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On forced periodic solutions of superlinear

quasi-parabolic problems ∗

José Luiz Boldrini & Janete Crema

Abstract

We study the existence of periodic solutions for a class of quasi-parabolic
equations involving the p-Laplacian (or any other nonlinear operators of
similar class) perturbed by nonlinear terms and forced by rather irregu-
lar periodic in time excitations (including what we call abrupt changes).
These equations may model problems for which, aside from the presence
of the kind of nonlinear dissipation associated to the p-Laplacian, other
nonlinear and not necessarily dissipative mechanisms occur. We look for
boundedness conditions on these periodic excitations and nonlinear per-
turbations sufficient to guarantee the existence of periodic responses (so-
lutions) of the same period.

1 Introduction

Monotone operators, in particular the ones that are subdifferentials of convex
functions, like the p-Laplacian, appear frequently in equations modeling the
behaviour of viscoelastic materials (see Le Tallec [10] for instance). These non-
linear operators may be accompanied by others nonlinear operators that may
complicate the analysis of the equations and the prediction of the behaviour of
the material. This is specially true when these accompanying operators may,
under certain circumstance, impart energy into the system formed by the inter-
action between the material and external actions.
Mathematically speaking, this means that the overall operator associated

to the problem is no longer always monotonic and not even always dissipative.
Thus, due to this imbalance between the gain and the dissipation of energy, it is
not clear whether when acted by periodic external forces, the internal dissipation
will be enough for the system respond also in a periodic way. This raises the
problem of knowing under what conditions such periodic responses exist.
Obviously, this sort of question also appears when the principal part of

the operator modeling to the internal dissipation is linear. But, in this case,
one can resort to a larger collection of mathematical techniques to study the
problem, and, due to our better knowledge of the behavior of linear equations
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as compared to the present knowledge of the nonlinear ones, the answer to
the previous question can be more easily obtained. In fact, there is plenty of
articles considering several aspects (and not only the question of existence) of
the problem. For instance, with the help of techniques of super and subsolution,
Hess ([11], [12], [13], [14] [15]) studied the existence of periodic solutions and
its related properties (like the study of principal eigenvalues and bifurcation),
when the principal part of the involved operator is linear. Other aspects of this
problem, always when the principal part of the involved operator is linear, can
be found in papers by Dancer and Hess ([6], [7], [8]), Buonocore [4], Nkashama
[20] and Esteban [10].
Here, on the other hand, we will be interested in giving a partial answer

only to the the question of existence of forced periodic solutions, but for a class
of nonlinear equations including the p-Laplacian as the principal part of the
operator. The analysis of such cases is harder, as it is in general when the
principal part of the operator is also nonlinear. It is also much less studied.
In fact, few papers consider the question in such situations. For instance,

Mizoguchi [19] considered the problem of existence of positive periodic solutions
for equations in which the principal part of the operator was related to the
operator appearing in porous media equation.
Yamada [24] treated a problem involving the p-Laplacian, perturbed by a

maximal monotonic operator, and proved the existence of periodic solutions
when the boundary conditions changed periodically. We observe that the prob-
lem considered in [24] is always dissipative.
In [21], Ôtani proved rather general results concerning the existence of strong

solutions of abstract equations of a certain class , which allows the p-Laplacian
as the principal part of the operator. We will compare his results with ours
later on in the paper.
For simplicity of exposition, we will start by considering in detail a rather

simple model problem. We begin by studying cases where there are no changes
in the basic type of internal dissipation mechanism during the periodic cycle
(later we will consider a case where this change of type can occur). We will also
assume that the periodic excitation is of a special type.
Let Ω be an open bounded and regular set in RN and 0 < T < +∞. We

will look for solutions u : Ω× [0, T ] −→ R of quasi-parabolic problems of form

ut −∆pu = m(t)g(u) + h(x, t) in Ω ,

u|∂Ω = 0 , (1)

u(., 0) = u(., T ) .

Here,∇u denotes the gradient of u, ∆pu = − div(|∇u|p−2∇u) is the p-Laplacian,
and ut denotes the derivative of u with respect to time t. We remark that
throughout this paper, we will assume that m(t)g(0) + h(x, t) is not identically
zero, otherwise u ≡ 0 would be a trivial solution.
Also, we will suppose that the above g is a continuous function such that for

some constants a and s there holds

|g(v)| ≤ a(|v|s + 1) ∀v ∈ R.
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Our goal here will be basically to find conditions on the growth of g that are
enough to guarantee the existence of T -periodic solutions. We put ourselves in
what we call the “worst-case situation from the energy point of view”: we assume
that the sole responsable for the dissipation in the problem is the principal
monotone part of the operator, that is, there is no dissipation of energy coming
from g. Thus, we do not pay attention to any particular behavior of g, except
its growth rate and amplitude, and we explore exclusively the coercivity and
the regularization coming from ∆p.
For technical reasons, we will split the analysis in three cases: 0 ≤ s < p−1,

s = p− 1 and s > p− 1. This will be done in Section 3
Next, in the following section, we will see that our method of proof can be

easily extended to abstract problems involving operators similar to ∆p. In fact,
our results will be true for equations of form:

ut +A(u) = F (u) ,
u(0) = u(T ) ,

(2)

with A a strongly monotone, coercive and hemicontinuous operator in a suitable
reflexive separable Banach space and F a nonlinear mapping satisfying growth
conditions similar to the ones for the previously described special case (1). In
Section 4, we will also give examples of application of this abstract result to
other equations.
Then, we will pay attention to situations where at certain specified times

(and in a periodic way) there are sudden (abrupt) changes of the involved op-
erator.
A problem of this sort is studied in Kawohl and Rühl [16], where it is proved

the existence of periodic solutions for an equation involving the Laplacian, per-
turbed by another maximal monotonic operator, with a certain boundary con-
dition changing abruptly and periodically in time. We remark again that, as in
the case of [24], the system studied in [16] is always dissipative.
The results in Ôtani [21] can also be applied to certain situations of abrupt

changes. They do not apply, however, to the sort of situation we will be inter-
ested, and we will comment more on this point later on.
Here, as before, we want to study situations of abrupt changes in cases where

it is possible to impart energy into the system. Moreover, we would like to allow
for abrupt changes in type of the principal part of the operator (which models
the internal dissipation), effectively changing its degree of dissipation (which
mathematically can be gauged, for instance, by its type of coerciveness).
For this, we will consider a model case given the following problem: being

pi ≥ 2, i = 1, 2, Ω as before a bounded and regular region of RN , t ∈ (0, T ) and
I1 = (0, t), I2 = (t, T ), we want to find a suitable solution of

ut(t, x)−∆p1u(t, x) = m1(t, x)g1(u(t, x)) + h1(t, x) for (t, x) ∈ I1 × Ω ,
ut(t, x)−∆p2u(t, x) = m2(t, x)g2(u(t, x)) + h2(t, x) for (t, x) ∈ I2 × Ω ,

u(t, ·)|∂Ω = 0, for t ∈ (0, T ),
u(0, x) = u(T, x), for x ∈ Ω .

(3)
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As in the case of our previous simpler model (1), our goal will be to find condi-
tions so that there are periodic solutions when |gi(v)| ≤ ai(|v|si + 1) ∀v ∈ R,
i = 1, 2. We will establish a result of this sort in Section 5.
Section 6 finishes the paper with several remarks concerning the existence

of strong solutions.

2 Preliminaries

For the sake of fixing notations and ease the reading, in this section we will
recall results that we will be using in the paper.
Let V be a Banach space and V ′ be its topological dual. Let H be a Hilbert

space such that V ⊂ H ⊂ V ′, with continuous and dense inclusions. We will
denote by | · |V , | · |V ′ , and | · |H respectively the norms of V , V ′ and H ; by
〈 , 〉V ′,V we denote the duality pairing between V ′ and V , and by 〈 , 〉H ,
the inner product of H .
For T > 0, we consider the Banach space Lp(0, T ;V ) = {u : (0, T ) →

V ;
∫ T
0
|u(t)|pV dt <∞}, with norm |u|LpV = (

∫ T
0
|u(t)|pV dt)

1/p. Let p′ be defined

by 1/p + 1/p′ = 1 and denote ut =
du

dt
; we recall that the Banach space {u ∈

Lp(0, T ;V ); ut ∈ Lp
′

(0, T ;V ′)}, with norm given by |u|LpV + |ut|Lp′V ′ , is a
subspace of C([0, T ];H), the class of continuous functions defined on [0, T ] with
values in H . Moreover, for u and v in this space, there holds∫ T

0

〈ut(t), v(t)〉V ′V + 〈vt(t), u(t)〉V ′V dt = 〈u(T ), v(T )〉H − 〈u(0), v(0)〉H . (1)

For a proof of these results, see Lions [18], pp. 156 and 321.
We will need the following compactness criterion given by the Aubin-Lions

(see Lions [18], p. 58, Theorem 5.1 and Strauss [22], p. 34, Theorem 2):

Lemma 1 Let X,Y and Z three Banach spaces, X and Z reflexive, such that
X ⊂ Y ⊂ Z with continuous inclusions. Moreover, assume that the inclusion
X ⊂ Y is compact and that 1 ≤ p ≤ ∞ and 1 < q ≤ ∞. Then, the space
{u ∈ Lp(0, T ;X); ut ∈ Lq(0, T ;Z)} is compactly included in Lp(0, T ;Y ).

In the analysis of the cases with abrupt changes, we will have the opportunity
to use the following result stated in Brezis [2], Section 1, Theorem 1.3.

Lemma 2 Let E be an uniformly convex Banach space and let C be a closed
convex subset of E. Let F be a family of (not necessarily strict) contractions from
C to C with the property that for any T, T ′ ∈ F it is true that TT ′ = T ′T ∈ F .
Suppose also that there is x ∈ C such that the set {Tx, ∀T ∈ F} is bounded.
Then, there exists x0 ∈ C such that Tx0 = x0 for any T ∈ F . In particular, if
T : C → C is a (not necessarily strict) contraction, T has a fixed point if and
only if there is x ∈ C such that {T nx}n≥0 is bounded.

The following results will be useful to obtain strong solutions:
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Lemma 3 (Tychonoff-Schauder Fixed Point Theorem Let K be a compact con-
vex subset of a locally convex topological vector space X. Let T be an upper
semi-continuous (multivalued) mapping from K into X such that for each x in
K, T (x) is a closed convex subset of X whose intersection with K is nonempty.
Then T has a fixed point in K, i.e., there exists an element x0 in K such that
x0 ∈ T (x0).

Lemma 4 Let K and K1 be two compact topological spaces and T be a multival-
ued mapping from K into K1 with T (x) closed for each x ∈ K. Then T is upper
semicontinuous if and only if the graph of T, G(T ) := {[u,w] ∈ K ×K1 ; w ∈ T (u)},
is a closed subset of K ×K1 .

The proof of the last two results can be found in Browder [3] (the first one
is Corollary 2 of Theorem 6.3), while the second is Proposition 6.2.)

Lq(Ω) will denote the usual Banach space of real valued function defined on
Ω, with norm |u|q = (

∫
Ω |u(x)|

qdx)1/q . When q = 2, 〈·, ·〉2 denotes the usual
inner product in the Hilbert space L2(Ω).
The norm of u ∈W 1,p0 (Ω), the usual Sobolev space, will be denoted |u|1,p =

(
∫
Ω |∇u(x)|

p dx)1/p. One can consult Adams [1] for general properties of Sobolev

spaces. Here we only recall that if p ≥ 2, then W 1,p0 (Ω) ⊂ L
2(Ω) ⊂ W−1,p

′
(Ω),

with continuous and dense inclusions.
To rigorously define the p-Laplacian, we first consider the functional Φ :

W 1,p0 (Ω)→ R, defined for any u ∈W
1,p
0 (Ω) by Φ(u) =

1
p |u|

p
1,p.

Concerning this functional, it is known that it is of class C1 and that, for
any u and v belonging to W 1,p0 (Ω) one has

〈Φ′(u), v〉W−1,p′ ,W 1,p
0
=

∫
Ω

|∇u(x)|p−2〈∇u(x),∇v(x)〉 dx

When ∆pu ≡ div(|∇u|p−2∇u) ∈ L2(Ω), we have 〈Φ′(u), v〉W−1,p′ ,W 1,p
0
=

−
∫
Ω
∆pu(x) · v(x) dx.
Thus, from now on we are going to denote Φ′ by −∆p, and, for simplicity of

notation, the duality map between W−1,p
′
(Ω) and W 1,p0 (Ω) just by 〈·, ·〉.

It is also known that −∆p : W
1,p
0 (Ω) → W

−1,p′(Ω) has the following prop-
erties:

(i) Strong Monotonicity: There is α > 0 such that for any u, v ∈ W 1,p0 (Ω) it
holds

〈(−∆p)u − (−∆p)v, u− v〉 ≥ α|u− v|
p
1,p . (2)

(ii) Hemicontinuity: For any λ ∈ R and any u, v, w ∈ W 1,p0 (Ω), the following
function is continuous:

λ→ 〈−∆p(u + λw), v〉 .. (3)
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(iii) Coercivity: For any u ∈ W 1,p0 (Ω), it holds that

〈−∆pu, u〉 = |u|
p
1,p . (4)

(iv) Boundness: For any u ∈W 1,p0 (Ω), it is true

| −∆pu|W−1,p′ ≤ |u|
p−1
1,p . (5)

Properties (4) and (5) easily follow from the definition of ∆p; (3) follows

from the fact that Φ ∈ C1(W 1,p0 (Ω)). (2) follows from Tolksdorf [23], Section 2,
Lemma 1.

We also need to clarify the meaning of weak and strong solutions:

Definitions:

(i) Let f ∈ Lp
′

(0, T ;W−1,p
′

(Ω)) and u0 ∈ L2(Ω). We say that u is a weak
solution of

ut −∆pu = f ,
u|∂Ω = 0 ,
u(0) = u0 ,

(6)

when u ∈ W = {w ∈ Lp(0, T ;W 1,p0 (Ω));wt ∈ L
p′(0, T ;W−1,p

′
(Ω))}, u

satisfies (6) in Lp
′

(0, T ;W−1,p
′

(Ω)) and u(0) = u0 (which makes sense
because W ⊂ C([0, T ];L2(Ω))).

(ii) In the case where f ∈ L2(0, T ;L2(Ω)), u is called a strong solution of
(6) if it is a weak solution , ut ∈ L2(0, T ;L2(Ω)), and (6) is satisfied in
L2(0, T ;L2(Ω)).

We will also use the T-periodic “almost linearized” problem associated to
the previous initial value problem:

ut −∆pu = f(x, t) in Ω ,
u|∂Ω = 0 ,

u(., 0) = u(., T ) ,
(7)

Concerning this problem, the following result that can be found in Lions [18],
Chapter 2, Section 7.4, p. 236:

Lemma 5 Let f ∈ Lp
′
(0, T ;W−1,p

′
(Ω)), p ≥ 2 and

W = {w ∈ Lp(0, T ;W 1,p0 (Ω)); wt ∈ L
p′(0, T ;W−1,p(Ω)}. (8)

Then, there is a unique weak solution u ∈ W of (7). In particular, when f is
T -periodic, u is also T -periodic.
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This lemma allows the consideration of the Solution Operator associated to
the T -periodic “almost linearized” Problem 7. We will need certain properties
of this solution operator acting in suitable functional spaces. In the following
we will state two of this sort of result; their proofs are quite classical, and so
they will only be sketched.

Proposition 1 Let p ≥ 2 and q > 1 such that 1 − N/p > −N/q. Then, the
solution operator S defined as

S : Lp
′

(0, T ;W−1,p
′

(Ω))→ Lp(0, T ;Lq(Ω)) (9)

f 7→ S(f) = u ,

where u is the solution of (7), is completely continuous. Moreover, there are
positive constants C1 and C2 such that

|S(f)|LpW 1,p
0
≤ |f |1/(p−1)

Lp
′
W−1,p′ , (10)

|
d

dt
S(f)|Lp′W−1,p′ ≤ C1|f |Lp′W−1,p′ , (11)

|S(f)− S(g)|LpW 1,p
0
≤ C2|f − g|

1/(p−1)

Lp
′
W−1,p′ . (12)

Proof: By taking v = u in (1), working with classical energy estimates and
using (5) we obtain (10) to (12). The continuous inclusion Lp(0, T ;W 1,p0 (Ω)) ⊂
Lp(0, T ;Lq(Ω)) and (12) now imply that S is continuous. Moreover, for any
bounded subset B of Lp

′
(0, T ;W−1,p

′
(Ω)), by (10) and (11), S(B) is a bounded

subset ofW . But by Lemma 2.1 we have the compact inclusionW ⊂ Lp(0, T ;Lq(Ω)),
then S(B) is relatively compact in Lp(0, T ;Lq(Ω)), and, consequently, S is com-
pletely continuous. �

The proof of the following result is similar to the previous one:

Proposition 2 The Solution Operator S associated to (7) is also well defined
when acting in the following spaces:

S : Lp
′
(0, T ;W−1,p

′
(Ω))→ L∞(0, T ;L2(Ω)) (13)

f 7→ S(f) = u .

Moreover, it is a continuous and bounded operator satisfying:

|S(f)− S(g)|2L∞L2 ≤ C|f − g|
2
p−1

Lp
′
W−1/p′ + C|f − g|

p′

Lp
′
W−1,p′ . (14)

We remark that when g = 0 then S(g) = 0; consequently, this last inequality
furnishes

|S(f)|2L∞L2 ≤ C|f |
2
p−1

Lp
′
W−1/p′ + C|f |

p′

Lp
′
W−1,p′ . (15)

with C = C(Ω, T, p, α) > 0.
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Finally, we observe that in the derivations of the a priori estimates holding
in this paper, we will follow the usual procedure and denote by C a generic
constant depending only on the problem data. Sometimes we will display the
dependence of these constant on the data, and, in those cases where we want to
stress the role of the constants, we will use other symbols, like Ci, Di, ai, and
so on.

3 Existence of Solutions in the Case of the First
Model Equation

First of all we want to briefly describe the arguments we will be using to prove
existence of periodic solutions. We will adapt rather classical techniques: we will
consider the Solution Operator associated to the T -periodic “almost linearized”
problem 7 acting in suitable functional spaces and the Nemytskii operator cor-
responding to the function in the right hand side of (1). Then, we will look for
solutions of the problem as fixed points of the composition of these two opera-
tors. As it is usual in this setting, the main difficulty will be to obtain suitable
a priori estimates to guarantee that we are in the conditions of some fixed point
theorem (in our case, the Schauder Fixed Point Theorem.)

We start by investigating the existence of weak solutions of Problem 1 in the
case 0 ≤ s < p− 1. We have:

Theorem 1 Suppose that p ≥ 2, m ∈ L∞(0, T ), h ∈ Lp
′
(0, T ;W−1,p

′
(Ω)), and

g : R→ R is a continuous function such that for some a > 0 and s ∈ [0, p− 1)
there holds |g(v)| ≤ a(|v|s + 1). Then, Problem (1) has a weak solution.

Proof: The Nemytskii operator, NH , associated to the function H(u, x, t) =
m(t)g(u)+h(x, t),which is defined byNH(u)(x, t) = H(u(x, t), x, t) = m(t)g(u(x, t))+
h(x, t), is a continuous and bounded map from Lp(0, T ;Lp(Ω) to Lp

′

(0, T ;W−1,p
′

(Ω)).

On the other hand, because 0 ≤ s < p− 1, we have the continuous inclusion
Lp/s(0, T ;Lp/s(Ω)) ⊂ Lp

′
(0, T ;W−1,p

′
(Ω)), then we conclude that there is a

positive constant C = C(Ω, T ), depending only on Ω and T such that

|NH(u)|Lp′W−1,p′ ≤ a1|u|
s
LpLp + a2, (1)

with

a1 = Ca|m|∞, a2 = a1(|Ω|T )
s/p + |h|Lp′W−1,p′ , (2)

which gives the boundness of NH .

It is easy to see that NH is sequentially continuous in L
p/s(0, T ;Lp/s(Ω))

and consequently continuous in Lp
′
(0, T ;W−1,p

′
(Ω)). So

S ◦NH : L
p(0, T ;Lp(Ω))→ Lp(0, T ;Lp(Ω))
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is completely continuous. Moreover, by using (10), (11), the fact that the inclu-
sion Lp(0, T ;W 1,p0 (Ω)) ⊂ L

p(0, T ;Lp(Ω)) is continuous and also (1), we conclude
that there are constants

a3 = C(2a1)
1/(p−1) and a4 = C(2a2)

1/(p−1) (3)

such that

|S ◦NH(u)|LpLp ≤ a3|u|
s/p−1
LpLp + a4 (4)

and

|
d

dt
(S ◦NH(u))|Lp′W−1,p′ ≤ Ca1|u|

s
LpLp + Ca2. (5)

Recalling that 0 ≤ s < p− 1, from (4), we can conclude that for sufficiently
large R > 0, when |u|LpLp ≤ R then also |S ◦NH(u)|LpLp ≤ R. Fixing such R,
by restricting now to a closed ball of radius R in Lp(0, T ;Lp(Ω)), we can apply
Schauder Fixed Point Theorem and conclude that there is u ∈ W satisfying
the abstract equations ut −∆pu = NH(u) and u(0) = u(T ), that is, there is a
solution of (1.3). �

Now, we will consider equations (1) in the case s = p− 1. Then, it holds:

Theorem 2 Let p ≥ 2, m, h and g as in Theorem 1, with s = p− 1. Then, if
|m|L∞ is sufficiently small, (1) has a weak solution.

Proof: Following the proof of Theorem 1, we observe that in this case we also
have that S◦NH : Lp(0, T ;Lp(Ω))→ Lp(0, T ;Lp(Ω)) is a completely continuous
operator.
However, (4) reduces to |S ◦ NH(u)|LpLp ≤ a3|u|LpLp + a4. If we had 0 <

a3 < 1, we could take R ≥
a4

1− a3
to obtain a3R + a4 ≤ R, and the rest of the

argument used in Theorem 1 could be applied, furnishing the existence of the
required solution. But the condition 0 < a3 < 1 is attained when ‖m‖L∞ is
small enough since, from (2) and (3), a3 approaches zero as |m|L∞ approaches
zero. �

Now we will study the existence of solutions of 1 when s > p− 1, p ≥ 2.
This case will require a modified treatment. In fact, let us briefly describe

what would be the trouble if one had proceeded with the argument exactly as
before. Then, one would observe that when a3 were small enough (which as
previously could be attained when |m|L∞ is sufficiently small), it would still be
possible to find R > 0 such that a3R

s/(p−1) + a4 ≤ R (observe (4) in the case
s > p−1.) However, in this case it would not be true that Lp/s(0, T ;Lq/s(Ω)) ⊂
Lp

′
(0, T ;W−1,p

′
(Ω)) for q > 1. Consequently, the composition S ◦NH could not

be defined in the previous functional spaces. Thus, to prove the existence of
solutions when s > p − 1, we will have to explore the additional properties of
the Solution Operator S given by Proposition 2 in order to define S ◦ NH in
other suitable spaces. By doing this, we will be able to prove following result.
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Theorem 3 Let m, h and g as in Theorem 1. Let also p ≥ 2 and p− 1 < s <
p − 1 + Γ with either Γ = 2p/N when N > p or Γ = 2 when N ≤ p. Then, if
|g(v)| ≤ a(|v|s + 1) and |m|L∞ is sufficiently small, (1) has a weak solution.

Proof: The argument is as follows: we will choose suitable k, r > 1 such that the
operator S ◦ NH : Lk(0, T ;Lr(Ω)) → Lk(0, T ;Lr(Ω)) is completly continuous.
Then, with similar arguments to the ones used in Theorem 2, by choosing |m|∞
small enough, we will obtain a fixed point for S ◦ NH and, thus, the desired
solution.
We start by recalling that, by Propositions 1 and 2, the Solution Oper-

ator S associated to problem 7 is a continuous and bounded operator from
Lp

′
(0, T ;W−1,p

′
(Ω)) to either L∞(0, T ;L2(Ω)) or Lp(0, T, Lq(Ω)) (with q satis-

fying 1−
N

p
> −
N

q
and to be chosen later on) as the image space.

By interpolation, X = L∞(0, T ;L2(Ω)) ∩ Lp(0, T, Lq(Ω)) is continuously
imbedded in Lk(θ)(0, T ;Lr(θ,q)(Ω)), for any θ ∈ [0, 1] and

k(θ) = p/θ and r(θ, q) = q/[q(1− θ) + 2θ]. (6)

Moreover, for any u ∈ X we have

|u|Lk(θ)Lr(θ,q) ≤ |u|
θ
LpLq |u|

1−θ
L∞L2 . (7)

This implies that, for θ ∈ (0, 1],

S : Lp
′

(0, T ;W−1,p
′

(Ω))→ Lk(θ)(0, T ;Lr(θ,q)(Ω)) (8)

f 7→ S(f) = u

is a completely continuous operator. Moreover, by using (10), (15) and (7), we
obtain:

|S(f)|Lk(θ)Lr(θ,q) ≤ |f |
1/(p−1)

Lp
′
W−1,p′ [c5 + c6|f |

p/2

Lp
′
W−1,p′ ]

(1−θ)/2. (9)

Now, we are going to choose a suitable θ0 ∈ (0, 1] such that when p−1 < s <
p−1+Γ we have Lk(θ)/s(0, T ;Lr(θ,q)/s(Ω)) ⊂ Lp

′
(0, T ;W−1,p

′
(Ω)) continuously.

For this, we observe that if we require

s ≤ min{f1(θ) = (p− 1)/θ , f2(θ) = 2(q − 1)/[q(1− θ) + 2θ]} = s(θ),

then, by (6), we have

k(θ)/s = p/(θs) ≥ p′ = p/(p− 1) ,

r(θ, q)/s = 2q/{[q(1− θ) + 2θ]s} ≥ q′ ,

and, thus, the required continuous inclusionLk/s(0, T, Lr/s(Ω) ⊂ Lp
′
(0, T ;W−1,p

′
(Ω).

By analyzing the expressions of f1(θ) and f2(θ) it is easy to conclude that

θ0(q) =
q(p+ 1)− 2q

q(p+ 1)− 2p
∈ (0, 1), (10)
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furnishes the highest possible superior bound for s(θ) (under the required re-

strictions). That is, we must take s ≤ s(θ) =
p− 1

θ0(q)
= p+ 1− 2

p

q
= p+ 1 + Γ,

with q satisfying 1 −
N

p
>
N

q
. This gives us the conditions on Γ described in

the statement of the theorem. With θ0(q) given by (10), we can now take
the corresponding values of k(θ0) and r(θ0, q) given by the expressions in
(6). Thus, S defined as in (8) will be continuous. The Nemytskii opera-
tor NH : L

k(0, T ;Lr(Ω)) → Lp
′
(0, T ;W−1,p

′
(Ω)) will also be continuous and

bounded in the sense that, with C = C(Ω, T, k, s, a) > 0,

|NH(u)|Lp′W−1,p′ ≤ C|m|L∞(|u|
s
LkLr + 1) + |h|Lp′W−1,p′ . (11)

We conclude that S ◦ NH : Lk(0, T ;Lr(Ω)) → Lk(0, T ;Lr(Ω)) is, as in the
previous cases, completely continuous.

Now, from (9) and (11), with the help of Young inequality, we obtain that,
when |u|LkLr ≤ R for any fixed R > 0, then

|S ◦NH(u)|LkLr ≤ D1R
s(ζ1+ζ2) +D2, (12)

where

ζ1 = 1/(p− 1), ζ2 = (p(1 − θ0) + 2θ0)/2(p− 1),

D1 = C
1−θ0(C|m|L∞)ζ1(ζ1/ζ2) + C1−θ0(C|m|L∞)ζ2

D2 = C
1−θ0{(C|m|L∞)ζ1 [(ζ2 − ζ1)/ζ2] + (C(|m|L∞ + |h|Lp′W−1,p′ )}ζ1

+C(1−θ0)Cζ2(|m|L∞ + |h|Lp′W−1,p′ )ζ2 ,

again with C = C(Ω, p, q, T, a) > 0. We observe that because s > p − 1 then
s(ζ1 + ζ2) > 1.

So, proceeding as in the final part of the proof of Theorem 2, we start
by fixing R > 0 large enough such that D2 ≤ R/2; then, we observe that as
|m|L∞ → 0, we also haveD1 → 0. Thus, by taking |m|L∞ small enough, we have
D1R

s(ζ1+ζ2) ≤ R/2. Under these conditions, (12) implies that S ◦NH(BR(0)) ⊂
BR(0), where BR(0) is the ball of radius R and center 0 in L

k(0, T ;Lr(Ω). Thus
using Schauder Fixed Point Theorem we conclude that S ◦NH has a fixed point,
and consequently, (1) has a weak solution. �

Remark: We must stress that the above results are concerned with the exis-
tence of forced periodic solutions. In particular, if h were identically zero (recall
the observation just after equation (1,) from the above results we could not con-
clude that the constructed solution is nontrivial (i.e., u 6= 0.) This is the reason
for the fact that, when p = 2, the above stated range of allowed s is larger than
the corresponding range found when one is looking for nontrivial solutions in
the case g(u) = us and h = 0.
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4 An Abstract Result

The results stated in the last section hold for more general dissipative operators
sharing with ∆p certain properties. We state below the abstract version of these
previous results, omitting their proofs since they follow exactly as before.

Theorem 1 Suppose V ⊂ H ⊂ V ′ with continuous and dense inclusions, and
let A be a monotonic and hemicontinuous operator A : V → V ′ for which there
are constants α1 > 0, α2 > 0, β ≥ 0, γ1 ≥ 0 and γ2 ≥ 0 such that for any
u, v ∈ V it holds 〈Au−Av, u− v〉V ′V ≥ α1|u− v|

p
V , 〈Au, u〉V ′V ≥ α2|u|

p
V − β

and |Au|V ′ ≤ γ1|u|
p−1
V + γ2.

Let also X be a Banach space such that V ⊂ X ⊂ V ′ with dense and continuous
inclusions and V ⊂ X compactly. Moreover, let F : Lp(0, T ;X)→ Lp

′
(0, T ;V ′)

be a continuous and bounded map satisfying

|F (u)|Lp′V ′ ≤ k1|u|
s
LpX + k2,

for some non negative constants k1 and k2. Then the problem

ut +Au = F (u) ,
u(0) = u(T )

has a weak solution when one of the following conditions is satisfied:

(i) When 0 ≤ s < p− 1.

(ii) When s = p− 1 and k1 is sufficiently small.

(iii) V =W 1,p0 (Ω), X = L
q(Ω) with 1− (N/p) > −(N/q), k1 is small enough

and p − 1 < s < p − 1 + Γ, with either Γ = 2p/N when N > p or Γ = 2
when N ≤ p.

Examples of problems for which the abstract result applies:

(a) Let p and m, g, h as in Theorem 1 and a function c ∈ C1(R) satisfying
c′(t) ≥ 0 and also δtp−1 ≤ c(tp)tp−1 ≤ αtp−1 + β for all t ∈ R and certain
positive constants α, β, δ. Then, consider the problem:

ut − div(c(|∇u|p)|∇u|p−2∇u) = m(t)g(u) + h(t, x) ,
u|∂Ω = 0 ,

u(·, 0) = u(·, T ) .

(b) Let m, g, h as in Theorem 1 and p > p2 > p1 > 2 and λ, λ1, λ2 > 0 such
that p = 2p2 − p1, λ22 ≤ 4λ1λ and [λ2(p2 − 1)]

2 − 4λλ1(p− 1)(p1 − 1) ≥ 0.
Then, consider the problem:

ut − λ∆pu+ λ2∆p2u− λ1∆p1u = m(t)g(u) + h(x, t)
u|∂Ω = 0 ,

u(·, 0) = u(·, T ) .
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To prove that the operators corresponding to above two problems are strongly
monotone, one can use Lemma 1 in Section 2 in Tolksdorf [23]. The other
properties required in the last theorem are easily proved. The above smallness
condition on k1, when it applies, corresponds in the examples to a smallness
condition on |m|L∞ , as in the results of the previous sections. Thus, for the
above examples we can obtain the corresponding existence results of T -periodic
weak solutions.

5 Existence of Solutions of the Model with Abrupt

Changes

Now we will consider the Problem 3.

Theorem 1 Let t ∈ (0, T ), I1 = [0, t], and I2 = [t, T ]. Suppose that for each
i = 1, 2, mi ∈ L∞(Ii), hi ∈ Lp

′
i(Ii ; W

−1,p′i(Ω)) and gi is a continuous real
function satisfying |gi(v)| ≤ a(|vi|si +1). Suppose also that one of the following
three conditions is true.

(i) 0 ≤ si < pi − 1, for i = 1, 2.

(ii) pi−1 ≤ si < pi+1 for i = 1, 2, N ≤ pi and max
i=1,2

|mi|L∞ is small enough.

(iii) pi− 1 ≤ si < pi− 1+2
pi

N
for i = 1, 2, N > pi and max

i=1,2
|mi|L∞ is small

enough.

Then (3) has a weak solution.

Proof: We will just sketch the proof since after constructing a suitable solution
operator it uses arguments similar to those used in the previous theorems.
One starts by defining the following spaces: Li = L

pi(Ii ; W
1,pi
0 (Ω)), L′i =

Lp
′
i(Ii ; W

−1,p′i(Ω)), Wi = {w ∈ Li ; wt ∈ L′i}.
Then one considers the following problem: given (f1, f2) ∈ L′1 × L

′
2, find

(u1, u2) ∈W1 ×W2 such that

(u1)t(t, x)−∆p1u1(t, x) = f1(t, x), for (t, x) ∈ I1 × Ω ,
u1(t, ·)|∂Ω = 0, for t ∈ I1 ,

(u2)t(t, x)−∆p2u2(t, x) = f2(t, x), for (t, x) ∈ I2 × Ω ,
u2(t, ·)|∂Ω = 0, for t ∈ I2 ,

u1(0, x) = u2(T, x), for x ∈ Ω ,
u1(t, x) = u2(t, x). for x ∈ Ω .

(1)

Observe that the last condition make sense because

W1 ×W2 ⊂ C(I1;W−1,p
′
i(Ω))× C(I2;W−1,p

′
2(Ω))

⊂ C(I1;W−1,min{p
′
1,p

′
2}(Ω)) × C(I2;W−1,min{p

′
1,p

′
2}(Ω)).
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To prove that Problem 1 has a unique solution, one can proceed as follows:
consider the Poincare map K associated to (ui)t −∆piu = fi for t ∈ Ii, ui(0) =
u0 ∈ L2(Ω), u2(t) = u1(t). By using the monotonicity and coercivity of ∆pi ,
one proves that K is a non-strict contraction and that there is a sufficiently large
R > 0 so that K(B̄R(0)) ⊂ B̄R(0). So according to Lemma 2, K has a fixed
point. Using the monotonicity again, one obtains that is fixed point is unique.
This defines a solution operator for problem 1: S : L′1 × L

′
2 → W1 ×W2,

where S(h1, h2) = (u1, u2). Like in the previous theorems, it is then possible
to show that S is completely continuous and, moreover, that for i = 1, 2, with
suitable positive constants Ci, αi, i = 1, 2, the following estimates are true:∑

i=1,2 αi/pi|ui − vi| ≤
∑
Ci|fi − hi|p

′
i ,∑

i=1,2 αi/pi|ui|
p
i ≤
∑
Ci|fi|p

′
i ,

|
d

dt
ui| ≤ |fi|L′i + (pi/αi)

1/p′i(C1|f1|
p′1 + C2|f2|

p′2)1/p
′
i .

By introducing the natural Nemytskii operators, NH1 and NH2 , correspond-
ing respectively to the second members of (3), with the help of the above esti-
mates, one proves that NH1 ×NH2 :W1 ×W2 → L

′
1 × L

′
2 is continuous.

Now, working with S ◦ (NH1 × NH2) and repeating the arguments done in
the proofs of the previous theorems, we obtain a fixed point of S ◦ (NH1 ×NH2)
and then the stated result. �

Remarks:

(i) As in Section 4, it is possible to state a result on the existence of periodic
solutions for abstract operators Ai having properties similar to the ones
of ∆pi .

(ii) Adapting ideas of Kawohl and Rühl [16], it is possible to prove existence
of periodic solutions of the following problem involving abrupt changes:

ut −∆pi +Bi(t, u) = 0, for (t, x) ∈ Ii × Ω = Qi , i = 1, 2 ,

−
∂u

∂η
∈ βi(u), for (t, x) ∈ Ii × ∂Ω ,

u(0, x) = u(T, x) , for x ∈ Ω ,

where the Bi , i = 1, 2, are coercive maximal monotonic operators such
that Bi(t, ·) , i = 1, 2, are locally Lipschitizian in L2(Ω). We remark that
the presence of such operators in the above equations prevents the system
to be dissipative all the time. For the proof of this result, see [5].

6 Commentaries on Strong Solutions

With further restrictions on the problem data, it is possible to obtain strong
solutions of the previous problems. Let us comment on this.
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When h ∈ L2(0, T ;L2(Ω)) instead of Lp
′
(0, T ;W−1,p

′
(Ω)), one can repeat

the arguments done in the proof of Theorem 3 to find exponents k(θ) and
r(θ, q) (as in (6)) so that Lk/s(0, T ;Lr/s(Ω)) ⊂ L2(0, T ;L2(Ω)). Then, simi-
larly as before, we could look for a fixed point of S ◦ NH : Lk(0, T ;Lr(Ω)) →
Lk(0, T ;Lr(Ω)), with S(v) = u. However, by considering S ◦NH acting on such
Lk(0, T ;Lr(Ω)) one does not obtain the best possible result concerning superior
bounds for s.
To obtain better results, we proceed as follows: we observe that, when

h ∈ L2(0, T ;L2(Ω)), Brezis [2], Chapter 3, Theorem 3.6 furnishes the exis-
tence of a strong solution of(7) such that ut ∈ L2(0, T ;L2(Ω)) and, moreover,
the mapping [0, T ] 3 t 7→ Φ(u(t)) =

∫
Ω
|∇u(t, x)|p dx is continuous. In par-

ticular, we conclude that for 1 − (N/p) > −(N/q), the solution belongs to

W̃ =
{
w ∈ Lq(0, T ;W 1,p(Ω)) , wt ∈ L2(0, T ;L2(Ω))

}
. Hence, for all s so that

0 ≤ s ≤ q/2, we can consider S ◦NH : W̃ 7→ W̃
¿From this argument, we have gained regularity for u; but the operator

S ◦ NH is not completely continuous. In fact, it is not even continuous when
one considers the natural norm topology of W̃ . Therefore, it is not possible
proceed exactly as before to obtain a fixed point. However, as in Ôtani [21],
by considering weak topologies and using Lemma 4, it is possible to show that
S ◦ NH is semi-continuous and satisfies one can verify that SoNH does satisfy
the hypotheses of the Tychonoff-Schauder Fixed Point Theorem (Lemma 3) and
conclude that:

Theorem 1 Let h ∈ L2(0, T ;L2(Ω)) and suppose that either 0 ≤ s ≤ p/2 or
p/2 < s ≤ q/2 with 1− (N/p) > −(N/q) and |m|L∞ is small enough. Then (1)
has a strong solution.

Remarks:

(i) With the obvious modifications, there holds a result similar to Theorem 1
concerning strong solutions of (3).

(ii) When p = 2 (that is, when the principal part of the operator is linear),
Ω is of class C2, for instance, and h ∈ L2(0, T ;L2(Ω)), it is possible to
prove that there are strong periodic solutions when 1 ≤ s ≤ N+2

N−2 , in the
case N > 2. This result, which gives an improved upper bound for s as
compared to that given in Theorem 1, can be obtained by using the same
arguments as above, together with the better regularizing properties the
Laplacian operator (Dautray, Lions [9], for instance) to embed the solution
in higher order Sobolev spaces.

(iii) We recall that in the proofs of the existence results for weak solutions
presented in the previous sections, we used the usual Schauder Fixed Point
Theorem instead of using the Tychonov-Schauder Fixed Point Theorem
as we did above. Hence, one could wonder whether the use of Lemma
2.2 and weak topologies could give increased upper bounds for s in the
results in the previous sections. This would be indeed the case if we had
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a L∞(0, T ;W 1,p0 (Ω))-estimate for u = S ◦NH(v). Unfortunately, we were
not able to prove such estimate in the case of weak solutions, and, only
with the presented estimates, the use of Tychonov-Schauder Fixed Point
does not improve the values of s.

(iv) As we commented in the Introduction, Ôtani in [21] established a rather
general existence result on existence of strong periodic solutions of abstract
equations. This could be particularized to equation (1), furnishing thus
the existence of certain strong periodic solutions. However, compared to
our result, Ôtani’s require more regular conditions on h and, moreover,
a certain smallness condition on it. This implies that the amplitude of
periodic solutions found in [21] are also small (in suitable norms). On the
other hand, in our results h can be less regular (in which case we obtain a
weak solution), and we do not impose any smallness condition on h (to be
fair, we impose instead a smallness condition on |m|L∞ , but only in the
cases where it is necessary). Thus, our periodic solutions (both weak and
strong) are found in a large enough ball, and in fact, it is easy to prove that
when h is large, our solutions are also large (in suitable norms). Therefore,
our solutions, even in the case of strong ones, are different from the ones
obtained by the particularization of Ôtani’s results.

Another aspect that deserve attention is that since Ôtani’s results allow for
certain time-dependent operators, one could try to apply them to Problem
3. However, due to the required hypotheses in Ôtani’s theorem, this is
only true in the special case that hi ∈ L2((0, T )× Ω), with small enough
norms (thus furnishing a strong periodic solution), and, moreover, p1 = p2.
Therefore, the results in [21] rules out situations where there are changes
in the type of internal dissipation, as in (3).
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