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Instability of discrete systems ∗

Raúl Naulin & Carmen J. Vanegas

Abstract

In this paper, we give criteria for instability and asymptotic instability
for the null solution to the non-autonomous system of difference equations

y(t+ 1) = A(t)y(t) + f(t, y(t)), f(t, 0) = 0 ,

when the system x(t + 1) = A(t)x(t) is unstable. In particular for A
constant, we study instability from a new point of view. Our results are
obtained using the method of discrete dichotomies, and cover a class of
difference systems for which instability properties cannot be deduced from
the classical results by Perron and Coppel.

1 Introduction

A classical result on Liapounov instability for the difference equation

y(t+ 1) = Ay(t) + f(t, y(t)), f(t, 0) = 0, t = 0, 1, 2, . . . (1)

states that the null solution is unstable if the matrix A has an eigenvalue λ
satisfying |λ| > 1, and the nonlinear term f(t, y) satisfies

lim
|y|→0

f(t, y)

|y|
= 0 .

This result is known as Perron’s Theorem on instability [10, 15], and has played
an important role in the study of difference systems [6].
We are interested in the study of two questions related to Perron’s Theorem.

First, when the matrix A depends on t, and second, when above limit is replaced
by condition (F) below. For the first question consider the non-autonomous
difference system

y(t+ 1) = A(t)y(t) + f(t, y(t)), f(t, 0) = 0, (2)

where f(t, y) is continuous in y and A(t) is invertible at t = 0, 1, 2, . . .. We
remark that instability of this system cannot be obtained through Perron’s
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Theorem. Coppel [5] studied this problem for ordinary differential equations,
and Agarwal [1] studied the difference equation case. Here we reproduce the
result obtained in [1], which requires the concept of fundamental matrix. For
the nonautonomous system of difference equations

x(t+ 1) = A(t)x(t), t = 0, 1, 2, 3, . . . , (3)

the fundamental matrix is defined as

Φ(t) =

t−1∏
s=0

A(s) = A(t− 1) · · ·A(1)A(0) ,

where I denotes the identity matrix, and
∏−1
s=0A(s) = I.

Theorem 1 ([1]) Assume that f(t, y) is continuous in the variable y, and that
for some constant γ and t = 0, 1, 2, . . .,

|f(t, y)| ≤ γ|y| .

Also assume that there is a projection matrix P 6= I, and a constant K such
that

t−1∑
s=t0

|Φ(t)PΦ−1(s+ 1)|+
∞∑
s=t

|Φ(t)(I − P )Φ−1(s+ 1)| ≤ K.

Then the null solution to (2) is unstable if Kγ < 1.

This theorem is important because of its applications. For example, Perron’s
Theorem can be proven easily form Theorem 1. However, instability of a large
class of difference systems cannot be obtained using Theorem 1. The aim of
this paper is to provide a method for investigating the instability of (2), relying
on the dichotomy properties of the non-autonomous system (3). According to
Coppel [5], System (2) must inherit some kind of instability of (3) under certain
conditions on f(t, y). This idea was also proposed in [11] for ordinary differential
systems, and in [7, 8] for difference equations.
For the second question about Perron’s Theorem, we assume that f(t, y)

satisfies

Condition (F) There exists a sequence of positive numbers {γ(t)}, and α ≥ 0
such that

|f(t, y)| ≤ γ(t)|y|α , ∀t .

Assuming that the matrixA has an eigenvalue satisfying |λ| > 1 we formulate
the question: Under what conditions on {γ(t)} is the system (1) unstable?
Notice that the hypothesis in Perron’s Theorem is implied by Condition (F)

with α > 1 and γ bounded. Also notice that the hypothesis of Theorem 1 is
implied by Condition (F) with α = 1 and γ bounded. In this article we show
instability under the assumption that A has an eigenvalue with magnitude larger
than 1, and f satisfies conditions weaker than those of Perron’s Theorem. See
the remark in §5. To the best of our knowledge, this is the first publication in
response to the question above.
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2 Notation and preliminaries

The summation (discrete integral)
∑n
s=m as is assumed to be equal to zero if

m > n. The set of non-negative integers is denoted by N, i.e., N = {0, 1, 2, . . .}.
Functions h(t) and k(t) denote sequences of positive numbers. For t0 ∈ N, we
put Nt0 = {t ∈ N : t ≥ t0}. For m ≤ n, we define m,n = {s : s ∈ N,m ≤
s ≤ n}. The sequences {y(t, t0, ξ)} and {x(t, t0, ξ)}, respectively, stand for the
solutions to systems (2) and (3) with initial condition ξ at time t0. The spaces
Rr and Cr with the norm | · | are denoted by V . The term “sequential space”
means the space of sequences with range in V . For a sequence x : N → V , we
define

|x|∞ = sup{|x(t)| : t ∈ N} , |x|k = |k(·)
−1x(·)|∞ .

The space of sequences such that |x|∞ < ∞ is denoted by `∞, and the space
of sequences such that |x|k < ∞ by `∞k . In the space `

∞
k , the closed ball with

center 0 with radius ρ is denoted by Bk[0, ρ] = {x ∈ `∞k : |x|k ≤ ρ}. On the set
of initial conditions, we define

Vk = {ξ ∈ V : {k(t)
−1x(t, t0, ξ)} ∈ `

∞} ,

Vk,0 = {ξ ∈ Vk : lim
t→∞

k(t)−1x(t, t0, ξ) = 0}.

Based on [11], solutions to (2) on an interval Nt0 are classified as follows:

h-stable: If for each positive ε there exists a positive δ such that for any
initial condition y0 satisfying |h(t0)−1y0| < δ, the solution y(t, t0, y0) satisfies
|y(·, t0, y0)|h < ε on Nt0 .

h-unstable: If the null solution is not h-stable.

Asymptotically h-stable: If for each positive ε there exists a positive δ such
that any initial condition y0 satisfying |h(t0)−1y0| < δ, the solution y(t, t0, y0)
satisfies |y(·, t0, y0)|h < ε on Nt0 , and

lim
t→∞

h(t)−1y(t, t0, y0) = 0 . (4)

Asymptotically h-unstable: If the null solution is not asymptotically h-
stable.
We will assume that System (3) has a certain dichotomy behavior, but the

analysis of instability would be restricted if we limited our attention to the
dichotomy properties described by ordinary and exponential dichotomies only,
[1]. Therefore, we use (h, k)-dichotomies [12, 14] to study system (3).

Definition System (3) has an (h, k)-dichotomy on N, if there exist a constant
K and a projection matrix P such that

|Φ(t)PΦ−1(s)| ≤ Kh(t)h(s)−1, 0 ≤ s ≤ t,

|Φ(t)(I − P )Φ−1(s)| ≤ Kk(t)k(s)−1, 0 ≤ t ≤ s.
(5)
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For short notation, (h, h)-dichotomies are called h-dichotomies. An impor-
tant class of (h, k)-dichotomies is given by those having the following property.

Definition An ordered pair (h, k) is uniformly compensated [12] if there exists
a positive constant C such that

h(t)h(s)−1 ≤ Ck(t)k(s)−1, t ≥ s.

Remark If System (3) has an (h, k)-dichotomy (with projection P and con-
stant K), and the pair (h, k) is uniformly compensated (with constant C), then
the system has both an h and a k-dichotomies with projection P and constant
CK.

Uniformly compensated dichotomies have the following property [13].

Theorem 2 Assume that (3) has an (h, k)-dichotomy, and that the pair (h, k)
is compensated. Then (3) has an (h, k)-dichotomy with projection Q if and only
if

Vh,0 ⊂ Vk,0 ⊂ Q[V ] ⊂ Vh ⊂ Vk.

We need the following version of the Schauder fixed point theorem [9] in a
later proof.

Theorem 3 Let E be a Banach space with norm | · |, and let T be an operator,
T : Ω → Ω, where Ω is a bounded, closed and convex subset of E. If T (Ω) is
precompact, and T is continuous, then there exists x ∈ Ω, such that T (x) = x.

In discrete analysis, the application of the Schauder theorem frequently is
accompanied by the following criterion for compactness.

Definition A subset Ω of the sequential space is equiconvergent to 0, if for
every ε > 0 there exists N ∈ N such that for all x ∈ Ω and all n ≥ N , |x(n)| < ε.

Theorem 4 If Ω ⊂ S is bounded, closed and equiconvergent to 0, then Ω is
compact.

For a future use, we also define the operator

U(y)(t) =
t−1∑
s=t0

Φ(t)PΦ−1(s+1)f(s, y(s))−
∞∑
s=t

Φ(t)(I −P )Φ−1(s+1)f(s, y(s)).

3 Instability under contraction conditions

In this section we assume that the nonlinear term of (2) satisfies
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Condition (L) Assume that for some positive ρ0, and all ρ ∈ (0, ρ0) there
exists a sequence γ(t, ρ), such that

|f(t, h(t)y)− f(t, h(t)z)| ≤ γ(t, ρ)|y − z|, |z|, |y| ≤ ρ .

Theorem 5 Assume that (3) has an h-dichotomy and (2) satisfies Condition
(L), with

K

∞∑
s=t0

h(s+ 1)−1γ(s, ρ) < 1. (6)

If Vh 6= V , then the null solution of (2) is not h-stable.

Proof. Assume that the null solution is h-stable. Then for ε = ρ ∈ (0, ρ0)
there exists a δ such that |h(t0)−1y0| < δ implies |y(·, t0, y0)|h < ρ. We will
show a contradiction to this statement. The estimate

|h(t)−1U(y)(t)| ≤ K

∞∑
s=t0

h(s+ 1)−1|f(s, y(s))|

≤ K

∞∑
s=t0

h(s+ 1)−1γ(s, ρ)ρ

(7)

implies that U : Bh[0, ρ]→ Bh[0, ρ]. Moreover, we have the estimate

|h(t)−1(U(y)(t) − U(z)(t))| ≤ K
∞∑
s=t0

h(s+ 1)−1γ(s, ρ)|y − z|h. (8)

Let us consider the sequence

x(t) = y(t, t0, y0)− U(y(·, t0, y0))(t), |h(t0)
−1y0| < δ.

It is easy to see that x is an h-bounded solution of (3). Hence x(t0) ∈ Φ(t0)[Vh].
From Theorem 2 we may assume that x(t0) ∈ Φ(t0)P [V ]. Let y0 be chosen with
the properties

y0 ∈ Φ(t0)(I − P )[V ], y0 6= 0, |h(t0)
−1y0| < δ . (9)

From the definition of the sequence x we obtain

x(t0) = y0 − Φ(t0)(I − P )
∞∑
s=t0

Φ−1(s+ 1)f(s, y(s, t0, y0))

that belongs to Φ(t0)(I−P )[V ], which implies x(t0) = 0. In this case y(·, t0, y0)
satisfies the integral equation

y(·, t0, y0) = U(y(·, t0, y0)).

Thus, any solution y(·, t0, y0), where y0 satisfies (9), is a fixed point of the di-
chotomy operator U . But from (7) and (8) we see that operator U is a contrac-
tion acting fromBh[0, ρ] toBh[0, ρ]. Moreover U(0) = 0, therefore y(·, t0, y0) = 0
giving y0 = y(t0, t0, y0) = 0 which is a contradiction.
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Theorem 6 Under the hypotheses of Theorem 5, if Vh,0 6= Vh, then the null
solution of (2) is not asymptotically h-stable on the interval Nt0 .

Proof. By contradiction assume that the null solution is asymptotically h-
stable. Then for ε = 1 there exists a positive δ such that |h(t0)−1y0| < δ implies
(4). Let 0 < ρ < min{ρ0, δ} and σ be a small number such that

σ +Kρ

∞∑
s=t0

h(s+ 1)−1γ(s, ρ) ≤ ρ. (10)

Fixing a vector x0 ∈ Vh \Vh,0 with the property |x(·, t0, x0)|h < σ, we introduce
the operator

T (y)(t) = x(t, t0, x0) + U(y)(t).

From the property (7) and (10) we obtain that T : Bh[0, ρ] → Bh[0, ρ]. From
condition (L), it follows that

|T (y)− T (z)|h ≤ K
∞∑
s=t0

h(s+ 1)−1γ(s, ρ)|y − z|h.

Thus, condition (6) implies that the operator T is a contraction from the ball
Bh[0, ρ] into itself and therefore has a unique fixed point y(·). This fixed point
is a solution of (2). From Theorem 2 we may assume that projection P defining
the h-dichotomy satisfies the condition

lim
t→∞

h(t)−1Φ(t)P = 0. (11)

From this property it follows the asymptotic formula

y(t) = x(t, t0, x0) + o(h(t)), (12)

where “small o” is the standard Landau symbol. Inasmuch as the initial condi-
tion of the solution y(·) satisfies

|h(t0)
−1y(t0)| ≤ ρ < δ,

then limt→∞ h(t)−1y(t) = 0. But limt→∞ h(t)−1x(t, t0, x0) 6= 0 which contra-
dicts (12).

4 General conditions for instability

The contraction property of U is implied by the stringent Condition (L), and
it plays a very important role in proof of Theorem 5. A more general situation
can be considered by a small modification to the monotone conditions imposed
by Brauer and Wong in [4]. In this section we will assume that f(·, y) satisfies
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Condition M There exists a scalar-valued function ψ(t, r) defined for t ∈ N,
r ≥ 0, which is continuous, and nondecreasing in r for each fixed t, such that

|f(t, y)| ≤ ψ(t, |y|).

Theorem 7 Assume that (3) has an (h, k)-dichotomy, with (h, k) a compen-
sated pair, and f(·, y) satisfying Condition (M). Also assume that there exists
ρ0 such that for 0 < ρ < ρ0,

KC

∞∑
s=t0

k(s+ 1)−1ψ(s, k(s)ρ) < ρ . (13)

Then, if Vh 6= Vk, the null solution to (2) is h-unstable.

Proof. By contradiction, assume that the null solution to (2) is h-stable. Then
for ε > 0, there exists a δ > 0 such that |y(·, t0, y0)|h < ε if |h(t0)−1y0| < δ. Let

ρ <
h(t0)

k(t0)
δ . (14)

Choose a positive σ satisfying

σ +KC

∞∑
s=t0

k(s+ 1)−1ψ(s, k(s)ρ) ≤ ρ,

and fix an initial value x0 ∈ Φ(t0)[Vk] \ Φ(t0)[Vh] such that |x(·, t0, x0)|k ≤ σ.
Let us consider the integral equation

y = T (y),

where
T (y)(t) = x(t, t0, x0) + U(y)(t).

Step 1: Show that T : Bk[0, ρ]→ Bk[0, ρ]. From (5) and (13), we obtain

|k(t)−1T (y)(t)| ≤ |k(t)−1x(t, t0, x0)|+ k(t)
−1|U(y)(t)|

≤ |k(t)−1x(t, t0, x0)|+KC
∞∑
s=t0

k(s+ 1)−1ψ(s, k(s)ρ) ≤ ρ .

Step 2: Prove that the operator U is continuous in the `∞k metric. Let µ > 0,
choose T large enough such that

KC

∞∑
s=T

k(s+ 1)−1ψ(s, k(s)ρ) ≤ µ/3 .

Therefore, for all n = 0, 1, . . ., and all t ≥ T we have

|k(t)−1
∞∑
s=T

Φ(t)(I − P )Φ−1(s+ 1)f(s, yn(s))| ≤ µ/3 .
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From this estimate we obtain

(U)(yn)(t) =
t−1∑
s=t0

Φ(t)PΦ−1(s+ 1)f(s, yn(s)) (15)

−
T∑
s=t

Φ(t)(I − P )Φ−1(s+ 1)f(s, yn(s)) + k(t)O(µ/3).

From this asymptotic formula, we observe that the uniform convergence of {yn}
to y∞ on the interval 0, T implies the convergence of {U(yn)} to U(y∞) in the
metric of the space `∞k .

Step 3: Prove that if {yn} is contained in Bk[0, ρ], then {k(t)−1U(yn)(t)} is
equiconvergent to zero. Notice that given a positive number µ, then there exists
a T ∈ N such that (15) is valid. From Theorem 2, we may assume that

lim
t→∞

k(t)−1Φ(t)P = 0 .

From this limit and (15), it follows that {k(t)−1U(yn)(t)} is equiconvergent to
zero.

Because of steps 1–3, the conditions of Theorem 3 are fulfilled, and therefore
the operator T has a fixed point y(·) in the ball Bk[0, ρ]. Since |k(t0)−1y(t0)| <
ρ, from (14) we obtain |h(t0)−1y(t0)| < δ, implying that y(·) is an h-bounded
function. But condition (13) and the compensation of the (h, k)-dichotomy
imply the h-boundedness of the sequence U(y). Since

y(t) = x(t, t0, x0) + U(y)(t),

the sequence x(·, t0, x0) is h-bounded. But this contradicts the choice of x0.

Theorem 8 Assume that (3) has an h-dichotomy and f(·, y) satisfies Condition
(M). Also assume that there exists a ρ0 > 0 such that for 0 < ρ < ρ0,

K

∞∑
s=t0

h(s+ 1)−1ψ(s, h(s)ρ) < ρ .

Then, if Vh,0 6= Vh, the null solution of (2) is asymptotically h-unstable.

Proof. By contradiction, assume that the null solution to (2) is asymptotically
h-stable. Then, for ε = 1 there exists a positive δ such that |h(t0)−1y0| < δ
implies limt→∞ h(t)−1y(t, t0, y0) = 0.
Let 0 < ρ < min{ρ0, δ}, and choose σ positive such that

σ +K

∞∑
s=t0

h(s+ 1)−1ψ(s, h(s)ρ) ≤ ρ.
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For an initial condition x0 ∈ Φ(t0)[Vh] \Φ(t0)[Vh,0] such that |x(·, t0, x0)|h < σ,
we consider the operator

T (y)(t) = x(t, t0, x0) + U(y)(t).

For any y ∈ Bh[0, ρ] we have the estimate

|T (†)|h ≤ σ +K
∞∑
s=t0

h(s+ 1)−1ψ(s, h(s)ρ) ≤ ρ ,

which implies that T : Bh[0, ρ]→ Bh[0, ρ]. By repeating the arguments given in
the proof of Theorem 7, we conclude that this operator satisfies the conditions
of Theorem 3. Therefore, there is a fixed point y(·) in the ball Bh[0, ρ]; hence

y = x(·, t0, x0) + U(y).

Because of Theorem 2, we assume that projection P defining the h-dichotomy
satisfies the condition (11). Therefore,

y(t) = x(t, t0, x0) + o(h(t))

which contradicts y(·) satisfying (4) with x0 ∈ Vh \ Vh,0.

5 A Perron like result

In this section we assume that the matrix A is constant and has an eigenvalue
with magnitude greater than 1. We also assume that Conditions (F) is satisfied
under two possible cases.

Case 0 ≤ α < 1: Then there exists a real number r in (0, 1), such that none
of the eigenvalues has magnitude 1, and at least one eigenvalue λ of matrix rA
satisfies |λ| > 1. The change of variable y(t) = r−tz(t) in (1) yields

z(t+ 1) = rAz(t) + rt+1f(t, r−tz(t)), f(t, 0) = 0 . (16)

Let
R1 = min{|λ| : |λ| > 1, λ is an eigenvalue of rA},

and Φr(t) be the fundamental matrix of the equation

x(t + 1) = rAx(t) .

Let R be a positive number satisfying Rα1 < R < R1. Then is is easy to prove
the existence of a projection matrix P and a constant K ≥ 1, such that

|Φr(t)PΦ−1r (s)| ≤ KR
t−s, 0 ≤ s ≤ t,

|Φr(t)(I − P )Φ−1r (s)| ≤ KR
t−s
1 , 0 ≤ t ≤ s .



10 Instability of discrete systems EJDE–1998/33

These estimates imply that the difference system x(t + 1) = rAx(t) has an
(Rt, Rt1)-dichotomy (This is not an exponential dichotomy). Since the condition
Vh 6= Vk is satisfied, then we aim to apply Theorem 7. If condition (F) is satisfied
then the monotone condition (M) is valid with

ψ(t, s) = γ(t)r(1−α)t+1sα.

To satisfy (13) we need

KrR−11 ρα
∞∑
s=t0

(
R1

r

)(α−1)s
γ(s) < ρ . (17)

Because (R1/r)
(α−1) < 1, the series in the above inequality converges even for

a γ(t) of exponential growth, and (17) is satisfied for all ρ sufficiently small.
Then by Theorem 7 the null solution to (16) is Rt-unstable. This implies

the instability of the null solution to (1).

Remark Instability of (1) has been obtained under conditions weaker than
those in Theorem 1. In Condition (F) γ is unbounded (γ(t) = Rt with R > 1),
as opposed to γ being bounded in Theorem 1.

Case 1 ≤ α: This case can be reduced to the previous one, because stability
of the null solution to (1) is equivalent to stability of the null solution to

y(t+ 1) = Ay(t) + F (t, y(t)), F (t, 0) = 0,

where F (t, y) is defined by

F (t, y) =

{
f(t, y), |y| < 2−1,

f(t, y2|y|), |y| ≥ 2
−1.

Notice that F (t, y) satisfies Condition (F) with

|F (t, y)| ≤ γ(t)|y|β, ∀β ∈ [0, 1) .
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