\magnification = \magstep1 %\magstephalf \hsize=14truecm \hoffset=1truecm \parskip=5pt \nopagenumbers \input amssym.def % The R for Real nunbers. \font\eightrm=cmr8 \font\eighti=cmti8 \font\eightbf=cmbx8 \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--1998/18\hfil Second order evolution equation\hfil\folio} \def\leftheadline{\folio\hfil Mohammed Aassila \hfil EJDE--1998/18} \voffset=2\baselineskip \vbox {\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol.\ {\eightbf 1998}(1998) No.~18, pp. 1--6.\hfill\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfil\break ftp (login: ftp) 147.26.103.110 or 129.120.3.113} \footnote{}{\vbox{\hsize=10cm\eightrm\noindent\baselineskip 9pt % 1991 {\eighti Subject Classification:} 35B37, 35L70, 35B40. \hfil\break {\eighti Key words and phrases:} asymptotic behavior, strong stabilization. \hfil\break \copyright 1998 Southwest Texas State University and University of North Texas.\hfil\break Submitted April 15, 1998. Published July 2, 1998. } } \bigskip\bigskip \centerline{SOME REMARKS ON A SECOND ORDER EVOLUTION EQUATION} \medskip \centerline{Mohammed Aassila} \bigskip\bigskip {\eightrm\baselineskip=10pt \narrower \centerline{\eightbf Abstract} We prove the strong asymptotic stability of solutions to a second order evolution equation when the LaSalle's invariance principle cannot be applied due to the lack of monotonicity and compactness. \bigskip} \def\diver{\mathop{\rm div}} \bigbreak \centerline{{\bf \S 1. Introduction and statement of the main result}} \medskip\nobreak In recent papers [1, 2] we studied the asymptotic stability for some dissipative wave systems. Earlier work in the same direction is due to Nakao [7] who treated particularly the case of abstract evolution equations. In this work we give a new asymptotic stability theorem which extends the analysis in [5, 8] by taking into account the new approach introduced in [1, 2]. We focus on abstract equations of the form $$\displaylines{ u''-\diver\bigl((1+|\nabla u|^a)^b |\nabla u|^{c-2}\nabla u\bigr)+g(u')=0 \quad\hbox{in}\quad \Omega\times {\Bbb R}_+,\cr \hfill u(x,0)=u_0(x), u'(x,0)=u_1(x)\quad\hbox{in}\quad\Omega,\hfill (P)\cr u(x,t)=0\quad\hbox{on}\quad\partial\Omega\times {\Bbb R}_+,\cr} $$ where $\Omega$ is a domain in ${\Bbb R}^n$ of {\it finite measure} with smooth boundary $\partial\Omega$ and $a\geq 1$, $b, c>1$ are real numbers such that $ab+c\geq 1$. Concrete examples of (P) include the dissipative wave equation $$\displaylines{ u''-\Delta u+g(u')=0 \quad\hbox{in}\quad \Omega\times {\Bbb R}_+,\cr \hfill u(x,0)=u_0(x), u'(x,0)=u_1(x)\quad\hbox{in}\quad\Omega,\hfill (P1)\cr u(x,t)=0\quad\hbox{on}\quad\partial\Omega\times {\Bbb R}_+,\cr} $$ when $a=b=0,\,c=2$. The degenerate Laplace operator\medskip $$\displaylines{ u''-\diver\bigl( |\nabla u|^{c-2}\nabla u\bigr)+g(u')=0 \quad\hbox{in}\quad \Omega\times {\Bbb R}_+,\cr \hfill u(x,0)=u_0(x), u'(x,0)=u_1(x)\quad\hbox{in}\quad\Omega,\hfill (P2)\cr u(x,t)=0\quad\hbox{on}\quad\partial\Omega\times {\Bbb R}_+,\cr} $$ when $a=b=0$, $c>1$. And the quasilinear wave equation $$\displaylines{ u''-\diver\Bigl({{\nabla u}\over {\sqrt{1+|\nabla u|^2}}}\Bigr)+g(u')=0 \quad\hbox{in}\quad \Omega\times {\Bbb R}_+,\cr \hfill u(x,0)=u_0(x), u'(x,0)=u_1(x)\quad\hbox{in}\quad\Omega,\hfill (P3)\cr u(x,t)=0\quad\hbox{on}\quad\partial\Omega\times {\Bbb R}_+,\cr} $$ when $a=2$, $b=-1/2$ and $c=2$. Problem (P3), with $-\Delta u'$ instead of $g(u')$, describes the motion of fixed membrane with strong viscosity. This problem with $n=1$ was proposed by Greenberg [3] and Greenberg-MacCamy-Mizel [4] as a model of quasilinear wave equation which admits a global solution for large data. Quite recently, Kobayashi-Pecher-Shibata [6] have treated such nonlinearity and proved the global existence of smooth solutions. Subsequently, Nakao [8] has derived a decay estimate of the solutions under the assumption that the mean curvature of $\partial\Omega$ is non-positive. The object of this paper is to study the asymptotic behavior of the solution $u$ of (P) which is assumed to exist in the class $$ u\in C({\Bbb R}_+, W_0^{1, ab+c}(\Omega))\cap C^1({\Bbb R}_+, L^2(\Omega)) \eqno (1.1) $$ without any boundedness or geometrical conditions on $\Omega$. We make the following assumptions on the nonlinear function $g$: \item{(H1)} $ g: {\Bbb R}\to {\Bbb R}$ is locally Lipschitz continuous \item{(H2)} $xg(x)>0$ for all $x\neq 0$ \item{(H3)} There exists a number $q\geq 1$ satisfying $$\displaylines{ (n-2)q\leq n+2\quad\hbox{for}\quad (P1)\cr (n-c)q\leq n(c-1)+c\quad\hbox{for}\quad (P2)\cr (n-1)q\leq 1\quad\hbox{for}\quad (P3)\,,\cr } $$ and there exist positive constants $c_1$, $c_2$ such that $$ c_{1}|x|\leq |g(x)|\leq c_{2}|x|^{q}\quad \hbox{for all}\quad |x|\geq 1\,. $$ We define the energy associated to the solution given by (1.1) by the following formula $$ E(u(t)):={1\over 2}\Vert u'(t)\Vert_2^2+\Vert {\cal A}(\nabla u)\Vert_1\,, \eqno (1.2) $$ where ${{\partial{\cal A}(v)}\over {\partial v}}:=(1+|v|^a)^b|v|^{c-2}v$. \medskip \noindent Our main result is the following \proclaim{Main Theorem}. It holds that $$ E(u(t))\to 0\,,\quad\hbox{as}\quad t\to +\infty\,, $$ for every solution $u$ satisfying (1.1). \bigbreak \centerline{{\bf \S 2. Proof of the main theorem}} \medskip\nobreak For the proof we need the two following lemmas. \proclaim Lemma 2.1. It holds that $$\int_{0}^{t}\int_{\Omega}|ug(u')|\,dx\,ds=o(t)\,,\quad t\to +\infty\,.$$ \proclaim Lemma 2.2. It holds that $$\int_{0}^{t}\int_{\Omega}|u'|^{2}\,dx\,ds=o(t)\,,\quad t\to +\infty\,.$$ \bigskip \noindent{\bf Proof of lemma 2.1.} As $g$ is locally Lipschitz continuous we have $$\eqalign{ \int_{|u'|\leq 1}|ug(u')|\,dx\leq & c\int_{\Omega}(|u'|\,|g(u')|)^{1/2} |u|\,dx\cr \leq & c\,\Bigl(\int_{\Omega}u'g(u')\,dx\Bigr)^{1/2}\,\Vert u \Vert_{L^{2}(\Omega)}\,. \cr} $$ Similarly, by (H3) we have $$\int_{|u'|>1}|ug(u')|\,dx\leq c\,\Bigl(\int_{\Omega}u'g(u')\,dx\Bigr)^{{1}\over {(q+1)'}}\, \Vert u\Vert_{L^{q+1}(\Omega)} $$ where $(q+1)'={{q}\over {q+1}}$ is the H\"older conjugate of $q+1$. \medskip Then from the H\"older's inequality we obtain $$\eqalign{ \int_{0}^{t}\int_{\Omega}|ug(u')|&\,dx\,ds\cr \leq& c\,\Bigl(\int_{0}^{t}\int_{\Omega} u'g(u')\,dx\,ds\Bigr)^{1/2}\sqrt {t}\sup_{[0,t]}\Vert u(s)\Vert_{L^{2} (\Omega)} \cr &+c t^{{1}\over {q+1}}\Bigl(\int_{0}^{t}\int_{\Omega}u'g(u')\,dx,ds\Bigr)^{{1}\over {(q+1)'}}\,\sup_{[0,t]}\Vert u(s)\Vert_{L^{q+1}(\Omega)}\,. \cr } $$ Using the H\"older, Sobolev, and Poincar\' e inequalities we have $$ \Vert u(s)\Vert_{L^{2}(\Omega)}\leq c\,\Vert u(s)\Vert_{L^{q+1}(\Omega)}\leq c\,E(s)^{1/2}\leq c\,E(0)^{1/2}\quad \hbox{for all}\quad s \geq 0. $$ From these estimates it follows that $$ \int_{0}^{t}\int_{\Omega}|ug(u')|\,dx,ds\leq c\sqrt {t}+c t^{{1}\over {q+1}} =o(t),\quad t\to +\infty\,. $$ \bigskip \noindent{\bf Proof of lemma 2.2.}\quad Let $\varepsilon>0$ be an arbitrarily small real and set $$ M(\varepsilon)=\sup\,\, \{{{x}\over {g(x)}};\quad |x|\geq \sqrt{{{\varepsilon} \over {|\Omega|}}}\,\,\} $$ by hypotheses (H1)-(H3), we have $M(\varepsilon)<+\infty$. Clearly, $$ \int_{|u'|<\sqrt{{\varepsilon}\over {|\Omega|}}}|u'|^{2} \,dx\leq \varepsilon.$$ On the other hand $$ \int_{|u'|\geq \sqrt{{{\varepsilon}\over {|\Omega|}}}}|u'|^{2}\,dx = \int_{|u'|\geq \sqrt{{{\varepsilon}\over {|\Omega|}}}}{{u'}\over {g(u')}}\, u' g(u')\,dx\leq M(\varepsilon)\int_{\Omega}u'g(u')\,dx\,. $$ As $$ \int_{|u'|\geq \sqrt{{{\varepsilon}\over {|\Omega|}}}}|u'|^{2}\,dx\leq\sqrt{ 2E(0)}\,\,\Bigl(\int_{|u'|\geq \sqrt{{{\varepsilon}\over {|\Omega|}}}}|u'|^{2}\,dx\Bigr)^ {1/2}, $$ we deduce that $$ \int_{\Omega}|u'|^{2}\,dx\leq \varepsilon +\sqrt{2E(0)M(\varepsilon)}\,\,\Bigl(\int_ {\Omega}u'g(u')\,dx\Bigr)^{1/2}, $$ and then by the H\"older inequality $$\eqalign{ \int_{0}^{t}\int_{\Omega}|u'|^{2}\,dx\,ds\leq& \varepsilon t+\sqrt{2E(0)M( \varepsilon)}\,\sqrt{t}\,\,\Bigl(\int_{0}^{t}\,\,\int_{\Omega}u'g(u')\,dx,ds\Bigr)^{1/2} \cr \leq & \varepsilon t+E(0)\sqrt{2M(\varepsilon)}\,\sqrt{t}=o(t),\quad t\to + \infty\,. \cr } $$ \bigskip\noindent{\bf Proof of the main theorem}\hfill\break Assume on the contrary that $l:=\displaystyle\lim_{t\to +\infty}E(t) >0$. Then we have $$ \int_0^t\int_\Omega uu'\,dx\,ds=\int_0^t\int_\Omega |u'|^2-A(\nabla u)\nabla u- g(u')u\,dx\,ds $$ where $A(\nabla u):=(1+|\nabla u|^a)^b|\nabla u|^{c-2}\nabla u.$ Following the approach introduced in [1, 2], we shall prove that $$ \Vert u'\Vert_2^2+\int_\Omega A(\nabla u)\nabla u\,dx\geq c_3>0\,.\eqno (2.1) $$ We have $$ \Vert u'(t)\Vert_2^2+2\Vert {\cal A}(\nabla u)\Vert_1\geq l\,; $$ hence, if $\Vert u'(t)\Vert_2^2\geq {l\over 2}$ we get (2.1) with $c_3= {l\over 2}$. And, if we have $\Vert {\cal A}(\nabla u)\Vert_1\geq {l\over 4}$, then $$ c_4\Bigl(\Vert \nabla u\Vert_1+\Vert \nabla u\Vert_{ab+c}^{ab+c}\Bigr)\geq {l\over 4}$$ that is $$ \Vert \nabla u\Vert_{ab+c}\geq c_5>0\,. $$ Since $A$ is coercive (that is $(A(v),v)_{L^2}\geq c_6 |v|^{ab+c}$ with $|v| \geq |v_0|$), we get (2.1) with a positive constant $c_7>0$. Thanks to lemmas 1,2, and the relation (2.1), we arrive by the same arguments in [1, 2] to $$\phi (t)\to -\infty\quad\hbox{as}\quad t\to +\infty\,,$$ where $\phi (t)=\int_\Omega uu'\,dx$. This is a contradiction to the fact that $|\phi (t)|\leq c_8E(0)$. Thus $$ \lim_{t\to +\infty}E(t)=0\,. $$ \medskip\noindent{\bf Remark.} If $g$ is linear or superlinear near the origin, then it is sufficient to consider a domain $\Omega\subset {\Bbb R}^n$ in which the Poincar\'e's inequality holds. \bigbreak \centerline{\bf References}\medskip\nobreak \item{[1]} M. Aassila, Nouvelle approche \`a la stabilisation forte des syst\`emes distribu\'es, C. R. Acad. Sci. Paris {\bf 324} (1997), 43--48. \item{[2]} M. Aassila, A new approach of strong stabilization of distributed systems, Differential and Integral Equations {\bf 11}(1998), 369--376. \item{[3]} J. Greenberg, On the existence, uniqueness and stability of the equation $\rho_0 X_{tt}=E(X_x)X_{xx}+X_{xxt}$, J. Math. Anal. Appl. {\bf 25} (1969), 575--591. \item{[4]} J. Greenberg, R. MacCamy and V. Mizel, On the existence, uniqueness and stability of the equation $\sigma'(u_x)u_{xx}+\lambda u_{xtx}=\rho_0 u_{tt}$, J. Math. Mech. {\bf 17} (1968), 707--728. \item{[5]} R. Ikehata, T. Matsuyama and M. Nakao, Global solutions to the initial boundary value problem for the quasilinear viscoelastic wave equation with a perturbation, Funkcialaj Ekva. {\bf 40} (1997), 293--312. \item{[6]} T. Kobayashi, H. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to nonlinear wave equation with viscosity, Math. Ann. {\bf 296} (1993), 215--234. \item{[7]} M. Nakao, Asymptotic stability for some nonlinear evolution equations of second order with unbounded dissipative terms, J. Diff. Eqns. {\bf 30} (1978), 54--63. \item{[8]} M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z. {\bf 219} (1995), 289--299. \bigskip\noindent Mohammed Aassila\hfil\break Institut de Recherche Math\'ematique Avanc\'ee\hfil\break Universit\'e Louis Pasteur et C.N.R.S.\hfil\break 7, rue Ren\'e Descartes\hfil\break 67084 Strasbourg C\'edex, France.\hfil\break E-mail: aassila@math.u-strasbg.fr \bye --------------------------------------------------------------------------------