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Adjoint and self-adjoint differential operators on

graphs ∗

Robert Carlson

Abstract

A differential operator on a directed graph with weighted edges is char-
acterized as a system of ordinary differential operators. A class of local
operators is introduced to clarify which operators should be considered as
defined on the graph. When the edge lengths have a positive lower bound,
all local self-adjoint extensions of the minimal symmetric operator may
be classified by boundary conditions at the vertices.

1 Introduction

Although there is a large body of literature on the spectral theory of linear
difference operators associated with a combinatorial graph [3], the study of
differential operators on a topological graph has received much less attention.
This situation has begun to change, due in large part to quantum-mechanical
problems associated with advances in micro-electronic fabrication [2, 7, 8, 10]. In
developing physical models one often needs to know when a differential operator
is essentially self adjoint on a given domain. This paper provides a description
of adjoints, and considers domains of essential self adjointness for a class of
differential operators on weighted directed graphs.
These differential operators L are actually a (possibly infinite) system of

ordinary differential operators on intervals whose lengths are given by the edge
weights of the graph G. For regular ordinary differential operators acting on
L2[a, b] there is a classical description of adjoints and self-adjoint extensions
in terms of boundary conditions [5, pp. 284–297]. This theory has a close
connection with the abstract treatment of self-adjoint extensions of symmetric
operators [14, pp. 140–141]. The general treatment is somewhat deficient for
differential operators on graphs, since the role of the vertices of the graph G is
unclear. When there are infinitely many vertices the description of extensions
appears particularly awkward.
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2 Adjoint and self-adjoint differential operators EJDE–1998/06

To remedy these problems, we will impose an additional restriction on the
domain of an operator L. Let φ : G → C denote a C∞ function which has
compact support in G and is constant in an open neighborhood of each vertex.
We say that L is a local operator if for every φ, φf is in the domain of L
whenever f is. We will see that local operators have domains described via
boundary conditions which only compare boundary values at endpoints which
are identified with a single vertex of the graph G.
One result uses conditions at the vertices to characterize functions of com-

pact support in the domain of the adjoint of a local operator. The main results
assume that the edge lengths of G have a positive lower bound. In this case
there is a complete classification of local self-adjoint operators L in terms of
boundary conditions at the graph vertices when the coefficients of the opera-
tor are bounded and satisfy some mild additional regularity assumptions. A
final application shows that Schrödinger operators on a graph with δ− function
interactions are essentially self adjoint on a domain of functions of compact
support.

2 Local Differential Operators on Graphs

In this work a graph G will have a countable vertex set V and a countable set
of directed edges en. Each edge has a positive weight (length) wn. Assume
further that each vertex appears in at least one, but only finitely many edges.
The graph may have loops and multiple edges with the same vertices.
A topological graph may be constructed using the graph data [12, p. 190].

For each directed edge en let [an, bn] be a real interval of length wn, and let αm ∈
{an, bn}. Identify interval endpoints αm if the corresponding edge endpoints are
the same vertex v, in which case we will write αm ∼ v. This topological graph,
also denoted G, is assumed to be connected. The Euclidean metric on the
intervals may be extended to a metric on G by taking the distance between two
points to be the length of the shortest (undirected) path joining them. Notice
that every compact set K ⊂ G is contained in a finite union of closed edges en,
since K has a covering by open sets which hit only finitely many edges.
Let L2(G) denote the Hilbert space ⊕nL2(en) with the inner product

〈f, g〉 =

∫
G
fg =

∑
n

∫ bn
an

fn(x)gn(x) dx, f = (f1, f2, . . .).

A differential operator L acts componentwise on functions f ∈ L2(G) in its
domain,

Lf =
M∑
j=0

cj(x)f
(j)(x).

The leading coefficient cM is nowhere 0 and cj is a j times continuously differen-
tiable complex valued function on each interval [an, bn]. The associated formal
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operator is

L =

M∑
j=0

cj(x)D
j , D =

d

dx
.

The domain of L, denoted Dom(L), will always include Dmin, the linear span of
C∞ functions supported in the interior of a single interval (an, bn). The domain
of L will be contained in Dmax (which depends on L), the set of functions

f ∈ L2(G) with fn, . . . , f
(M−1)
n continuous and f

(M−1)
n absolutely continuous

on [an, bn], and Lf ∈ L2(G).
A convenient reference for differential operators on L2[a, b] is [6, pp. 1278–

1310]. The development there assumes that cj ∈ C∞, but this distinction is
unimportant. In addition, these authors assume a somewhat larger minimal
domain for the operators. This is also inconsequential since L is closable [11, p.
168], and the closure of L will have a domain [11, pp. 169–171] which includes
the functions f ∈ Dmax which are supported on an interval [an, bn], and which
satisfy

f (j)n (an) = 0 = f
(j)
n (bn), j = 0, . . . ,M − 1.

If Lmin has the domain Dmin, then the adjoint operator L∗min will again be
a differential operator. By working on one interval [an, bn] at a time, and using
the classical theory [6, p. 1294], [11, pp. 169–171], one may obtain the following
result.

Lemma 2.1 A function f is in the domain of the adjoint operator L∗min, if and
only if f ∈ Dmax for L+, where

L+ =

M∑
j=0

(−1)jDjcj(x) =
M∑
j=0

(−1)j
j∑
i=0

(
j

i

)
c
(j−i)
j (x)Di.

If f ∈ Dom(L∗min), then L
∗
minf = L

+f .

If αm ∈ {an, bn}, then the functionals f (j)(αm), for j = 0, . . . ,M − 1 are
continuous [6, pp. 1297–1301] on Dom(L) when the domain is given the norm
‖f‖L = [‖f‖2+‖Lf‖2]1/2. Say that βv is a vertex functional at v if βv is a linear
combination of f (j)(αm) for j = 0, . . . ,M − 1, and αm ∼ v. A (homogeneous)
vertex condition at v is a equation of the form βv(f) = 0.
Whether or not L is local, there will always be a (complex) vector space

Bv of vertex functionals βv at v such that every function f in Dom(L) satisfies
βv(f) = 0. If L is local and closed, these vertex conditions will give a local
description of functions in Dom(L). Let Dcom be the set of functions of compact
support in Dmax.

Lemma 2.2 Suppose that L is local and closed. If f ∈ Dcom and βv(f) = 0 for
all βv ∈ Bv and all v ∈ V, then f is in the domain of L.
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Proof Fix the vertex v, and let δ(v) be its degree. Consider the range of the
linear map from Dom(L) to CMδ(v), which sends g to boundary values

g(j)(αm), j = 0, . . . ,M − 1, αm ∼ v.

If this subspace did not include the vector of values f (j)(αm) there would be a
vertex functional at v which annihilated Dom(L), but not f . Since this contra-
dicts the assumptions on f , there is some gv ∈ Dom(L) satisfying

g(j)v (αm) = f
(j)(αm), j = 0, . . . ,M − 1, αm ∼ v.

Since L is local, we may assume that gv has compact support and vanishes
in a neighborhood of every other vertex. Since f has compact support, there is
a finite collection of vertices v for which f (j)(αm) 6= 0, for some 0 ≤ j < M ,
and αm ∼ v. Thus there is a function g ∈ Dom(L) of compact support, such
that f (j)(αm) = g(j)(αm) for j = 0, . . . ,M − 1, at every endpoint αm. Since L
is closed and Dmin ⊂ Dom(L), we find that f − g, and thus f , are in Dom(L).
2

Before turning to the description of the domain for the adjoint of a local
operator L, some additional ideas are reviewed.
Suppose f, g ∈ Dmax, with the support of g in an open ball containing at

most one vertex v. Then integration by parts [5, p. 285] leads to

〈Lf, g〉 − 〈f, L+g〉 = [f, g]v

where [f, g]v is a nondegenerate form in the boundary values of f and g at the
αm ∼ v.
Consider the second order case Lf = f ′′ + c1f

′ + c0f . On [an, bn] we have,
without restrictions on the support of f and g,

∫ bn
an

[
gLf − fL+g

]
= f ′(bn)g(bn)− f

′(an)g(an) + f(an)g
′(an)− f(bn)g

′(bn)

+f(bn)c1(bn)g(bn)− f(an)c1(an)g(an).

If g vanishes outside of a small neighborhood of v, and

σm =

{
0, αm = bm ,
1, αm = am ,

then

[f, g]v =
∑
m

(−1)σm
[
f ′(αm)g(αm)− f(αm)g

′(αm) + f(αm)c1(αm)g(αm)
]
,

with αm ∼ v.
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At each v pick an ordering α1, . . . , αδ(v) of the αm ∼ v, and for f ∈ Dmax
let f̂ ∈ CMδ(v) be the vector with components

f̂jδ(v)+k = f
(j)(αk), j = 0, . . . ,M − 1, k = 1, . . . , δ(v).

With respect to this basis there is an invertible Mδ(v)×Mδ(v) matrix Sv such
that

[f, g]v = Sv f̂ • ĝ. (2.a)

where • denotes the usual dot product on CMδ(v). Single vertex conditions may
now be written as ∑

bj,kf
(j)(αk) =

∑
bj,kf̂jδ(v)+k = 0,

and a maximal independent set of vertex conditions at v may be written more
compactly as Bvf̂ = 0, where Bv is a K(v) × Mδ(v) matrix with linearly
independent rows.
Since the null space N(Bv) ∈ CMδ(v) has dimension Mδ(v)−K(v), there is

an [Mδ(v)−K(v)]×Mδ(v) matrix B+v , such that

B+v X = 0 if and only if S∗vX ∈ N(Bv)
⊥, X ∈ CMδ(v). (2.b)

Call any such matrix B+v a complementary matrix to Bv, and the vertex condi-

tions B+v f̂ = 0 complementary boundary conditions.

3 Domains of adjoint operators

If L is local, functions in the domain of the adjoint operator L∗ must also
satisfy vertex conditions. The treatment of an operator defined on a single
interval may be found in [5, pp. 284–297]. We have taken advantage of some
refinements worked out in [4].
Find a basis z1, . . . , zMδ−K(v) forN(Bv), and let Zv be theMδ(v)×[Mδ(v)−

K(v)] matrix whose columns are zj .

Theorem 3.1 Suppose that L is local, and that the vertex conditions at v an-
nihilating the domain of L are written as

Bvf̂ = 0,

where Bv is a K(v)×Mδ(v) matrix, with linearly independent rows.
Then the adjoint L∗ is local and closed. A function g ∈ Dcom is in the domain

of L∗ if and only if B+v ĝ = 0 for a set of vertex conditions complementary to
the conditions Bvf̂ = 0.
A matrix B+v is complementary to Bv if and only if B

+
v is [Mδ(v)−K(v)]×

Mδ(v), with linearly independent rows, and the equations

B+v [S
∗
v ]
−1(B∗v ) = 0

are satisfied. One such matrix is B+v = (SvZv)
∗.
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Proof If g ∈ Dom(L∗) then g ∈ Dom(L∗min), so by Lemma 2.1 L
∗g = L+g,

and

〈Lf, g〉 = 〈f, L+g〉, f ∈ Dom(L).

Since L is local, any vertex values f̂ at v satisfying Bvf̂ = 0 are the vertex
values of some f ∈ Dom(L) which has compact support and 0 is in an open
neighborhood of every vertex except v. For such f ,

〈Lf, g〉 − 〈f, L+g〉 = 0 = [f, g]v.

By (2.a) we have S∗v ĝ ∈ N(Bv)
⊥, and by (2.b) the equations B+v ĝ = 0 are

satisfied for any matrix complementary to Bv. Now if φ has compact support
and constant in neighborhood of each vertex, then φg ∈ Dcom with B+v φ̂g = 0.
This implies that φg ∈ Dom(L∗) and L∗ is local, and more generally that
g ∈ Dcom is in the domain of L∗ if and only if B+ĝ = 0. In addition, adjoint
operators are always closed.

What remains is to characterize the matrices B+v complementary to Bv. The
vector ĝ will satisfy the vertex conditions of a function in Dom(L∗) if and only
if S∗v ĝ ∈ N(Bv)

⊥. Since

Ran(Zv) = N(Bv), N(Bv)
⊥ = Ran(Zv)

⊥ = N(Z∗v ),

the condition on ĝ is equivalent to Z∗vS
∗
v ĝ = 0. Thus we may takeB

+
v = (SvZv)

∗.

To recognize more generally when a matrix B+v is complementary to B, start
with the fact that this is equivalent to requiring that ĝ ∈ N(B+v ) if and only if
S∗v ĝ ∈ N(Bv)

⊥, or ĝ ∈ [S∗v ]
−1N(Bv)

⊥. Thus we want N(B+v ) = [S
∗
v ]
−1ran(B∗v ),

or that B+v is a [Mδ(v)−K(v)]×Mδ(v) matrix with linearly independent rows
such that the equation B+v [S

∗
v ]
−1(B∗v ) = 0 is satisfied. 2

The following observation about self-adjoint operators is a corollary of the
last result.

Corollary 3.2 Suppose that L is self adjoint and local, with vertex conditions
Bvf̂v = 0 as in Theorem 3.1. Then each Bv is an [Mδ(v)/2]×Mδ(v) matrix,
and

Bv[S
∗
v ]
−1(B∗v ) = 0 (3.a).

Conversely, suppose that L = L+, and that vertex conditions Bvf̂v = 0 are
given at each vertex so that (3.a) is satisfied. If each Bv is an [Mδ(v)/2]×Mδ(v)
matrix with linearly independent rows, then the operator L with

Dom(L) = {f ∈ Dcom | Bv f̂ = 0, v ∈ V}

is symmetric, and has no symmetric extensions whose domain is a subset of
Dcom.
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The next lemma will help identify formal operatorsL = L+ and vertex condi-
tions such that L will be essentially self adjoint if Dom(L) = {f ∈ Dcom | Bvf̂ =
0}. We will need some hypotheses on the coefficients of L, and will require that
the lengths wn of the edges have a positive lower bound.

Lemma 3.3 Suppose that wn ≥ C > 0 for all n, and that vertex matrices Bv
with independent rows are given. Assume that the leading coefficient |cM | of
L is bounded below by a positive constant, and that all coefficients of L+ are
uniformly bounded on G.
Let Dom(L) = {f ∈ Dcom | Bv f̂ = 0, v ∈ V}, and let L+ be the restric-

tion of L∗ to Dom(L+) = {f ∈ Dcom | B+v f̂ = 0, v ∈ V} for matrices B+v
complementary to Bv.
Assume that there is a positive constant ε, and a complex number λ such

that
‖(L− λ)f‖ ≥ ε‖f‖, f ∈ Dom(L), (3.b)

‖(L+ − λ)‖ ≥ ε‖f‖, f ∈ Dom(L+). (3.c)

Then the closure of L− λ has a bounded inverse.

Proof Part of the method of proof is adopted from [11, p. 274]. The inequality
(3.b) extends to the closure of L−λ, which is therefore injective and boundedly
invertible on its range. If the range is not dense there must be a nontrivial vector
ψ in N(L∗−λ). We will assume the existence of ψ, and obtain a contradiction.
Pick a C∞ function η(x) on (0, C) which is 1 in a neighborhood of 0 and

vanishes identically for x > C/4. Pick any edge e0, and for K = 1, 2, 3, . . .
construct a C∞ cutoff function φK on G as follows. On the set E0 of (closed)
edges containing some point whose distance from a vertex of e0 is less than
or equal to K, let φK = 1. On edges e = [an, bn] not in E0 which share a
vertex v ∼ an (resp. v ∼ bn) with an edge in E1, let φK = η(x − an) (resp.
φK = η(bn − x)) where η is defined. Otherwise let φK = 0.
Since L∗ is local, φKψ ∈ Dom(L+). A computation gives

[L+ − λ]φKψ = φK [L
+ − λ]ψ +RK

where the first term on the right hand side is 0. The term RK is a sum, in

which each summand has as a factor φ
(j)
K for j ≥ 1. Thus we may write

RK =
∑
j<M

Cjψ
(j),

where the Cj vanish outside the support of φ
′
K , and are bounded independent

of K.
Let E(K) denote those edges where φ′K is not identically zero. By virtue of

the hypotheses on the coefficients of L+, and the construction of φK , there is a
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constant C such that∫
EK

|RK |
2 ≤ C

[∫
EK

|L+ψ|2 +

∫
EK

|ψ|2
]
≤ C[1 + |λ|2]

∫
EK

|ψ|2.

The constant C may be chosen independent of K [9, p. 19]. Thus

0 = lim
K→∞

‖RK‖
2 = lim

K→∞
‖[L+ − λ]φKψ‖

2.

But this violates the bound (3.c). Thus the range of L−λ is dense, establishing
the result. 2

Lemma 3.3 shows that domains of local self-adjoint operators may often be
completely classified by means of vertex conditions.

Theorem 3.4 Suppose that wn ≥ C > 0 for all n, and that L = L+. Assume
that |cM | is bounded below by a positive constant, and that all coefficients of L
are uniformly bounded.
If [Mδ(v)/2]×Mδ(v) vertex matrices Bv are given with linearly independent

rows, and satisfying (3.a), and if L has domain

Dom(L) = {f ∈ Dcom | Bvf̂ = 0, v ∈ V},

then L is essentially self adjoint. Conversely, every local self-adjoint operator
L1 formally given by such an L whose domain includes Dmin is the closure of
one of the operators L.

Proof Since the vertex matricesBv are self complementary, Dom(L) ⊂ Dom(L∗)
by Theorem 3.1. Since L = L+, L is symmetric. It then follows [11, p. 270]
that

‖(L ± i)f‖ ≥ ‖f‖.

By Lemma 3.3 the closures of (L ± i) are boundedly invertible, so [13, p.
256] L is essentially self adjoint.
On the other hand, if L is local and self adjoint, with Dmin ⊂ Dom(L), then

by Corollary 3.2 and the first part of this theorem there are self complementary
vertex matrices Bv, and a domain

D1 = {f ∈ Dcom | Bvf̂ = 0, v ∈ V}

such that D1 ⊂ Dom(L) and the restriction of L to D1 is essentially self adjoint.

4 Schrödinger operators on graphs

For many applications of physical interest, the functions in Dom(L) will be
continuous at the vertices. This condition can be express as a set of δ(v) − 1
independent conditions at each vertex,

fαm(v) = fαm+1(v), m = 1, . . . , δ(v)− 1.
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We turn to the example of Schrödinger operators L = D2 + p where one addi-
tional vertex condition will be needed to define a self-adjoint operator.
An independent vertex condition may be written as

δ(v)∑
n=1

dnf
′(αm) = ρ(v)f(v), (3.d)

with not all coefficients equal to 0, and where f(v) is the common value of the
f(αm). The example considered after Lemma 2.2 shows that for L = D

2 + p

[f, g]v =
∑
n

(−1)σn
[
f ′(αm)g(αm)− f(αm)g

′(αm)
]
, αm ∼ v.

Working directly with this form, it is a simple exercise to characterize the addi-
tional vertex conditions with the property that all functions satisfying the vertex
conditions are annihilated by the form. The following result is thus obtained.

Corollary 4.1 Suppose that wn ≥ C > 0 for all n, and that L = D2. The
operator L whose vertex conditions Bv f̂ = 0 include the continuity conditions
f(αm) − f(αm+1) = 0 for 1 ≤ m ≤ δ(v) − 1 at each vertex v ∈ G, and one
additional boundary condition of the form

γ

δ(v)∑
n=1

(−1)σnf ′(αm)− ρf(v) = 0, ρ, γ ∈ R, ρ2 + γ2 6= 0,

will be essentially self adjoint on Dom(L) = {f ∈ Dcom | Bv f̂ = 0, v ∈ V}.
Conversely every local self-adjoint operator L1 = D2 whose domain includes
Dmin and satisfies the continuity conditions at every vertex is the closure of one
of the operators L.

One may immediately extend this corollary to L = D2+p for a real bounded
measurable function p by a standard perturbation result [11, p. 287]. For
operators on the real axis, these vertex conditions are known as δ(function)
interactions. See an extensive treatment of such operators in [1].
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