\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \vcorrection{6mm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1996/01\hfil On the number of solutions \hfil\folio} \def\leftheadline{\folio\hfil H. Dang, K. Schmitt \& R. Shivaji \hfil EJDE--1996/01} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol.\ {\eightbf 1996}(1996), No.\ 01, pp.\ 1--9.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu (147.26.103.110) \hfill\break telnet (login: ejde), ftp, and gopher access: ejde.math.swt.edu or ejde.math.unt.edu\bigskip} } \topmatter \title On the number of solutions of boundary\\ value problems involving the $P$--Laplacian \endtitle \thanks \noindent {\it 1991 Mathematics Subject Classifications:} 34B15, 35J15, 35J85.\hfil\break {\it Key words and phrases:} p--Laplacian, radial solutions, boundary value problems. \hfil\break \copyright 1996 Southwest Texas State University and University of North Texas.\hfil\break Submitted October 4, 1995. Published January 8, 1996. \hfil\break Supported by the National Science Foundation. \endthanks \author Hai Dang, Klaus Schmitt \& R. Shivaji \endauthor \address Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA \endaddress \email dang\@math.msstate.edu \endemail \address Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA \endaddress \email schmitt\@math.utah.edu \endemail \address Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA \endaddress \email shivaji\@math.msstate.edu \endemail \abstract This paper is concerned with multiplicity questions for solutions of the boundary value problem $$\aligned(\varphi (u'))' + \lambda &f(t, u)=0,~ a 0.$ (A.2) $f:[a,b] \times [0, \infty) \to (0, \infty)$ is continuous and there exists an interval $[c,d] \subset (a,b),~c \lambda ^*$. \endproclaim Note that in the special case where $\varphi (u') = u'$, theorem 1 was proved in [2,6] under the additional assumption that $f$ is of class $C^2$. Related results for the case $\varphi (u') = |u'|^{p-2} u'$ can be found in [4,5,7] and the references in these papers. As we shall see, a more specific result, which establishes the existence of solution continua of $(1.1)_{\lambda}$ which satisfy the above conditions, may be obtained also. One of the primary motivations for studying problems of the above types are boundary value problems for partial differential equations for perturbations of the p-Laplacian of the form $$ \aligned \text{ div} \left ( | \nabla u|^{p-2} \nabla u \right ) & + \lambda g (|x|, u) =0, a < |x| \int ^{a_1} _a \varphi ^{-1} [M \int ^ {\frac {a_1+b_1}{2}} _{a_1} (\varphi (u)+1)]\\ &>(a_1-a) \varphi ^{-1} [ M \frac {(b_1-a_1)}{2} [ \varphi ( |u| _0 \delta) +1]], \endaligned $$ where $$ \delta = \min _{a_1 \leq t \leq b_1} p(t). $$ This implies $$\varphi ( \frac {|u|_0}{a_1-a} ) > M \frac {(b_1-a_1)}{2} [ \varphi ( |u| _0 \delta) +1] \tag 3.5$$ If $t_0 \leq \frac {a_1+b_1}{2}$, then by rewriting (3.4) as $$u(t) = \int ^b _t \varphi ^{-1} [ \int ^s _{t_0} g (\tau , u) d \tau ] ds$$ we deduce $$\varphi \left ( \frac {|u|_0}{b-b_1} \right ) > \frac {M(b_1-a_1)}{2} [ \varphi ( |u|_0 \delta) +1] \tag 3.6$$ Combining (3.5) and (3.6), we obtain $$\varphi (\gamma |u|_0) > \frac {M(b_1-a_1)}{2} [ \varphi (|u| _0 \delta) +1]$$ where $\gamma = \max \left (\frac {1}{b-b_1}, \frac {1}{a_1-a} \right ).$ \newline Consequently, $$\frac {\varphi (\gamma |u| _0)}{\varphi ( \delta |u| _0)} > \frac M2 (b_1-a_1)$$ a contradiction to (A.1) if $M$ is sufficiently large. \enddemo \proclaim{Remark 5} It follows from the proof, that problem {\rm (3.2)} has no solution $u$ satisfying $$g(t, u(t)) \geq M (\varphi (u(t)) +1), \quad t \in [a_1,a_2],$$ if $M \geq M_0.$ \endproclaim These considerations further imply the following result: \proclaim{Theorem 6} There exists a positive number $\bar {\lambda}$ such that problem $(1.1)_{\lambda}$ has no solution for $\lambda > \bar {\lambda}.$ \endproclaim \demo{Proof} It follows immediately from (A.2) that there exists a constant $\mu >0$ such that $$ f(t,u)\geq \mu (\varphi (u)+1),~u\in {\Bbb R}^+,~c\leq t\leq d. $$ Hence the result follows from the previous lemma. \enddemo \proclaim{Lemma 7} For each $\mu > 0$, there exists a positive constant $C _{\mu}$ such that the problem $$\align( \varphi (u'))' = - \lambda & \theta f (t,u) - (1- \theta) M _0 (| \varphi (u)| +1)\\ & u(a) = 0 = u(b) \tag 3.7 \endalign$$ with $\lambda \geq \mu, \, \theta \in [0,1]$ and $M _0$ given by remark 5, has no solution satisfying $|u|_0 > C _{\mu}.$ \endproclaim \demo {Proof} Let $u$ be a solution of (3.7) with $\lambda \geq \mu$ and $\theta \in [0,1]$. Then $u \geq 0$. By (A.2), there exists $M_1 > 0$ such that $$f(t, u) > \frac {M_0}{\mu} (\varphi (u) +1) \tag 3.8$$ for $t \in [c,d]$ and $u \geq M _1.$ Let $\delta = \min _{c \leq t \leq d} p(t)$. Then if $|u|_0 > \frac {M_1} {\delta}$ we have by lemma 3 $$u(t) \geq |u|_0 \delta > M _1, \quad t \in [c,d]$$ which implies by (3.8) that $$\align & \lambda \theta f (t, u (t)) + (1 - \theta ) M _0 ( \varphi (u (t)) +1) \\ \geq & \frac {\lambda \theta M _0}{\mu} (\varphi (u(t)) +1) + (1-\theta) M _0 \varphi (u(t)) +1)\\ \geq & M _0 (\varphi (u(t))+1), \quad t \in [c,d] \endalign$$ a contradiction with remark 5, and the lemma is proved. \enddemo Now, let $\Lambda$ be the set of all $\lambda > 0$ such that $(1.1)_\lambda$ has a solution and let $\lambda ^* = \text{sup } \Lambda$. Note that by lemma 3, every solution of $(1.1) _\lambda$ is positive. \proclaim{Lemma 8} $0 < \lambda ^* < \infty$ and $\lambda ^* \in \Lambda .$ \endproclaim \demo{Proof} $u\in C^0[a,b]$ is a solution of (1.1)$_ {\lambda}$ if and only if $u=F(\lambda ,u),$ where $$ F:[0,\infty)\times C^0[a,b]\to C^0[a,b] $$ is the completely continuous mapping given by $$ u=F(\lambda, v), $$ with $u$ the solution of $$\align &(\varphi (u' ))' = - \lambda f(t,v),\\ & u(a) = 0 = u (b). \endalign $$ We note that $F(0,v)=0,~v\in C^0[a,b].$ Hence it follows from the continuation theorem of Leray-Schauder that there exists a solution continuum $\Cal{C} \subset [0,\infty )\times C^0[a,b]$ of solutions of (1.1)$_{\lambda}$ which is unbounded in $[0,\infty ) \times C^0[a,b],$ and thus, (1.1)$_ {\lambda}$ has a solution for $\lambda > 0$ sufficiently small, and hence $\lambda ^* > 0$. By theorem 6 , $\lambda ^* < \infty$. We verify that $\lambda ^* \in \Lambda$. Let $\{\lambda _n\} _n \subset \Lambda$ be such that $\lambda _n \to \lambda ^*$ and let $\{u _n\}$ be the corresponding solutions of (1.1)$_{\lambda _n}$. By lemma 7, $\{u _n\}$ is bounded in $C^1[a,b]$ and hence $\{u_n\}$ has a subsequence converging to $u \in C ^0[a,b] $. By standard limiting procedures, it follows that $u$ is a solution of (1.1)$ _{\lambda ^*}.$ \enddemo \proclaim{Lemma 9} Let $0 < \lambda < \lambda ^*$ and let $u _{\lambda ^*}$ be a solution of $(1.1) _{\lambda ^*}.$ Then there exists $\epsilon _0> 0$ such that $u _{\lambda ^*} + \epsilon, ~0\leq \epsilon \leq \epsilon _0$ is an upper solution of $(1.1) _{\lambda}.$ \endproclaim \demo{Proof} Let $c_1 > 0$ be such that $f(t, u _{\lambda ^*} (t)) \geq c_1$ for every $t \in [a,b]$ and let $\epsilon _0>0 $ be such that $$|f(t, u _{\lambda ^*} (t) + \epsilon) - f (t, u _{\lambda ^*} (t)) | < \frac {c_1 (\lambda ^* - \lambda)}{\lambda}, \quad t \in [a,b],~ 0\leq \epsilon \leq \epsilon _0. $$ Then we have $$\align (\varphi (u' _{\lambda ^*}))' & = - \lambda ^* f (t, u _{\lambda ^*}) = - \lambda f (t, u _{\lambda ^*} + \epsilon )+ \\ & + \lambda [ f (t, u _{\lambda ^*} + \epsilon) -f (t, u _{\lambda ^*})] + (\lambda - \lambda ^*) f (t, u _{\lambda ^*}) \\ & \leq - \lambda f (t, u _{\lambda ^*} + \epsilon) \endalign $$ i.e. $u _ \lambda ^* + \epsilon$ is an upper solution of $(1.1) _ \lambda.$ \enddemo \demo{Proof of theorem 1} Let $0 < \lambda < \lambda ^* .$ Since $0$ is a lower solution and $u _{\lambda ^*}$ is an upper solution, there exists a minimum solution $u _ \lambda $ of $(1.1) _ \lambda$ with $0 \leq u _{\lambda} \leq u _{\lambda ^*}.$ We next establish the existence of a second solution to $(1.1) _{\lambda}$. Let $F(\lambda, u)$ be defined as in the proof of lemma 8. Further define $$\tilde f (t,v(t)) = \left \{ \matrix f(t, u _{\lambda ^*}(t) + \epsilon) & \text{if} & v(t) \geq u_{\lambda ^*}(t) + \epsilon \\ f(t, v(t)) & \text{if} & - \epsilon \leq v(t) \leq u _{\lambda ^*} (t) + \epsilon \\ f(t, - \epsilon) & \text{if} & v(t) \leq - \epsilon \endmatrix \right .$$ where $\epsilon$ is given in lemma 9, and let $\tilde F(\lambda ,u)$ be the operator analogous to $F$ defined by $\tilde f.$ Consider $$B= \left \{ u \in C^0[a,b] : - \epsilon < u (t) < u _{\lambda ^*} (t) + \epsilon , \quad t \in [a,b] \right \}.$$ Then $B$ is open and $u _{\lambda} \in B,~0\leq \lambda \leq \lambda ^*.$ Since $\tilde F$ is bounded for $\lambda $ in compact intervals, $$\text{deg } (I- \tilde F (\lambda ,\cdot ), B (u _{\lambda}, R), 0) =1$$ if $R$ is sufficiently large. Here $B(u_{\lambda}, R)$ is the ball centered at $u_{\lambda}$ with radius $R$ in $C^0[a,b].$ If there exists $u \in \partial B$ such that $u = \tilde F(\lambda , u)$ then $u$ is a second solution of $(1.1) _{\lambda}$. Suppose that $u \neq \tilde F(\lambda ,u)$ for every $u \in \partial B.$ Then $\text{deg } (I- \tilde F(\lambda ,\cdot), B, 0) $ is well defined and since $\tilde F (\lambda ,\cdot )$ has no fixed point in $B(u_{\lambda}, R)\setminus B$ ( see e.g [9]), we have by the excision property $$\text{deg } (I -F(\lambda ,\cdot ), B, 0) = \text {deg } (I - \tilde F(\lambda ,\cdot ), B, 0) =1,~ 0\leq \lambda \leq \lambda ^*. $$ On the other hand, it follows from lemma 7 that for $\mu >0 $ there exists $M>0 $ such that for $\lambda \geq \mu, $ $\lambda $ in compact intervals, $$ \text{deg } (I -F(\lambda ,\cdot ), B(0,M), 0) = \text{constant}, $$ where $B(0,M)$ is the ball centered at 0 of radius $M$ in $C^0[a,b].$ The latter degree, on the other hand, must equal 0, since for $\lambda >\lambda ^*$ no solutions exist. Thus the existence of a second solution follows from the excision principle of the Leray-Schauder degree. \enddemo We remark that theorem 2, together with lemma 9 (appropriately interpreted), implies that the mapping $$ \lambda \mapsto u_{\lambda},~ 0\leq \lambda \leq \lambda ^*, $$ where $ u_{\lambda}$ is the minimal solution of (1.1)$_{\lambda }$ is a continuous mapping $[0,\lambda ^*]\to C^0[a,b].$ For it is the case that for any $\tilde \lambda \in (0, \lambda ^*]$ the minimal solutions $\{u_{\lambda }$ satisfy $u_{\lambda}\leq u_{\tilde \lambda},~\lambda \leq \tilde \lambda .$ Furthermore the limit $u=\lim_{\lambda \to \tilde \lambda}u_{\lambda}$ exists and is a solution of (1.1)$_{\tilde \lambda }.$ Hence $u_{\tilde \lambda}=\lim_{\lambda \to \tilde \lambda}u_{\lambda}.$ It therefore follows that $$ \{(\lambda , u_{\lambda}),~ 0\leq \lambda \leq \lambda ^*\}\subset \Cal C, $$ where $\Cal C$ is the continuum in the proof of lemma 8. Using separation results on closed sets in compact metric spaces (Whyburn's lemma), one may use the arguments used in the above proof to verify that for each $\lambda \in (0,\lambda ^*)$ there are at least two solutions on the continuum $\Cal C.$ \Refs \ref \no 1 \by K. Ak\^{o} \pages 45-62 \paper On the Dirichlet problem for quasilinear elliptic differential equations of second order \yr 1961 \vol 13 \jour J. Math. Soc. Japan \endref \ref \no 2 \by H. Amann \pages 207-213 \paper On the number of solutions of asymptotically superlinear two point boundary value problems \yr 1974 \vol 55 \jour Arch. Rational Mech. Anal. \endref \ref \no 3 \by H. Dang and K. Schmitt \pages 747-758 \paper Existence of positive radial solutions for semilinear elliptic equations in annular domains \yr 1994 \vol 7 \jour Differential and Integral Equations \endref \ref \no 4 \by M.A. Herrero and J. L. Vazquez \pages 1381-1402 \paper On the propagation properties of a nonlinear degenerate parabolic equation \yr 1982 \vol 7 \jour Comm. Partial Differential Equations \endref \ref \no 5 \by H.G. Kaper, M. Knaap and M.K. Kwong \pages 543-554 \paper Existence theorems for second order boundary value problems \yr 1991 \vol 4 \jour Differential and Integral Equations \endref \ref \no 6 \by S.S. Lin \pages 367-391 \paper Positive radial solutions and nonradial bifurcation for semilinear elliptic equations in annular domains \yr 1990 \vol 86 \jour J. Differential Equations \endref \ref \no 7 \by M. DelPino, M. Elgueta and R. Man\'asevich \pages 1-13 \paper A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'| ^{p-2} u')' + f (t,u) =0,~u (0)=u(T)=0,~p > 1$ \yr 1989 \vol 80 \jour J. Differential Equations \endref \ref \no 8 \by K. Schmitt \pages 263-309 \paper Boundary value problems for quasilinear second order elliptic equations \yr 1978 \vol 3 \jour Nonlinear Anal., TMA \endref \ref \no 9 \by M. Otani and T. Teshima \pages 8-10 \paper On the first eigenvalue of some quasilinear elliptic equations \yr 1988 \vol 64 \jour Proc. Japan Acad. \endref \endRefs \enddocument