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Decay of solutions of a degenerate hyperbolic

equation ∗

Julio G. Dix

Abstract

This article studies the asymptotic behavior of solutions to the damped,
non-linear wave equation

ü+ γu̇−m(‖∇u‖2)∆u = f(x, t) ,

which is known as degenerate if the greatest lower bound for m is zero,
and non-degenerate if the greatest lower bound is positive. For the non-
degenerate case, it is already known that solutions decay exponentially,
but for the degenerate case exponential decay has remained an open ques-
tion. In an attempt to answer this question, we show that in general
solutions can not decay with exponential order, but that ‖u̇‖ is square
integrable on [0,∞). We extend our results to systems and to related
equations.

1 Introduction

This article presents a study of the asymptotic behavior of solutions to the
initial value problem

ü+ γu̇−m(‖∇u‖2)∆u = f(x, t) , for x ∈ Ω, t ≥ 0 (1)

u(x, 0) = g(x) , u̇(x, 0) = h(x) , for x ∈ Ω

u(x, t) = 0 , for x ∈ ∂Ω t ≥ 0 ;

where Ω is a bounded domain in Rn, with smooth boundary ∂Ω; γ is a positive
constant; m is a non-negative, bounded, and continuous function; u̇ denotes the
derivative of u with respect to time; and as usual

∆u =

n∑
i=1

∂2u

∂x2i
, ‖∇u‖2 =

n∑
i=1

∫
Ω

|
∂u

∂xi
|2 dx .

This equation appears in mathematical physics as the Carrier or Kirchoff equa-
tion, when modeling planar vibrations. For a background and physical proper-
ties of this model, we refer the reader to [3], [4], [8], [12], and their references.
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When the greatest lower bound for m is positive, (1) is known as non-
degenerate, and it has been the subject of many publications (see [6], [9], [10],
[12], and [14]). Global solutions have been obtained under various assumptions
on the data, of which we are interested in the (−∆)-analyticity introduced by
Pohozaev ([12]). Exponential decay in the non-degenerate case for (1) and for
related problems has been obtained in [9] and [2], respectively.
When the greatest lower bound for m is zero, (1) is known as degenerate,

and has been considered in just a few publications. In the special case m(r) =
rα, α ≥ 1, existence of solutions and polynomial decay has been shown in [7] and
[10]. For general m, assumed only to be continuous and bounded below by zero,
the existence of global solutions was shown by Arosio and Spagnolo ([1]). Their
article assumes that the initial data are (−∆)-analytic, and that f ≡ 0, γ = 0.
Using the same analyticity assumption, and replacing the damping term γu̇ by
a memory term, existence of global solutions has been proven in [5]. In spite of
these developments, decay for degenerate problems remains an open question.
The outline of this article is as follows: Section 1 sketches the proof of

existence of global solutions. Section 2 proves exponential decay for the non-
degenerate case, and explains why these estimates can not be used in the degen-
erate case. Section 3 shows that if m ≡ 0, the decay is exponential. In general
degenerate-problem solutions do not decay exponentially, as we indicate with an
example, but ‖u̇‖ is square integrable on [0,∞). Section 4 extends our results
to related systems.

Notation

For the remainder of this article, H denotes the standard Hilbert space L2(Ω),
with norm ‖.‖ and inner product 〈., .〉. We define the self-adjoint operator A as
the negative Laplacian, with domain

D(A) ⊂ H2(Ω) ∩H10 (Ω) ,

where H2, H1 are the usual Hilbert Sobolev spaces. The negative Laplacian,
with zero boundary conditions, has eigenvectors denoted as follows

Aφi = λ
2
iφi , with 0 < λ1 ≤ λ2 . . . , lim

i→∞
λi = +∞ .

Furthermore, these eigenvectors can be chosen to form an orthogonal basis for
L2(Ω), in which functions have Fourier expansions of the form

u(x) =

∞∑
i=1

uiφi(x) , with ui = 〈u, φi〉 .

Using this spectral decomposition, powers of A are defined by

Aku(x) =
∞∑
i=1

λ2ki uiφi(x) , provided that
∞∑
i=1

λ4ki |ui|
2 < +∞ .
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Notice that

λ21‖u‖ ≤ ‖Au‖ , λ1‖u‖ ≤ ‖∇u‖ = ‖A
1/2u‖ , (2)

and that (1) can be rewritten as

ü+ γu̇+m(‖A1/2u‖2)Au = f(x, t) (3)

u(x, 0) = g(x) , u̇(x, 0) = h(x) .

A function u is said to be A-analytic, or (−∆)-analytic, if there exists a
positive constant η such that

∑∞
i=1 e

2ηλi |ui|2 <∞ . Notice that every A-analytic
function is in the domain of all powers of A. Properties of A-analytic functions
and an equivalent definition can be found in [1] and [5].
By a solution on [0, T ) we mean a function that satisfies (3) and belongs to

C2(0, T ;H−1) ∩ C(0, T ;H1).

2 Existence of global solutions

Theorem 1 Assume that m is bounded or that
∫∞
0 m = +∞; and that f(., t),

g, and h are A-analytic for all t ≥ 0. Then there exists a global solution to (1).

Proof Solutions are obtained by the use of energy estimates and the Galerkin
method which is a standard technique described in the book by Temam ([13]).
To accommodate the fact that m may attain zero values, we follow the pro-
cedure used in [1]. However the presence of γu̇ and f requires some algebraic
manipulations of the type shown in the proof of Theorem 4. Since the proof
is basically the same as the one in [1], we shall indicate the main steps in this
proof, and refer the reader to the original source.
Step 1. Replace m(‖∇u‖2) by a non-negative bounded continuous function

a(t). Then show that if u is a solution to the new equation on the interval [0, T ),
then u admits a limit as t→ T−, and u and u̇ are A-analytic on [0, T ].
Step 2. Use the Galerkin method and a compactness imbedding argument

to obtain a local solution. Then show that m(‖∇u‖2) is bounded in its domain
of definition.
Step 3. Use Zorn’s Lemma and the result in step 1 to show that the maximal

domain of definition is [0,+∞).

Remark Uniqueness of solutions has been shown under the additional as-
sumption that m is Lipschitz; see [1].

3 Decay in the non-degenerate case

The following statement is already known for f = 0 (see [9]). We present a
proof for general f and show how the rate of decay depends on the lower bound
for m.
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Theorem 2 Assume that 0 < m0 ≤ m(.) ≤ M0, and that ‖f(., t)‖ decays
exponentially to zero as t → ∞. Then for every solution u of (1), ‖u̇‖ and
‖∇u‖ decay exponentially to zero.

Proof We shall find bounds for u̇ and A1/2u by estimating the energy func-
tional

F (t) = ‖u̇‖2 +

∫ ‖A1/2u‖2
0

m(r) dr + δ〈u̇, u〉 , (4)

where δ = min{2λ1
√
m0, γ/2}. This choice of δ ensures that F is non-negative.

In fact,

F (t) ≥ ‖u̇‖2 +m0‖A
1/2u‖2 − ‖u̇‖2 −

δ2

4
‖u‖2 ≥ (m0 −

δ2

4λ21
)‖A1/2u‖2 ≥ 0 .

Here and in several expressions to follow, we use inequalities of the form

2|〈v, w〉| ≤ 2‖v‖ ‖w‖ ≤ α‖v‖2 +
1

α
‖w‖2 ∀α > 0 . (5)

Also we will use the following two equations that arise from taking the inner
product of each term in (3) with 2u̇, and with u, respectively.

d
dt
‖u̇‖2 + 2γ‖u̇‖2 + d

dt

∫ ‖A1/2u‖2
0

m(r) dr = 2〈f, u̇〉 , (6)

〈ü, u〉+ γ〈u̇, u〉+m(‖A1/2u‖2)‖A1/2u‖2 = 〈f, u〉 . (7)

Now, we differentiate F and build a first-order linear inequality that yields the
desired estimates.

F ′(t) =
d

dt
‖u̇‖2 +

d

dt

∫ ‖A1/2u‖2
0

m(r) dr + δ〈ü, u〉+ δ‖u̇‖2

= −(2γ − δ)‖u̇‖2 + 2〈f, u̇〉 − γδ〈u̇, u〉 − δm(.)‖A1/2u‖2 + δ〈f, u〉 ,

where we have used (6) and (7). Now from (2) and (5) we obtain 2〈f, u̇〉 ≤
2
γ
‖f‖2 + γ2‖u̇‖

2 and

δ〈f, u〉 ≤
δ

λ1
‖f‖ ‖A1/2u‖ ≤

δ

2m0λ21
‖f‖2 +

δm0

2
‖A1/2u‖2 .

Using the two inequalities above, and the fact that m0 ≤ m(.) ≤M0, we obtain

F ′(t) ≤ −γ‖u̇‖2 −
δm0

2M0

∫ ‖A1/2u‖2
0

m(r) dr − δγ〈u̇, u〉+ (
2

γ
+

δ

2m0λ21
)‖f‖2

≤ −c1F (t) + (
2

γ
+

δ

2m0λ21
)‖f‖2 ,

where c1 = min{γ,
δm0
2M0
}. From this first-order differential inequality, it follows

that

F (t) ≤ e−c1t
(
F (0) + (

2

γ
+

δ

2m0λ21
)

∫ t
0

ec1s‖f(., s)‖2 ds

)
.
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From the assumption that ‖f(., s)‖ decays exponentially follows the existence
of positive constants c2, c3, such that F (t) ≤ c2e−c3t, with c3 < c1. Therefore,

‖u̇‖2 ≤ c2e
−c3t , ‖A1/2u‖2 ≤

c2

m0
e−c3t , ∀t ≥ 0 ,

which concludes this proof ♦

Remark The order of exponential decay approaches zero as the lower bound
m0 approaches zero. This is so because the constant c3 in Theorem 2 satisfies

c3 < c1 ≤
λ1

2M0
(m0)

3/2

the right side of which approaches zero as m0 approaches 0.

4 Decay in the degenerate case

We start with a positive statement about exponential decay.

Theorem 3 Assume that m ≡ 0 and that ‖f(., t)‖ decays exponentially to zero
as t→∞. Then for any solution u of (1), ‖u̇‖ decays exponentially to zero.

Proof Since m ≡ 0, Equation (1) reduces to ü + γu̇ = f . By computing the
inner product of 2u̇ with each term in this equation, we have

d
dt
‖u̇‖2 + 2γ‖u̇‖ = 2〈f, u̇〉 ≤ 1

γ
‖f‖2 + γ‖u̇‖2 ,

d
dt‖u̇‖

2 + γ‖u̇‖ ≤ 1
γ ‖f‖

2 .

This first-order differential inequality and the initial conditions yield the in-
equality

‖u̇‖2 ≤ e−γt
(
‖h‖2 +

1

γ

∫ t
0

eγs‖f(., s)‖2 ds
)
.

From the assumption that ‖f(., s)‖ decays exponentially there exist positive
constants c2, c3, such that ‖u̇‖2 ≤ c2e−c3t, with c3 < γ. Which concludes this
proof. ♦

The following example shows that decay of solutions is not necessarily ex-
ponential.

Example Consider the initial value problem

ü+ u̇−m(‖ux‖2) uxx = 0 , for 0 ≤ x ≤ 2π, t ≥ 1 +
√
2

u(x, 1 +
√
2) = 1√

π
e1/(1+

√
2) sinx , u̇(x, 1 +

√
2) = 1

9
√
π
e1/(1+

√
2) sinx

u(0, t) = 0 , u(2π, t) = 0 , for t ≥ 1 +
√
2 ,
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where m is the non-negative and continuous function defined as

m(r) =

{
1
16 (ln r)

2(4− 4 ln r − (ln r)2) if 1 ≤ r ≤ e2/(1+
√
2) ,

0 Otherwise .

Then u(x, t) = 1√
π
e1/t sinx is a solution. Since

u̇ = − 1
t2
u , ü = ( 1

t4
+ 2
t3
)u , ux =

1
√
π
e1/t cosx , uxx = −u ,

‖ux‖2 = e2/t, and m(e2/t) =
1
t2 − 2

1
t3 −

1
t4 for t ≥ 1 +

√
2, it follows that u

satisfies the initial-value problem. Notice that ‖u̇‖ decays polynomially rather
than exponentially as t→∞. In fact,

‖u̇‖2 =
1

t4
e2/t = O(t−4) .

For non-constant m, the convergence of ‖u̇‖ to zero remains illusive: we are
unable to prove it, and unable to give a counter-example. So far, our best result
is:

Theorem 4 If ‖f(., t)‖ is square integrable on [0,∞) and u is a solution to (1),
then ‖u̇‖ is square integrable on [0,∞).

Proof The desired integral is obtained by estimating the growth of the energy
functional

E(t) = ‖u̇‖2 +

∫ ‖A1/2u‖2
0

m(r) dr . (8)

Using (5) and (6), it follows that the derivative of E satisfies

E′(t) = −2γ‖u̇‖2 + 2〈f, u̇〉 ≤ −γ‖u̇‖2 +
1

γ
‖f‖2 .

From this inequality and the Fundamental Theorem of Calculus, we obtain

E(t) + γ

∫ t
0

‖u̇‖2 ds ≤ E(0) +
1

γ

∫ t
0

‖f(., s)‖2 ds .

Since by hypothesis
∫∞
0 ‖f‖

2 <∞, it follows that
∫∞
0 ‖u̇‖

2 <∞, and the proof
is complete. ♦

Remark From the physics point of view, Theorems 2 and 3 state that the
energy ‖u̇‖2 + ‖∇u‖2 decays as time goes by. In terms of non-linear dynamics
(see [13]), these two theorems indicate that in the space of A-analytic functions,
every ball of center zero and finite radius is an absorbent set (under the norm
‖u̇‖2 + ‖∇u‖2). This means that given a ball of center zero, the orbit of every
bounded set enters and stays in this ball after a certain time.



EJDE–1998/21 Julio G. Dix 7

5 Extension of results

Higher order derivatives

To extend the previous analysis to equations that involve powers of A, for ex-
ample ∆2 which appears in modeling non-planar vibrations, we introduce the
equation

ü+ γu̇+m(‖Aα/2u‖2)Aαu+ p(‖Aβ/2u‖2)Aβu = f(x, t) , (9)

where α and β are non-negative integers, α > β, and p is a bounded and
continuous function. Existence of solutions is proven as in Theorem 1, with the
assumption that 0 ≤ p(.) ≤ P0.
Theorem 4 is proven under the assumption 0 ≤ p(.) ≤ P0, in which case, the

energy functional (4) is redefined to be

E(t) = ‖u̇‖2 +

∫ ‖Aα/2u‖2
0

m(r) dr +

∫ ‖Aβ/2u‖2
0

p(r) dr .

Estimates for this functional require some algebraic manipulations, but other-
wise the proof is the same as before.

Exponential decay is proven under the conditions of Theorem 2 and the
assumption that −m0δλ

α−β
1 ≤ p(.) ≤ P0. Notice that p is allowed to assume

negative values. When proving this statement, the energy functional (8) remains
the same, but extra algebraic manipulations are required.

Systems of equations

Let u, f ,g,h be functions with values in Rk, andm, γ be k×k diagonal matrices.
Then rewrite (3) as

ü+ γu̇+m(‖A1/2u‖2)Au = f(x, t) , (10)

u(x, 0) = g(x) , u̇(x, 0) = h(x) .

Now, components of vectors are denoted with sub-indices; derivatives are com-
puted component-wise,

u̇ = (u̇1, . . . , u̇k) , Au = (Au1, . . . , Au1) ;

inner products and norms are redefined as

〈u,v〉 = 〈u1, v1〉+ . . .+ 〈uk, vk〉 , ‖u‖
2 = ‖u1‖

2 + . . .+ ‖uk‖
2 ;

functions are A-analytic if their components are A-analytic; and eigenvectors
of A have the form eiφj , i = 1, . . . , k, j = 1, 2, . . ., where ei’s are the standard
basis for Rk, and φj ’s are the eigenvectors defined in §1.
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Because most of the previous estimates hold with very little modification,
Theorems 1, 2, 4 are proven along similar lines to the previous proofs. For
example the energy functional (4) is rewritten as

F (t) = ‖u̇‖2 +
k∑
i=1

∫ ‖A1/2ui‖2
0

mii(r) dr + δ〈u̇,u〉 .

Computation of estimates for this functional depends on the constants m0 =
mini infrmii(r), γ0 = min γii, and the inequality

2〈v,w〉 ≤ α‖v‖2 +
1

α
‖w‖2 ∀α > 0 .

Notice that small modifications of the system (10) lead to a variety of con-
trol problems for which decay of solutions is of great interest. For example
pre-multiply ü by a diagonal matrix that has some entries equal to zero, and
substitute m and γ by positive-definite matrices (instead of diagonal matrices).

Modified Carrier model

For equations in which the powers of A in the coefficient and in the argument
of m are not in the ratio two to one, we introduce

ü+ γu̇+m(‖Aα/2u‖2)Aβu = f(x, t) , (11)

where α and β are non-negative integers. Global solutions are obtained by the
same method as the one used in Theorem 1.

Exponential decay is proven under the assumption that ‖Aα/2−βf‖ decays
exponentially as t → ∞. In proving this statement, we follow the proof of
Theorem 2, with the energy functional

F (t) = ‖A(α−β)/2u̇‖2 +

∫ ‖Aα/2u‖2
0

m(r) dr + δ〈A(α−β)/2u̇, A(α−β)/2u〉 .

To estimate F ′(t), we use the following two equations that come from taking
the inner product of (11) with 2Aα−βu̇ and Aα−βu, respectively.

d
dt
‖A(α−β)/2u̇‖2 + 2γ‖A(α−β)/2u̇‖2 +m(‖Aα/2u‖) d

dt
‖Aα/2u‖2

= 2〈A(α−β)/2u̇, A(α−β)/2f〉 ,

〈A(α−β)/2ü, A(α−β)/2u〉+ γ〈A(α−β)/2u̇, A(α−β)/2u〉+m(‖Aα/2u‖2)‖Aα/2u‖2

= 〈Aα/2u,Aα/2−βf〉 .

As in Theorem 2, we obtain positive constants c2, c3 such that

‖A(α−β)/2u̇‖2 ≤ c2e
−c3t , ‖Aα/2u‖ ≤

c2

mo
e−c3t .
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As in Theorem 4, under the assumption
∫∞
0
‖A(α−β)/2f‖2 < ∞, and using

the energy functional

E(t) = ‖A(α−β)/2u̇‖2 +

∫ ‖Aα/2u‖2
0

m(r) dr ,

we obtain
∫∞
0
‖A(α−β)/2u̇‖2 <∞.

Notice that the larger the difference α − β, the higher the order of the
decaying derivative. Also notice that the earlier example can be used to show
that in systems the decay is not necessarily exponential. In fact, the same u
and m satisfy (11) with α = 0 and β = 1.
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