)
and Im denotes the m × m

identity matrix.

Then the boundary value problem, (1),(2) is self-adjoint; its eigenvalues are all
real, there are countably many of them {λn : n ∈ N0 = {0, 1, 2, · · ·}}, and they
can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ · · · , with λn →∞ as n→∞.

Proof. See Möller and Zettl [7]. 2
If condition (4) is weakened so that p(t) is required to be invertible, but is

not required to be positive definite, then a similar result holds, except that the
spectrum will not, in general, be bounded below.

We are interested in the special case when the boundary conditions are
separated. This means that the matrices C and D can each be partitioned into
four m × m square matrices, as:

C =

(
A1 A2

0 0

)
, D =

(
0 0
B1 B2

)
.

In this case, the boundary conditions (2) reduce to

A1y(a) +A2(py′(a)) = 0 (3)

B1y(b) +B2(py′(b)) = 0 (4)

where A1, A2, B1, and B2 are complex constant m × m matrices which satisfy

EJDE–1995/05 H.I. Dwyer & A. Zettl 3

1. rank(A1|A2) = rank(B1|B2) = m

2. A1A
∗
2 = A2A

∗
1

3. B1B
∗
2 = B2B

∗
1 .

Below we consider the question: How can the eigenvalues λn be computed
numerically? The codes SLEDGE [9], and SLEIGN [3],[4] , as well as the codes
in the NAG library [10], address this question only for the special case when
m = 1 (scalar case).

Shooting Methods for Scalar Problems

Before beginning on the matrix problem, we consider the scalar problem. The
boundary conditions specify the ratio of the values of the solution y and the
quasi-derivative py′ at each of the endpoints. We define

z(x) =
y(x)

(py′)(x)
. (5)

Since the solution is nontrivial, y and py′ cannot be simultaneously zero. How-
ever, it is quite likely that py′ will be zero at some points along the interval,
leading to unbounded values for the ratio z. To avoid the difficulties of un-
bounded values, we might use a mapping which transforms the real line into
some bounded set; applying the mapping to the ratio z will produce a variable
whose initial value, at endpoint a, is also determined by the boundary condition,
and which avoids the difficulties caused by the division by zero.

If we use the inverse-tangent mapping, the result is the Prüfer transformation
(see [5]). The “Prüfer angle” is defined by

Θ(x) = arctan(z) = arctan

(
y(x)

(py′)(x)

)
.

This variable satisfies a certain first order ordinary differential equation. Using
this equation, and the initial value determined by the boundary condition at the
endpoint a, it is possible to compute a numerical approximation to the resulting
value for Θ at the other endpoint, b. Note that the initial value of Θ depends
only on the boundary condition, but at other points in the interval the value will
depend on the parameter λ. The boundary condition at b determines “target”
values; if the value of Θ matches the target, we have found an eigenvalue. The
success of the search algorithm depends on our ability to do three things:

1. Recognize that the value λ is an eigenvalue.

2. Determine whether a trial value of λ is “near” an eigenvalue, and whether
it is too high or too low.

4 Eigenvalue Computations EJDE–1995/05

3. Determine which eigenvalue the trial value is close to.

With appropriate care about which branch of the inverse tangent is used, it can
be shown that if p(t) is positive for all t in the interval, then the value Θ(b;λ)
is monotone increasing in λ, which allows a simple bisection search to be used
to approximate the eigenvalue. More advanced algorithms (see [8]) use more
efficient search methods, such as Newton’s method.

Another possibility is to use a mapping from complex analysis to map the
real line onto some bounded curve in the complex plane. The mapping

Θ =
1 + iz

1− iz

takes the real axis onto the unit circle, with z = ±∞ mapped to Θ = −1. This
leads somewhat naturally to

Θ =
1 + iz

1− iz

=
1 + i ypy′

1− i y
py′

=
py′ + iy

py′ − iy

= (py′ + iy)(py′ − iy)−1.

Of course, even in the scalar case, and particularly in the matrix case, there are
some details which must be addressed; the discussion above is meant only as a
motivation for what follows.

A Shooting Method for Matrix Problems

Although it is possible to define an inverse-tangent function for matrix vari-
ables, the result is not particularly useful to us here. The difficulty is that
the corresponding sine and cosine functions do not have the desirable derivative
properties of their scalar counterparts, introducing difficulties in the formulation
of a first order differential equation.

Instead, we will develop a method based on the second approach mentioned
above. Let Y (x) be a square matrix function such that

−(pY ′)′ + qY = λwY

satisfying the initial conditions at endpoint a:

Y (a) = −A∗2 , (pY ′)(a) = A∗1.

The assumptions on the coefficients guarantee that such a solution exists, and
is defined on the entire interval [a, b].

EJDE–1995/05 H.I. Dwyer & A. Zettl 5

We can write an equivalent system of first order equations as follows: let
U = Y , and V = pY ′, and we have

U ′ = p−1V

V ′ = rU , where

r(x, λ) = q(x) − λw(x)

subject to:

U(a) = −A∗2
V (a) = A∗1.

We are now ready to define the matrix Atkinson [1] calls theta.

Definition 1 For each x ∈ [a, b], and for each real λ, define

Θ(x, λ) = (V (x) + iU(x))(V (x) − iU(x))−1 (6)

for U and V as defined above.

The dependence on λ arises because U and V are solutions to a system whose
coefficients depend on λ. Having defined the matrix, we must verify that it will
exist for a SL problem with separated, self-adjoint boundary conditions. We
will need the following lemmas.

Lemma 2 Suppose that A1 and A2 are complex, square m × m matrices such
that

1. rank(A1|A2) = m

2. A1A
∗
2 = A2A

∗
1

then the matrix (A1 − iA2) is invertible.

Proof. We begin by noting that (A1 − iA2) is invertible if, and only if,
(A1 − iA2)(A1 − iA2)∗ is invertible.

(A1 − iA2)(A1 − iA2)∗ = (A1 − iA2)(A∗1 + iA∗2)

= A1A
∗
1 +A2A

∗
2 − i(A2A

∗
1 −A1A

∗
2)

= A1A
∗
1 +A2A

∗
2.

Assume that the sum A1A
∗
1 + A2A

∗
2 is singular. Then there is some nonzero

vector v such that

(A1A
∗
1 +A2A

∗
2)v = 0

v∗(A1A
∗
1 +A2A

∗
2)v = 0

v∗A1A
∗
1v + v∗A2A

∗
2v = 0

6 Eigenvalue Computations EJDE–1995/05

which is possible only if v∗A1 = 0 and v∗A2 = 0. However, this would imply
that

v∗(A1|A2) = 0

which is a contradiction since (A1|A2) is of full rank, by assumption, and v∗ 6= 0.
We conclude that no such v exists, so the sum is nonsingular and (A1 − iA2) is
invertible. 2

Lemma 3 ([1]) For U , V as defined above, if U∗V is hermitian at any x0 ∈
[a, b], then U∗V is hermitian for all x ∈ [a, b].

Proof. See [1]. 2

Lemma 4 ([1]) For U , V as defined above, suppose that U∗V is hermitian for
all x ∈ [a, b], and suppose that (V − iU) is invertible at some x0 ∈ [a, b]. Then
(V − iU) is invertible for all x ∈ [a, b].

Proof. See [1]. 2

Theorem 5 For a regular SL problem with separated, self-adjoint boundary
conditions, the matrix Θ(x, λ) exists for all x ∈ [a, b], for any real λ.

Proof. At the point x0 = a, we have U(x0)∗V (x0) = −A2A
∗
1. By assumption,

this matrix is hermitian. Applying Lemma 3, we see that U∗V is hermitian for
all x ∈ [a, b]. At the point x0 = a, we have V (x0) − iU(x0) = (A1 − iA2)∗,
which is invertible by Lemma 2. Finally, by Lemma 4, we see that (V − iU) is
invertible for all x ∈ [a, b], so we conclude that the matrix Θ may be computed
for every x ∈ [a, b]. 2

It is easy to verify that the matrix Θ(x, λ) is unitary for all x ∈ [a, b], for
any real value of λ.

The boundary condition at the endpoint a provides an initial value for theta;
in order to compute theta at other points along the interval, we develop a first
order differential equation which has theta as a solution.

Theorem 6 ([1]) For Θ(x, λ) defined above, we have for any real λ

∂

∂x
Θ(x, λ) = iΘ(x, λ)Ω(x, λ)

where Ω(x, λ) is defined by

Ω(x, λ) =
1

2
((Θ + I)∗p−1(x)(Θ + I)− (Θ− I)∗r(x, λ)(Θ − I)).

EJDE–1995/05 H.I. Dwyer & A. Zettl 7

Proof. See [1]. 2
The first requirement for a method is that we must be able to recognize that

a value λ is an eigenvalue. It is convenient to define a new matrix, constructed
by “scaling” the matrix Θ(x, λ) by a constant.

Definition 2 For Θ as defined above, let

B(x, λ) = (B1 − iB2)−1(B1 + iB2)Θ(x, λ)

where B1 and B2 are the constant matrices used to define the boundary condition
at the endpoint b.

Note that the factor (B1 − iB2)−1 exists, by Lemma 2. It is easy to verify that
the matrix B is also unitary.

Lemma 7 ([2]) For U , V as defined above, we have:

1. A real value λ is an eigenvalue of the SL problem if, and only if, the matrix
B1U(b) +B2V (b) is singular.

2. The multiplicity of λ as an eigenvalue of the SL problem is equal to the
dimension of the null space of B1U(b) +B2V (b).

Proof. See [2]. 2

Theorem 8 For B(x, λ) as defined above, we have

1. A real value λ is an eigenvalue for the SL problem if, and only if, the
number 1 is an eigenvalue of the matrix B(b, λ).

2. The multiplicity of λ as an eigenvalue of the SL problem is equal to the
multiplicity of the value 1 as an eigenvalue of the matrix B(b, λ).

Proof. (1) Suppose that 1 is an eigenvalue of B(b, λ). Then there is a nonzero
constant vector c such that B(b, λ)c = 1c. Hence

(B1 − iB2)−1(B1 + iB2)(V (b) + iU(b))(V (b)− iU(b))−1c = c.

Define z = (V (b) − iU(b))−1c, and note that z 6= 0 and c = (V (b) − iU(b))z.
Hence

(B1 − iB2)−1(B1 + iB2)(V (b) + iU(b))z = (V (b)− iU(b))z

(B1 + iB2)(V (b) + iU(b))z = (B1 − iB2)(V (b)− iU(b))z

2i(B1U(b) +B2V (b))z = 0.

Since we know z 6= 0, we conclude that B1U(b) + B2V (b) is singular, and the
result follows from Lemma 7. Conversely, if we know that λ is an eigenvalue
of the SL porblem, we reverse the steps to produce an eigenvector for B(b, λ)
corresponding to an eigenvalue of 1.

8 Eigenvalue Computations EJDE–1995/05

Proof. (2) The multiplicity of 1 is the number of linearly independent choices
for the vector c, and hence the number of linearly independent choices for the
vector z, which is the dimension of the null space of B1U(b) +B2V (b). The
result is now immediate from Lemma 7. 2

The second requirement for a method is that we must be able to determine
if a trial value for λ is “close” to an actual eigenvalue, and whether it is too
high or too low. To do this, we will need the following lemma, which is proved
by Atkinson:

Lemma 9 ([1]) Suppose that t is a real variable, Θ(t) is unitary, Ω(t) is her-
mitian, continuous, and positive definite, and suppose that Θ satisfies

d

dt
Θ = iΘΩ

then as t increases the eigenvalues of Θ move anti-clockwise around the complex
unit circle.

Proof. See [1]. 2
It can be shown (see [1]) that, for any fixed choice of x, the matrix Θ(x, λ)

satisfies a (partial) differential equation in the variable λ of the form required by
Lemma 9. Since the matrix B is simply Θ multiplied by a constant, the same
conclusions hold for B; for x = b we have the eigenvalues of B(b, λ) moving
anti-clockwise around the complex unit circle as the parameter λ is increased.
For any trial value of λ, we examine the position of the eigenvalues of B(b, λ)
and we can readily determine if the trial value is “close”, and whether it is too
high or too low. A simple bisection search procedure will quickly determine the
required eigenvalue to any precision we might require.

The third requirement for a method, that we can determine which eigenvalue
we are close to, is more difficult to satisfy. We will discuss this issue in the next
section.

Implementation Details

The team of Atkinson, Krall, Leaf, and Zettl (AKLZ) developed a prototype
FORTRAN code [2], based on the algorithm described above. This early code
produced excellent results for some trial problems, but had difficulties in certain
cases. A later implementation by Dwyer duplicated the earlier results, and the
difficulties as well. These difficulties were caused by some details in the way that
the algorithm was implemented, and have since been corrected; the algorithm
itself is perfectly sound. A corrected FORTRAN code, developed by Dwyer and
Zettl, is available as an appendix to the doctoral thesis of Dwyer [6].

The initial value problem (IVP) for Θ may be solved using any of the stan-
dard techniques. It is necessary to keep track of the eigenvalues of the matrix

EJDE–1995/05 H.I. Dwyer & A. Zettl 9

B(x, λ) as the variable x increases from a to b. The numerical method for the
IVP solution uses a step-size which is rather small, to increase the accuracy
of the computed result. However, since eigenvalue computations are relatively
slow, we do not wish to examine the eigenvalues at every step; the code is written
to perform the eigenvalue computations only at selected steps. This modifica-
tion saves considerable execution time. The algorithm has been implemented
using both the NAG and IMSL linear algebra libraries, with similar results.

The matrix B(x, λ) is sampled at equally spaced points along the interval
[a, b]. At each point, the eigenvalues of B are computed using a library routine.
We compare the lists of eigenvalues for adjacent samples of B to determine
whether the eigenvalues have passed through the value 1 on the complex unit
circle. A difficulty arises in this comparison if the two lists for adjacent samples
are not returned by the library routine in the same order. At various points
along the interval, the matrix B will change enough that the library routine will
“shuffle” the eigenvalue list; the list will contain eigenvalues which are similar
to the previous list, but in a different order. This re-ordering cannot be avoided
by reducing the distance between samples. It is necessary to correctly match
the two lists, before the eigenvalue movements can be tracked. Since the lists
are usually not shuffled, the matching routine should be designed to quickly
recognize this situation. An algorithm for matching the lists is described in
detail in [6].

The movements of the eigenvalues ofB(x, λ) are tracked as x increases from a
to b. We keep track of the total number of times that an eigenvalue passes anti-
clockwise through the value 1; we will call this total the index for the particular
choice of λ. As we increase the λ value, we will get a “jump” in the index value
as λ passes through an eigenvalue of the SL problem. The size of the jump
indicates the multiplicity of the eigenvalue. The first (lowest) eigenvalue for the
SL problem corresponds to the first jump in the index. However, the first jump
need not be a jump from index=0 to index=1. The eigenvalues of B(x, λ) do
not, in general, move anti-clockwise as x increases; each may behave differently,
and may move clockwise during some portion of the interval [a, b]. Thus, it is
possible to have a negative index value in some problems. Other problems may
have an index which is never zero, since it is possible that the first eigenvalue
may correspond to the jump from index=5 to index=6.

If a lower bound on the eigenvalues is known, then we may solve the labeling
difficulty by computing the index corresponding to the lower bound and using
this value as an offset. We may then compute any desired eigenvalue, λn, by
searching for the index jump from index=offset+n to index=offset+n+1. We
continue a bisection search until the λ-interval [λlo, λhi] is sufficiently narrow to
meet the user specified tolerance, where λlo is a value whose index is less than
or equal to offset+n, and λhi is a value whose index is greater than offset+n.
In cases where the spectrum is not bounded below, we use the convention that
λ0 is the first nonnegative eigenvalue. This is achieved by computing the index
corresponding to λ = 0, and using that value as offset.

10 Eigenvalue Computations EJDE–1995/05

After a bracketing interval has been found using bisection, the multiplicity
of the eigenvalue is simply the size of the jump in the index across the bracket.
If the user has specified a very tight or a very loose tolerance on the eigenvalue,
the multiplicity which is computed may be incorrect. What is actually being
computed is the total number of eigenvalues which lie within the bracket. If
the tolerance is larger than the spacing between adjacent eigenvalues, they may
both be included within the same bracket and appear as one multiple eigenvalue.
The reported multiplicity will thus be too large. Conversely, if the tolerance is
too tight, the reported multiplicity may be too low; due to numerical errors,
an eigenvalue of multiplicity may appear to be a cluster of simple eigenvalues,
very close together. If the tolerance is tighter than the spacing of this cluster,
or if the cluster is very near to one of the endpoints of the bracket, some of the
simple eigenvalues will be excluded from the bracket, resulting in a multiplicity
count which is too low.

Experiments indicate that the best method is to work with a moderate tol-
erance for initial computations, determine the multiplicity using that tolerance,
and then continue the computation to a tighter tolerance. If the multiplicities
do not match, we are alerted that some additional care is required. The next
example was selected to illustrate some of these difficulties.

Example

We consider the following three-dimensional problem:

Example 1 On the interval [0, π], with coefficients

P (x) =

 11 6 3
6 12 2
3 2 1

 , Q(x) =

 0 0 0
0 0 0
0 0 0

 , W (x) =

 38 24 12
24 18 8
12 8 4

subject to the condition Y (0) = Y (π) = 0.

It is easy to verify that both P and W are positive definite. The problem
may be solved without difficulty, so that we know exactly what the eigenval-
ues are; on this interval they are either integers or integers plus one fourth.
The example was constructed so that there are eigenvalues with each of the
possible multiplicities. The first ten eigenvalues are given in Table 1. The accu-
racy which can be achieved will, of course, depend on the particular numerical
methods used. A relatively straight-forward implementation of the algorithm
in FORTRAN, using double precision arithmetic, produced the results shown
in Table 2. The bisection search produces an interval estimate; the midpoint of
the interval is used as the estimate for the eigenvalue. Each search began with
a random real value. Each interval was refined until the relative error is less
than 0.1% .

EJDE–1995/05 H.I. Dwyer & A. Zettl 11

n λn n λn
0 0.25 5 4.00
1 1.00 6 4.00
2 1.00 7 6.25
3 2.25 8 9.00
4 4.00 9 9.00

Table 1: Exact Values For Eigenvalues

n Interval Midpoint Mult.
0 (0.24991 , 0.250968) 0.250479 1
1 (0.999991 , 1.000968) 1.000479 2
2 ” ”
3 (2.249014 , 2.250968) 2.249991 1
4 (3.997061 , 4.000968) 3.999014 3
5 ” ”
6 ” ”
7 (6.247061 , 6.250968) 6.249014 1
8 (8.993155 , 9.000968) 8.997061 2
9 ” ”

Table 2: Results, Beginning With Random Real Guess Values

If the computations are repeated using an integer as the initial guess, each
eigenvalue will be one of the endpoints of the bisection interval. The results
of these computations are shown in Table 3. Even a small numerical error will
split the multiple eigenvalues across the endpoint, resulting in errors in the
reported multiplicities. Note that each reported eigenvalue is within tolerance
of the correct value; it is only the reported multiplicity which is in error. Similar
errors appear when the tolerance is specified to be very small.

As a final test, we computed the first and second eigenvalues, beginning with
a random real initial guess, and allowed the bisection process to continue until
an incorrect bisection step occurred. Beginning with an interval of length 1, the
code made 32 correct bisections when computing the first eigenvalue, and 21
correct bisections before the second eigenvalue “split” and lost its multiplicity.
These results are shown in Table 4. These results indicate that the values of the
eigenvalues may be computed quite accurately using this algorithm. However,
when computations are continued this far the reported multiplicity is almost
always in error; multiple eigenvalues are reported as a “cluster” of closely spaced
simple eigenvalues.

12 Eigenvalue Computations EJDE–1995/05

n Interval Midpoint Mult.
0 (0.250000 , 0.250977) 0.250488 1
1 (0.999023 , 1.000000) 0.999512 1
2 (1.000000 , 1.000977) 1.000488 1
3 (2.250000 , 2.251953) 2.250977 1
4 (3.996094 , 4.000000) 3.998047 1
5 (4.000000 , 4.003906) 4.001953 2
6 ” ”
7 (6.250000 , 6.253906) 6.251953 1
8 (8.992188 , 9.000000) 8.996094 1
9 (9.000000 , 9.007813) 9.003906 1

Table 3: Results, Beginning With Integer Guess Values

n Interval Midpoint
0 (0.249999999889 , 0.250000000121) 0.250000000005
1 (0.999999728102 , 1.000000204939) 0.999999966521

Table 4: Results of Continued Bisection

References

[1] F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic
Press, New York, 1964.

[2] F.V. Atkinson, A.M. Krall, G.K. Leaf, A. Zettl, On the Numer-
ical Computation of Eigenvalues of Matrix Sturm-Liouville Problems with
Matrix Coefficients, Argonne National Laboratory Reports, Darien, 1987.

[3] P.B. Bailey, SLEIGN: An Eigenfunction-eigenvalue Code for Sturm-
Liouville Problems, SAND7-2044, Sandia Laboratories, Albuquerque, 1978.

[4] P.B. Bailey, M.K. Gordon, L.F. Shampine, Automatic Solution of the
Sturm-Liouville Problem, ACM Trans. Math. Software, 4, 1978, 193-208.

[5] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equa-
tions, Krieger Publishing, Malabar, 1984.

[6] H.I. Dwyer, Eigenvalues of Matrix Sturm-Liouville Problems with Sepa-
rated or Coupled Boundary Conditions, Doctoral Thesis, Northern Illinois
University, 1993.

EJDE–1995/05 H.I. Dwyer & A. Zettl 13

[7] M. Möller, A. Zettl, Semi-boundedness of Ordinary Differential Oper-
ators, Journal of Differential Equations, (to appear).

[8] P.B.Bailey, B.S.Garbow, H.G.Kaper and A.Zettl, Eigenvalue and
Eigenfunction Computations for Sturm-Liouville Problems, ACM TOMS
17(1991), 491-499.

[9] S.Pruess and C.Fulton, Mathematical Software for Sturm-Liouville
Problems, ACM TOMS (1994), (to appear).

[10] J. Pryce, D02KEF, NAG Library Reference Guide.

H.I. Dwyer

Mathematics Department

University of Wisconsin

Platteville, Wi. 53818

E-mail address: dwyer@uwplatt.edu

A. Zettl

Mathematical Sciences Dept.

Northern Illinois University

DeKalb, IL. 60115

E-mail address: zettl@math.niu.edu

