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PARTIAL REGULARITY FOR FLOWS OF H-SURFACES, II

Changyou Wang

Abstract

We study the regularity of weak solutions to the heat equation for H-surfaces.
Under the assumption that the function H : R3 → R is bounded and Lipschitz, we
show that the solution is C2,α on its domain, except for a set of measure zero.

§1. Introduction

Let Ω ⊂ R2 be a bounded domain with smooth boundary, and let H be a
bounded Lipschitz function on R3. A map u ∈ C2(Ω,R3) is called an H-surface
(parametrized over Ω) if u satisfies

−∆u = 2H(u)ux1 ∧ ux2 . (1.1)

It is well known that if u = (u1, u2, u3) is a conformal representation of a surface S ⊂
R
3, then the mean curvature of S, at the point u, is H(u) (see [S3]). The existence
of surfaces with constant mean curvature under various boundary conditions has
been studied by Hildebrandt [Hs], Wente [W], Struwe [S1] [S2] [S3], and Brezis-
Coron [BC]. The regularity of weak solutions to (1.1) has also been studied; see for
example Wente [W], Heinz [He], Tomi [T], and Bethuel-Ghidaglia [BG] for earlier
results. Moreover, Bethuel [B] proved that weak solutions to (1.1) are C2,α for any
bounded Lipschitz function H.

The heat equation of H-surfaces is defined by

∂tu−∆u = 2H(u)ux1 ∧ ux2 , in Ω× R
+. (1.2)

This equation describes an evolution process of (1.1), which models the deformation
of a surface into another surface with mean curvature H at time infinity. The
existence of global smooth solutions to (1.2), under special conditions on the H-
function, has been studied in [R] and [S2]. In particular, Struwe [S2] considered
free boundary conditions of (1.2), with constant H, and obtained a global weak
solution to (1.2), which is smooth except for finitely many singular points. Rey [R]
has established the existence of a global smooth solutions to (1.1) with the Dirichlet
boundary conditions u = φ, provided that φ ∈ H1 ∩ L∞(Ω,R3) and

‖φ‖L∞(Ω)‖H‖L∞(R3) < 1 . (1.3)
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Motivated by the notion of weak solution to (1.1), we say that u : Ω×R+ → R3

is a weak solution to (1.2), if ∂tu,Du ∈ L2loc(Ω × R
+) and u satisfies (1.2) in the

sense of distributions.

In this note, we consider the partial regularity of weak solutions to (1.2). The
motivation is two folds. First, (1.2) is a parabolic counterpart of the elliptic system
(1.1) which exhibits full regularity, and in the case of a single equation we know
that the parabolic equation roughly has the same regularity as its elliptic counter-
part. Second, the nonlinear term in (1.2) is of the same order as that in the flows of
harmonic maps from surfaces (see [S3]), and the best regularity for heat equations
of harmonic maps from surfaces is that there are finitely many singular points (see
Freire [F] or Wang [Wa]). This suggests that weak solutions to (1.2) may have reg-
ularity similar to that of heat equations of harmonic maps from surfaces. However,
the heat equation of harmonic maps is the negative gradient flow of the Dirichlet
energy functional, which satisfies the energy inequality property, but it is not clear
whether smooth solutions to (1.2) satisfy∫

Ω

|Du|2(·, t) ≤

∫
Ω

|Du|2(·, s), 0 ≤ s ≤ t <∞ . (1.4)

This makes the study of the size and the dimension of singular sets of weak solutions
to (1.2) much more difficult. In fact, we are only able to show in Theorem 1 that
the singular set has zero Lebesgue measure, which is far from the conjecture that
the singular set has (parabolic) Hausdorff dimension at most 1.

In [Wa1], we studied the partial regularity of weak solutions to (1.2) under the
condition that H is a bounded Lipschitz function depending only on two variables.
A uniqueness result can be found in Chen [Ch].

Theorem 1. Let H(p) : R3 → R be bounded and Lipschitz continuous, and let
u ∈ H1(Ω × R+,R3) be a weak solution of (1.2). Then there exists a closed subset
Σ = ∪t>0Σt ⊂ Ω × R+, with Σt ⊂ Ω × {t} finite for almost all t > 0, such that
u ∈ C2,α(Ω × R+ \Σ,R3). In particular, Σ has Lebesgue measure zero.

§2. Proof of the main theorem

The goal of this section is to prove Theorem 1. First we show that the solution
u : B1× (0, 1]→ R3 has spatial Hölder continuity in B1/2 uniformly with respect to
t ∈ [1/2, 1], under the assumption that

∫
B1
|Du|2 is small and

∫
B1
|∂tu|2 is bounded,

uniformly with respect to t ∈ [0, 1]. Then based on the spatial continuity of u, and a
simple observation, we obtain the continuity of u in the time direction. Finally, by
elementary covering and suitable rescaling arguments, we show that u has regularity
almost everywhere.

To make the proof clear, we review a few concepts. First, we recall the definition
of Lorentz spaces [Z]. For an open set W ⊂ R2 and 1 ≤ q ≤ ∞, let

L2,q(W ) = {f :W → R measurable , ‖f‖L2,q(W ) <∞} .

The norm in this space is defined by

‖f‖L2,q(W ) =

{
(
∫∞
0
[t1/2f∗(t)]q 1

t
dt)1/q , if 1 ≤ q <∞ ;

supt>0 t
1/2f∗(t), if q =∞,



EJDE–1999/08 Partial regularity for flows 3

where f∗(t) := inf{s > 0 : |{x ∈ W : |f(x)| > s}| ≤ t} is the the rearrangement of
f . Notice that L2,1 ⊂ L2,2(≡ L2) ⊂ L2,∞, and that L2,1 and L2,∞ are dual of each
other. For x0 ∈ R2, 0 < r <∞, let B(x0, r) = {y ∈ R2 : |y − x0| ≤ r}.

Lemma 2.1. For f, g ∈ H1(B(x0, r)), let v ∈ H10 (B(x0, r)) be the solution to

−∆v = fxgy − fygx, in B(x0, r), (2.1)

v = 0, on ∂B(x0, r).

Then Dv ∈ L2,1(B(x0, r)) and

‖Dv‖L2,1(B(x0,r)) ≤ C‖Df‖L2(B(x0,r))‖Dg‖L2(B(x0,r)). (2.2)

‖Dv‖L2,∞(B(x0,r)) ≤ C‖Df‖L2(B(x0,r))‖Dg‖L2,∞(B(x0,r)). (2.3)

The proof of the Lemma above can be found in Hélein [Hf1], Theorems 3.33–
3.38, page 146-155.

Lemma 2.2. For f ∈ L1(B(x0, r)), let v ∈ H1(B(x0, r)) be the solution to

−∆v = f, in B(x0, r) .

Then there exists a C > 0 such that, for any θ ∈ (0, 1/4),

‖Dv‖L2,∞(B(x0,θr)) ≤ Cθ‖Dv‖L2,∞(B(x0,r)) + C‖f‖L1(B(x0,r)) . (2.4)

Proof. Let f̄ : R2 → R be an extension of f such that f̄ = 0 outside B(x0, r). Let
v̄ ∈W 1,1(R2) be a solution to

−∆v̄ = f̄ , in R2.

Then

D(v̄)(z) =

∫
R2

DK(z − x)f̄(x) dx ,

where K(z) = 1
2π
log(|z|−1). It is well known (cf. [Z]) that DK ∈ L2,∞(R2). Hence,

it follows from the convolution property that Dv̄ ∈ L2,∞(R2), and that

‖Dv̄‖L2,∞(R2) ≤ C‖DK‖L2,∞(R2)‖f‖L1(R2) ≤ C‖f‖L1(R2). (2.5)

Since v − v̄ is a harmonic function on B(x0, r), an estimate of harmonic functions
in [Hf1] implies that

‖D(v − v̄)‖L2,∞(B(x0,θr)) ≤ Cθ‖D(v − v̄)‖L2,∞(B(x0,r)), (2.6)

for any θ ∈ (0, 1/4). Hence

‖Dv‖L2,∞(B(x0,θr)) ≤ Cθ‖Dv‖L2,∞(B(x0,r)) + C‖Dv̄‖L2,∞(B(x0,r)),

this, combined with (2.5), implies (2.4). ♦

The key part of the proof of Theorem 1 is the following decay property.
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Lemma 2.3. There exist ε0 > 0 and θ0 ∈ (0, 1/4) such that if u ∈ H1(B1×(0, 1],R3)
is a weak solution of (1.2) and supt∈(0,1]

∫
B1
|Du|2 ≤ ε20 then, for x0 ∈ B1/2, 0 < r <

1/4, θ ∈ (0, θ0), we have

‖Du‖L2,∞(B(x0,θr)) ≤
1

2
‖Du‖L2,∞(B(x0,r)) + C‖∂tu‖L2(B(x0,r))r , (2.7)

for almost all t ∈ [1/2, 1].

Proof. The argument here is inspired by that of Bethuel [Bf]. For x0 ∈ B1/2,
r ∈ (0, 1/4), and t ∈ [1/2, 1]. We apply the L2-Hodge decomposition theorem to get
that there exist A ∈ H1(B(x0, r),R3) and B ∈ H10 (B(x0, r),R

3) such that

(2H(u)uix, 2H(u)u
i
y) = (A

i
x, A

i
y) + (B

i
y,−B

i
x), i = 1, 2, 3, (2.8)

and
‖DA‖L2(B(x0,r)) + ‖DB‖L2(B(x0,r)) ≤ C‖Du‖L2(B(x0,r)). (2.9)

Then we have

∆B = 2(H(u)yux −H(u)xuy), in B(x0, r), (2.10)

B = 0, on ∂B(x0, r) .

Hence Lemma 2.1 implies

‖DB‖L2,1(B(x0,r)) ≤ C‖Du‖
2
L2(B(x0,r))

. (2.11)

Using (2.8), we can write (1.2) as

∆u = ∂tu−Ax ∧ uy −By ∧ uy, in B(x0, r). (2.12)

Let w ∈ H10 (B(x0, r),R
3) be the solution to

∆w = −Ax ∧ uy, in B(x0, r), (2.13)

w = 0, on ∂B(x0, r).

Hence, by Lemma 2.1,

‖Dw‖L2,∞(B(x0,r)) ≤ C‖DA‖L2(B(x0,r))‖Du‖L2,∞(B(x0,r))

≤ C‖Du‖L2(B(x0,r))‖Du‖L2,∞(B(x0,r)). (2.14)

Now we can apply Lemma 2.2, to u−w on B(x0, r), to conclude that, for θ ∈ (0, 1/4),

‖D(u−w)‖L2,∞(B(x0,θr)) ≤Cθ‖D(u− w)‖L2,∞(B(x0,r))

+ ‖∂tu‖L1(B(x0,r)) + ‖By ∧ uy‖L1(B(x0,r))
≤Cθ‖D(u− w)‖L2,∞(B(x0,r))

+ ‖∂tu‖L2(B(x0,r))r + ‖DB‖L2,1(B(x0,r))‖Du‖L2,∞(B(x0,r))

≤Cθ‖D(u− w)‖L2,∞(B(x0,r))

+ ‖∂tu‖L2(B(x0,r))r + C‖Du‖
2
L2(B(x0,r))

‖Du‖L2,∞(B(x0,r))

This, combined with (2.14), imply that

‖Du‖L2,∞(B(x0,θr)) ≤(Cθ + C‖Du‖
2
L2(B(x0,r))

)‖Du‖L2,∞(B(x0,r))

+C‖Dw‖L2,∞(B(x0,r)) + ‖∂tu‖L2(B(x0,r))r

≤(Cθ + Cε0)‖Du‖L2,∞(B(x0,r)) + ‖∂tu‖L2(B(x0,r))r.

Therefore, if we choose θ0 ∈ (0, 1/4) and ε0 > 0 sufficiently small then (2.7) follows.
♦

A direct consequence of Lemma 2.3 is the following.
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Corollary 2.4. There exist ε0 > 0 and α0 ∈ (0, 1) such that if u ∈ H1(B1 ×
(0, 1],R3) is a weak solution to (1.2) with supt∈(0,1]

∫
B1
|Du|2 ≤ ε20 and

Λ = supt∈(0,1]
∫
B1
|∂tu|2 <∞, then u(t, ·) ∈ Cα0(B1/2,R

3) for t ∈ [1/2, 1], and

sup
t∈[1/2,1]

‖u(t, ·)‖Cα0 (B1/2) ≤ C(ε0,Λ) . (2.15)

Proof. Notice that the L2,∞-norm is conformally invariant. Hence we can iterate
(2.7) of Lemma 2.3 to conclude that there exists θ0 ∈ (0, 1/4) such that for any
x0 ∈ B1/2, r ∈ (0, 1/4), and t ∈ [1/2, 1],

‖Du‖L2,∞(B(x0,θk0r)) ≤ 2
−k‖Du‖L2,∞(B(x0,r)) + C(1− θ0)

−1Λr, (2.16)

for all k ≥ 1. This certainly implies (see for example [GT] Lemma 8.23) that there
exists α0 ∈ (0, 1) such that for all t ∈ [1/2, 1]

‖Du‖L2,∞(B(x,r)) ≤ Cr
α0‖Du‖L2,∞(B(x,1/4) + CΛr

1
2 , (2.17)

for any x ∈ B1/2 and 0 < r ≤ 1/4. On the other hand, we know that L
2,∞ ⊂ L1,p

for any p ∈ (1, 2). In particular,

r2−p
∫
B(x,r)

|Du|p ≤ C‖Du‖p
L2,∞(B(x,r))

≤ Crpα0‖Du‖p
L2,∞(B(x,1/4) + CΛr

p/2 , (2.18)

for any x ∈ B1/2, r ∈ (0, 1/4), and t ∈ [1/2, 1]. This, combined with Morrey Lemma
(see [Mc]), imply u(t, ·) ∈ Cα0(B1/2,R

3) for t ∈ [1/2, 1], and (2.15). ♦

Based on Corollary 2.3 and a simple observation, we actually get the Hölder
continuity of u in the time direction as follows.

Corollary 2.5. There exist ε0 > 0 and α1 ∈ (0, 1) such that if u ∈ H1(B1 ×
[0, 1],R3) is a weak solution to (1.2) with

sup
t∈(0,1]

∫
B1

|Du|2 ≤ ε20,

and Λ = supt∈(0,1]
∫
B1
|∂tu|2 <∞, then u ∈ Cα1(B1/2 × [1/2, 1],R

3).

Proof. For any x ∈ B1/2, r ∈ (0, 1/4), and
1
2 ≤ t1 < t2 ≤ 1. We have

|u(x, t1)− u(x, t2)| ≤|u(x, t1)−
1

|B(x, r)|

∫
B(x,r)

u(y, t1)|

+ |u(x, t2)−
1

|B(x, r)|

∫
B(x,r)

u(y, t2)|

+
1

|B(x, r)|

∫
B(x,r)

|u(y, t1)− u(y, t2)|

≤oscB(x,r)u(·, t1) + oscB(x,r)u(·, t2)

+
1

|B(x, r)|

∫
B(x,r)

dy

∫ t2
t1

|∂tu(y, t)| dt

≤C(ε0,Λ)r
α0 + ‖ut‖L2(B1×(0,1])

√
t2 − t1
r

.
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Here osc denotes the oscillation and we have used Hölder inequality and α0 ∈ (0, 1)
is given by Corollary 2.4. Now if we choose t1, t2 such that |t1 − t2| ≤ 41/(2(1+α0)),
and let r = |t1 − t2|1/(2(1+α0))(≤

1
4
), then

|u(x, t1)− u(x, t2)| ≤ (C(ε0,Λ) + ‖∂tu‖L2(B1×(0,1]))|t1 − t2|
α0/(2(1+α0)), ∀x ∈ B1/2.

(2.19)
Let α1 = α0/(2(1 + α0)). Then (2.15) and (2.19) imply that u ∈ Cα1(B1/2 ×
[1/2, 1],R3). ♦

Completion of the proof of Theorem 1.

Define the parabolic metric: δ((x, t), (y, s)) = max{|x − y|,
√
|t− s|}. For (x, t) ∈

Ω× R+ and R ∈ (0, δ((x, t), ∂(Ω × R+))). Define

M1R(x, t) = lim sup
s↑t

∫
BR(x)

|Du|2(x, s)

M2R(x, t) = lim sup
s↑t

∫
BR(x)

|∂tu|
2(x, s),

for the weak solution u of (1.2). It is easy to see thatM iR(x, t) is non-decreasing with
respect to R so that M i(x, t) = limR↓0MR(x, t) exists and is upper semi-continuous
exists for any (x, t) ∈ Ω× R+, for i = 1, 2. Let ε0 > 0 be as same as Corollary 2.5.
For t > 0, define Σt ≡ Σ1t ∪Σ

2
t (⊂ Ω), where

Σ1t = {x ∈ Ω :M
1(x, t) ≥ ε20}

Σ2t = {x ∈ Ω :M
2(x, t) =∞},

let Σ = ∪t>0Σt. Then it follows that Σ is a closed subset of Ω× R+.

Claim. u ∈ C2,α(Ω × R+ \ Σ,R3) for some α ∈ (0, 1). To prove this claim, Let
(x0, t0) ∈ Ω× R+ \Σ. By definition, there exists r0 > 0 such that

M1r0(x0, t0) < ε
2
0, Λ0 ≡M

2
r0
(x0, t0) <∞.

For such r0, there exists 0 < δ0 ≤ r0 such that

sup
[t0−δ20 ,t0]

∫
Br0(x0)

|Du|2(x, t) dx ≤ ε20,

and

sup
[t0−δ20 ,t0]

∫
Br0(x0)

|∂tu|
2(x, t) dx ≤ 2Λ0.

If we define the rescaled mappings uδ0 : B1 × (−1, 0] → R
3 by uδ0(x, t) = u(x0 +

δ0x, t0 + δ
2
0t), then uδ0 is a weak solution to (1.2) on B1 × (−1, 0] and satisfies

sup
(−1,0]

∫
B1

|Duδ0 |
2(x, t) dx ≤ ε20,

and

sup
(−1,0]

∫
B1

|∂tuδ0 |
2(x, t) ≤ 2Λ0.



EJDE–1999/08 Partial regularity for flows 7

Hence Corollary 2.5 implies

uδ0 ∈ C
α(B1/2 × [−

1

2
, 0],R3),

for some α ∈ (0, 1). This means that u ∈ Cα(B(x0, δ0)× (t0− δ20 , t0+ δ
2
0),R

3). Since
(x0, t0) is arbitrary in Ω × R+ \ Σ, this shows that u ∈ Cα(Ω × R+ \ Σ,R3). It is
well known that Cα solutions to (1.2) is in C2,α as well.

Now we estimate the size of Σt for a.e. t > 0. Since u ∈ H1loc(Ω× R
+), the set

A = {t0 ∈ R
+ : lim inf

t↑t0

∫
Ω

|Du|2(x, t) + |∂tu|
2 dx = +∞}

has Lebesgue measure equal to zero, |A| = 0. For any t1 ∈ R+ \ A, it is easy to see
that Σ2t1 = ∅. We claim that Σ

1
t1
is finite. In fact, let {x1, · · · , xN} be a finite subset

of Σ1t1 . Then we can choose R
0 > 0 such that {BR0(xi)}

N
i=1 are mutually disjoint

and

lim sup
t↑t1

∫
BR0 (xi)

|Du|2(x, t) dx ≥ ε20, 1 ≤ i ≤ N .

Therefore,

lim inf
t↑t1

∫
Ω\∪N

i=1
BR0 (xi)

|Du|2 ≤ lim inf
t↑t1

∫
Ω

|Du|2 −
N∑
i=1

lim sup
t↑t1

∫
BR0 (xi)

|Du|2

≤ lim inf
t↑t1

∫
Ω

|Du|2 −Nε20 .

Hence N ≤ ε−20 lim inft↑t1
∫
Ω
|Du|2, which implies Σ1t1 is finite. It then follows from

Fubini’s theorem that Σ Lebesgue measure equal to zero. ♦

References
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