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Log-concavity in some parabolic problems ∗

Antonio Greco & Bernd Kawohl

Abstract

We improve a concavity maximum principle for parabolic equations
of the second order, which was initially established by Korevaar, and
then we use this result to investigate some boundary value problems. In
particular, we find structural conditions on the equation, and suitable
conditions on the domain of the problem and on the boundary data, that
suffice to yield spatial log-concavity of the (positive) solution. Examples
and applications are provided, and some unsolved problems are pointed
out. We also survey some classical as well as recent contributions to the
subject.

1 Introduction

In the last two decades we have seen many new results on qualitative properties
of solutions to elliptic and parabolic problems. One of the issues that have been
investigated is how the shape of the underlying domain influences the shape
of the solution. There is a vast literature addressing symmetry questions, and
there are also several papers investigating convexity properties of solutions.
In the early 80’s, R. Finn posed the question whether capillary surfaces on

convex domains are convex, and he gave this problem to N. J. Korevaar as
a Ph.D. thesis. Korevaar wrote two papers on convexity that have become
classical ([10], [11]), and he remarked that:

1. Convexity of the domain alone, usually does not induce convexity of the
solution. A typical condition to be added to the problem in order to obtain
convexity of the solution is that the contact angle at the boundary must be
zero.

2. Even if the differential operator is very simple, and it is not the minimal
surface operator, there are counterexamples. For instance, the negative
first eigenfunction −u1 of the Laplace operator, with homogeneous Dirich-
let boundary conditions on the disc, is not convex. However, it turns out
that − logu1 is convex ([11], Remark 2.7; see also [6], Remark 3.4).
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3. It would be interesting to study convexity of the level sets of the solution,
instead of convexity of the solution itself.

In this paper, in order to study convexity of level sets of a positive function
u we study the convexity of the auxiliary function v := − log u. This auxil-
iary function is chosen because it leads to a particularly useful structure of the
transformed equation. Our main results are Theorem 4.1 (a concavity maximum
principle) and Theorem 4.2 (its application to initial boundary value problems).
For a review of other techniques we refer to [6] (see also [3], [4] and [7]). For an
approach using viscosity solutions see [1].

2 Parabolic maximum principle

Parabolic inequalities, like (1) below, satisfy a nondegeneracy condition in the
sense that the coefficient of ut is nonzero. This property, which of course does
not depend on the ellipticity constants of the matrix (aij), allows the following
(well-known) maximum principle to hold.

Theorem 2.1 (Weak maximum principle for parabolic equations)
Let w ∈ C2(G) be a classical solution of

wt ≤ a
ij(x, t)wij + b

i(x, t)wi − c(x, t)w (1)

in the set G := Ω× (0, T ], Ω a bounded domain in RN , T > 0. The coefficients
aij, bi and c are supposed to be real valued functions on G satisfying (aij) ≥ 0
and inf(x,t)∈G c(x, t) > −∞. Inequality (1) must hold pointwise.
If lim supw(x, t) ≤ 0 as (x, t) approaches the parabolic boundary of G (i.e.,
the set Ω× {0} ∪ ∂Ω× [ 0, T ]), then we have w ≤ 0 in all of G.

Proof. Choose m < inf c and consider w̃ := w emt. By substitution into (1)
we have

w̃t ≤ a
ij w̃ij + b

i w̃i − c̃ w̃,

where c̃ = c −m > 0. Suppose, contrary to the claim, that w becomes some-
where positive. The function w̃ would still be positive there, and a maximizing
sequence would converge to some point (x0, t0) outside the parabolic boundary,
due to the boundary behaviour of w. Since w̃ is smooth at (x0, t0), a standard
computation contradicts the inequality above and the claim follows. ♦

Remark. If the assumptions of the theorem are strengthened, namely if in
addition we suppose that λ |ξ|2 ≤ aij(x, t) ξi ξj ≤ Λ |ξ|2 for all (x, t) ∈ G, ξ ∈ RN ,
with suitable λ,Λ > 0 (uniform parabolicity), and sup(x,t)∈G |b

i(x, t)| < +∞ for
i = 1, . . . , N , then the strong maximum principle holds, i.e., if u = 0 at some
point outside the parabolic boundary then u is identically zero (see, for instance,
[13] or [14]).
The weak maximum principle, instead, has the following noteworthy properties:
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1. No nondegeneracy condition is imposed to the matrix (aij).

2. No boundedness of the coefficients aij and bi is assumed.

Note, further, that the coefficients in (1) need not be smooth.

Corollary 2.2 (Weak maximum principle on an infinite cylinder)
Let w ∈ C2(S) be a classical solution of (1) in the infinite cylinder S := Ω×R+,
Ω a bounded domain in RN . Suppose that (aij) ≥ 0, and that
inf(x,t)∈Ω×(0,T ) c(x, t) > −∞ for every (finite) T > 0.
If lim supw(x, t) ≤ 0 as (x, t) approaches ∂S, then we have w ≤ 0 in all of S.

Proof. If we assume w > 0 at a certain (x, T ) ∈ S then we reach a contradic-
tion to the preceding theorem. ♦

Remark. Note that we did not assume w ∈ C0(G) or C0(S). In fact, in our
applications the function w will be a concavity function (see below), and the
concavity function associated to an unbounded function is not well defined on
the boundary.

3 Known convexity results for parabolic equa-
tions

Let us recall that, in a classical paper [2], Brascamp and Lieb showed that
the heat equation preserves log-concavity of the initial data. Their method
is based on analyzing the heat kernel representation and on using the Brunn-
Minkowsky inequality. In this paper we use different methods, which are based
on the maximum principle, and which are known to yield an alternative proof
of Brascamp and Lieb’s result (see [11]).
Korevaar ([10], [11]) introduced the elliptic and the parabolic concavity func-

tion, which may be defined as

C(x, y) = v(z)−
v(x) + v(y)

2 (2)

or

C(x, y, t) = v(z, t)−
v(x, t) + v(y, t)

2 , (3)

respectively, where z = (x+ y)/2. If v(x) is a continuous function on a convex
domain Ω, then v is convex if and only if C(x, y) ≤ 0 in Ω2. Correspondingly if
v(x, t) is a continuous function on a convex cylinder Ω× (0, T ), then it is convex
w.r.t. x for every fixed t ∈ (0, T ) if and only if C(x, y, t) ≤ 0 in Ω2 × (0, T ).
By means of (3), Korevaar investigates in [11] the equation

vt = a
ij(t,∇v) vij − b(x, t, v,∇v) in Ω× (0, T ), (4)

where ∇v is the spatial gradient. Under structural assumptions on (aij) and
b he proves that C can attain a positive maximum, if it exists, only on the
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parabolic boundary of Ω2 × (0, T ), i.e. for t = 0 or when x or y ∈ ∂Ω. The
structural assumptions were (aij) > 0, bv ≥ 0, and concavity of b with respect
to (x, v).
Of course, when dealing with a parabolic problem, one may also consider

convexity of the solution with respect to the (N+1)-dimensional variable (x, t).
This leads to a study of the function

C(x, y, t, s) = v(z, r)−
v(x, t) + v(y, s)

2
,

where z is as before and r = (t+s)/2. Porru and Serra [12] use this function to
investigate equation (4) but with (aij) independent of t. They prove a convexity
maximum principle of parabolic type, i.e., the function C(x, y, t, s) cannot attain
a positive maximum when (x, t) and (y, s) are not on the parabolic boundary of
Ω×(0, T ). This conclusion is reached under the following structural assumptions
on (4):

1. parabolicity, but not strict parabolicity of the equation;

2. boundedness of bv from below;

3. concavity of b with respect to (x, t, v).

Kennington [9] and Kawohl [5] also consider C(x, y, t, s), but they regard the
parabolic equation as a degenerate elliptic equation in RN+1, and apply the
corresponding concavity maximum principle by Kennington [8]. They prove
convexity of level sets of the solution to initial value problems of the form

ut = ∆u− f(u) in Ω× R+,

u = 1 on ∂Ω× R+,

u(x, 0) = 1 in Ω,

by applying the concavity maximum principle to a suitable transformed fuction
v := g(u). The result follows under suitable assumptions on f . Due to the
elliptic nature of the technique, an estimate of C is needed also for t→ +∞.

4 Space concavity

A concavity maximum principle.

In this subsection we generalize Korevaar’s result cited above, concerning con-
vexity in space, in the sense that we drop the assumption of strict parabolicity
of the equation and we require b to satisfy a Lipschitz condition from below
instead of bv ≥ 0. We do not require any other smoothness of (aij) and b. After
this extension, the result can also be more easily compared to Porru and Serra’s
result of convexity in space-time.
The function b(x, t, v, p) is said to satisfy a Lipschitz condition from below

with respect to v if there exists a constant L ∈ R such that

b(x, t, u, p)− b(x, t, v, p) ≥ −L (u− v) (5)
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for all x, t, u, v, p such that u > v.

Theorem 4.1 Let v ∈ C2(S) be a solution of (4) in the infinite cylinder S :=
Ω×R+, Ω a convex bounded domain in RN . Suppose (aij) ≥ 0 and let b satisfy
(5) and be concave in (x, v).
If lim supC(x, y, t) ≤ 0 as (x, y, t)→ ∂(Ω2×R+), then C ≤ 0 in all of Ω2×R+.

Proof. We construct a parabolic inequality for C(x, y, t) in the domain Ω2 ×
R
+, and the result will follow from the classical maximum principle (Corollary
2.2). A similar technique was used in [4] for the elliptic case. Korevaar, instead,
argued by contradiction at a point where C attained a positive maximum. Let
Ã = (ãhk(x, y, t)) be the 2N × 2N matrix given by

Ã =

(
A A
A A

)
,

where A = (aij(t,∇v(z, t))). By differentiating C we find:

ãhk Chk = aij(t,∇v(z, t)) vij(z, t)− a
ij(t,∇v(z, t)) vij(x, t)/2

−aij(t,∇v(z, t)) vij(y, t)/2,

where i, j = 1, . . . , N , h, k = 1, . . . , 2N and the summation convention is in
effect. Since ∇v(z, t) − ∇v(x, t) = 2∇xC(x, y, t), and ∇v(z, t) − ∇v(y, t) =
2∇y C(x, y, t), we may write

ãhk Chk + b
h Ch = aij(t,∇v(z, t)) vij(z, t)− a

ij(t,∇v(x, t)) vij(x, t)/2

−aij(t,∇v(y, t)) vij(y, t)/2, (6)

where the (not necessarily bounded) coefficients bh for h = 1, . . . , N are given
by

bh(x, y, t) =
vh(z, t)− vh(x, t)

|∇v(z, t)−∇v(x, t)|2
×

N∑
i,j=1

(
aij(t,∇v(z, t))− aij(t,∇v(x, t))

)
vij(x, t)

if ∇v(z, t) 6= ∇v(x, t), and bh = 0 if ∇v(z, t) = ∇v(x, t). The expression of bh

when h = N + 1, . . . , 2N is analogous. It is worthwile to stress the fact that
equality holds in (6) for algebraic reasons, and smoothness of aij is by no means
involved.
Now we may use equation (4) and obtain

ãhk Chk + b
hCh = vt(z, t) + b(z, t, v(z, t),∇v(z, t))

−vt(x, t)/2 − b(x, t, v(x, t),∇v(x, t))/2

−vt(y, t)/2− b(y, t, v(y, t),∇v(y, t))/2.

On this expression we operate as follows:
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i) We replace vt(z, t)− vt(x, t)/2 − vt(y, t)/2 by Ct(x, y, t).

ii) We replace ∇v(x, t) and ∇v(y, t), which appear as arguments of b, by
∇v(z, t). This needs some modification of the coefficients bh, which is not
relevant for the conclusion (the technique is the same as before).

iii) We replace b(z, t, v(z, t),∇v(z, t)) by

b(z, t, (v(x, t) + v(y, t))/2,∇v(z, t)) + cC(x, y, t),

where c is a suitable function, which is bounded from below by virtue of
(5).

Taking into account the concavity of b with respect to (x, v), we obtain the
following parabolic inequality:

ãhk Chk + b
h Ch ≥ Ct + cC.

Therefore the claim follows from Corollary 2.2. ♦

Log-concavity in space.

We apply the concavity maximum principle proved above and study spatial
log-concavity of positive solutions to the following problem:

ut = a
ij(t)uij − f(t, u,∇u) in S := Ω× R+,

u(x, 0) = u0(x), (7)

u(x, t) = 0 for x ∈ ∂Ω,

where the coefficients aij are real valued functions on R+ satisfying (aij) ≥ 0,
u0 ∈ C0(Ω) is a given log-concave function vanishing on ∂Ω, and Ω is a strictly
convex bounded domain in RN , in the sense that ∂Ω is of class C2 and has
positive Gauss curvature.
As usual, we say that u0 is log-concave if it is positive in Ω and − log u0(x) is

convex. We set v(x, t) := − logu(x, t) and derive from (7) an equation satisfied
by v. Then we show that v(x, t) is convex in x for every given t, provided f
satisfies suitable conditions.
In order to obtain such a conclusion by means of the concavity maximum

principle we need to know that v is convex near ∂Ω. This follows from the
boundary conditions imposed on u, through the noteworthy properties of the
log function, and thanks to the strict convexity of the domain Ω, provided that

∇u(x, t) 6= 0 for all x ∈ ∂Ω and t ≥ 0. (8)

More precisely, a function u(x) which is positive in a strictly convex domain Ω,
and which vanishes on ∂Ω with nonvanishing gradient there, is always concave
(hence log-concave) near ∂Ω in the tangential directions. On the other side,
since ∇u 6= 0 on ∂Ω, u is also log-concave near ∂Ω in the normal direction. The
interested reader may consult [11], Lemma 2.4, or [4], Lemma 3.2, for details.
The final conclusion is the following:
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Theorem 4.2 Let u ∈ C2(S)∩C1(S) be a positive classical solution of problem
(7), where u0 and Ω are as above. Assume (8). If f(t, u, p) is of class C

2(R+×
R
+ × RN ) and such that

fu +
p · ∇p f

u
−
f

u
≥ −L, (9)

fu +
p · ∇p f

u
−
f

u
≤ u fuu + 2 p · ∇p fu +

pi pj fpipj
u

, (10)

for every t > 0, u > 0, p ∈ RN , and with a suitable constant L > 0, then u is
log-concave in space for all t.

Proof. By computation we find that v(x, t) := − logu(x, t) satisfies the equa-
tion vt = a

ij(t) vij − b(t, v,∇v), where

b(t, v,∇v) = aij(t) vi vj − e
v f(t, e−v,−e−v∇v).

Furthermore, the derivative bv is given by

bv(t, v,∇v) = fu(t, e
−v, p) + ev p · ∇p f(t, e

−v, p)− ev f(t, e−v, p),

where we set, for shortness, p := −e−v∇v, therefore it is bounded from below
provided (9) holds. Finally, we have

bvv(t, v,∇v) = fu +
p · ∇p f

u
−
f

u
− u fuu − 2 p · ∇p fu −

pi pj fpipj
u

,

where f and its derivatives are all evaluated at (t, e−v, p). Hence by (10) we have
bvv ≤ 0 and the assumptions of Theorem 4.1 are satisfied. As remarked above,
the parabolic concavity function associated to v satisfies lim supC(x, y, t) ≤ 0
as (x, y, t) → ∂(Ω2 × R+). This and the concavity maximum principle imply
C(x, y, t) ≤ 0 for all (x, y, t) ∈ Ω2 × R+. ♦

Remarks.

1. We have preferred to state the theorem in an infinite cylinder for the sake
of simplicity. Of course the result holds, mutatis mutandis, as long as the
solution exists.

2. Let us just mention that a solution u of (7) has to be positive in Ω× R+,
and it has to satisfy (8), provided fu is bounded from below and one of
these conditions is verified:

(a) The equation in (7) is uniformly parabolic, f(t, 0, 0) ≤ 0 for all t > 0,
∇p f is bounded, and ∇u0 6= 0 on ∂Ω. In this case the null constant
turns out to be a subsolution of the same problem, therefore u must
be positive by the strong comparison principle, and ∇u does not
vanish on Ω by Hopf’s Lemma.
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(b) The function f does not depend on t, and there exists a positive
solution w(x) of the stationary problem ∆w = f(w,∇w) satisfying
w ≤ u0, ∇w 6= 0 on ∂Ω. In this case w(x, t) := w(x) is a subsolution.

3. Theorem 4.2 still holds with a log-concave u0 whose gradient vanishes
at the boundary, provided we can approximate u0 in the C

0-norm by a
sequence of log-concave u0k satisfying ∇u0k 6= 0 on ∂Ω and such that the
corresponding problems (7) have positive solutions uk in S. This can be
seen as follows. Since uk is log-concave,

u2k

(
x+ y

2
, t

)
≥ uk(x, t)uk(y, t) in Ω2 × R+.

This inequality is preserved under the pointwise limit as k→ +∞. Since u
is supposed to be positive, the corresponding inequality for u is equivalent
to log-concavity.

4. For the same reason, and under similar conditions, we can even take u0 ∈
C0(Ω), i.e., not continuous up to the boundary.

5. The result can be extended to the case when Ω is convex but not strictly
convex by means of a similar argument, provided the solution u of problem
(7) is positive. It suffices that there exists a sequence of strictly convex
domains Ωk and log-concave initial data u0k to which Theorem 4.2 is ap-
plicable, and such that the corresponding solutions uk converge pointwise
to u.

6. It is always possible to approximate a log-concave u0 in the C
0-norm by

a sequence of log-concave u0k satisfying ∇u0k 6= 0 on the boundary. See
the appendix for an explanation.

Examples and applications.

Of course, the assumptions of Theorem 4.2 are satisfied by the linear heat equa-
tion ut = ∆u. More generally, if f does not depend on the gradient, then
(9)-(10) reduce to

−L ≤ fu − f/u ≤ u fuu, (11)

which is satisfied, for instance, by the equation ut = ∆u − uα with α ≥ 1, and
by ut = ∆u− u log

β(1 + u) with β ≥ 1.
We may ask whether, for some special f , the two equalities hold in (11).

The answer is positive: indeed, the function f(u) := (m− logu)u+ q, m, q ∈ R,
satisfies −1 = fu − f/u = u fuu. Theorem 4.2 is therefore applicable to the
corresponding equations, and in particular to

ut = ∆u+ u log u.

Note that the cited result by Korevaar is not applicable to such equation, be-
cause in this case bv is negative.
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In case f = g(u)+ h(|∇u|) then (9)-(10) hold provided g(s) and h(s) satisfy

−L ≤ g′ − g/s ≤ s g′′,

0 ≤ h′ − h/s ≤ s h′′.

If, in particular, f = uα + |∇u|β then Theorem 4.2 is not directly applicable
for β < 2, since f does not meet the smoothness requirements. However, an
inspection of the proof shows that the conclusion still holds provided α, β ≥ 1.
Similarly, one sees that for f = uα |∇u|β the conclusion of Theorem 4.2 holds

when α+ β ≥ 1.
Let us remark that we admit the dependence on time and the degeneracy

of the matrix (aij), so that Theorem 4.2 is applicable to equations like ut =
(1 + sin t)∆u.
Once we know that the solution to (7) is log-concave in space, we deduce

that the level sets E(c, t) := { x ∈ Ω | u(x, t) ≥ c } are convex for all c and t. In
particular, the set where u(·, t) attains its maximum (the hot spot) is convex for
every given t. If u blows up at a finite time T , then the set where u(x, T ) = +∞
is convex.

5 Further remarks and open problems

Let us remark that there are some interesting equations to which our result does
not apply. This is due to different factors. For instance, the following equations
do not satisfy (9)-(10):

ut = ∆u+ u
α (with the + sign);

ut = ∆u+ e
u;

ut = ∆u+ u
α log u with α 6= 1 and positive;

ut = ∆u+ u
α − |∇u|β, α, β > 0;

ut = ∆u− u
α + |∇u|β, α, β > 0.

The equation ut = ∆u− eu, instead, satisfies (9)-(10) but the null constant is a
supersolution (not a subsolution), and the stationary solution with homogeneous
Dirichlet boundary conditions is negative.
We also want to point out that the transformation v := − log u is not the

only conceivable one to investigate convexity of the level sets of a positive u, but
it turns out to be particularly well-featured for that purpose. Among the other
transformations that are used, one of the most simple is given by v = −uα with
α ∈ (0, 1). This leads to the notion of power concavity (see [8], [6], [7]). Even
the general transformation v := g(u), with a decreasing and convex g, has been
investigated ([11], [4], [6]).
Therefore one may ask what happens if we consider problem (7) with an

initial datum which is, for instance, power concave. We have tried to derive an
equation for v := −uα with α ∈ (0, 1) and to apply the concavity maximum
principle (Theorem 4.1). Unfortunately, even for the special case ut = ∆u−f(u),
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it turns out that the equation for v, which takes the form vt = ∆v − b(v,∇v)
with

b(v,∇v) =
α− 1

αv
|∇v|2 − α (−v)1−1/α f((−v)1/α),

does not satisfy the assumptions of Theorem 4.1, since the first term in b is
convex with respect to v for v < 0. Similarly, the substitution v = uα with
α < 0 leads to

vt = ∆v −
α− 1

αv
|∇v|2 − α v1−1/α f(v1/α),

and again the assumptions of Theorem 4.1 are violated.

6 Appendix: an approximation lemma

The purpose of assumption (8) in Theorem 4.2 is that of ensuring spatial log-
concavity of the solution u near the parabolic boundary. If we only require that
∇u(x, t) 6= 0 for x ∈ ∂Ω and t > 0, i.e., if we admit ∇u(z0, 0) = 0 for some
z0 ∈ ∂Ω, then we cannot a priori exclude the existence of a sequence (xk, yk, tk)
such that xk, yk → z0 ∈ ∂Ω, tk → 0 and C(xk, yk, tk) > ε > 0 for all k.
Such kind of corner pathology is quite subtle and it is sometimes neglected.

For instance, Lemma 3.11 in [6] did not take into consideration an analogous
question for the elliptic case, and was later fixed in [4], Lemma 3.2. The paper
by Korevaar [11] also does not discuss this point in the parabolic case.
As remarked before (Section 4, Remark 3), a possibility to overcome this

difficulty consists of approximating the initial datum u0, which is supposed
to be log-concave but whose gradient may now vanish on the boundary, by a
sequence of log-concave u0k that satisfy ∇u0k 6= 0 on ∂Ω.
In this appendix we show that such an approximation is always possible.

Lemma 6.1 Let Ω be a convex (but not necessarily strictly convex) bounded
domain in RN . Let u0 ∈ C0(Ω) be a log-concave function in Ω that vanishes
on ∂Ω. In order to simplify the presentation, we assume that ∂Ω is of class C1

and that u0 ∈ C1(Ω).
Then there exists a sequence of log-concave u0k such that

(a) supΩ |u0k(x) − u0(x)| → 0 as k → +∞;

(b) u0k(x) ≡ ak dist(x, ∂Ω) for some ak > 0 and all x sufficiently close to ∂Ω;

(c) in particular, ∇u0k 6= 0 on ∂Ω for each k.

Proof. The structure of the proof is the following. We consider the function
v(x) := − logu0(x), which is convex and unbounded from above by assumption.
For each integer k > minΩ v, we modify v near ∂Ω and we obtain a suitable
vk. Finally, we show that u0k := e

−vk(x) verifies (a)-(b). Of course, (c) is a
consequence of (b).
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Define Ωk := { x ∈ Ω | v(x) > k }. For k large, Ωk is nonempty and has a
smooth boundary ∂Ωk whose distance from ∂Ω is positive. For each y ∈ ∂Ωk
we consider the tangent plane to the graph of v at y. Such tangent plane is the
graph of a function that we denote by πy(x). Define ṽk on Ω by setting

ṽk(x) =



v(x), if x ∈ Ωk;

sup
y∈∂Ωk

πy(x), if x ∈ Ω \ Ωk.

Then ṽk is a convex function attaining a finite value on ∂Ω. Now choose bk ∈ R
so large that ṽk(x) = v(x) ≥ − log dist(x, ∂Ω))− bk in Ωk. For instance, we may
take bk := −minΩ v − log dist(Ωk, ∂Ω). Define

vk(x) := max
(
ṽk(x),− log dist(x, ∂Ω)− bk

)
,

which is convex because the function dist(x, ∂Ω) is concave, hence log-concave,
and the maximum of two convex functions is still convex.
Since ṽk is bounded on all of Ω, we have vk(x) = − log dist(x, ∂Ω)− bk near

∂Ω and therefore the function uk(x) := e
−vk(x) coincides with ak dist(x, ∂Ω) for

dist(x, ∂Ω) small and ak := e
bk .

It remains to check (a). By definition, u0k coincides with u0 in Ωk. Outside
Ωk we have vk(x) ≥ ṽk(x) ≥ k, hence uk(x) ≤ e−k. This implies supΩ |u0k(x)−
u0(x)| ≤ e−k + supΩ\Ωk |u0(x)|. Since Ωk invades Ω as k → +∞, and since u0
is supposed to vanish on ∂Ω, claim (a) follows and the proof is complete. ♦

References

[1] O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and
state constraints, J. Math. Pures Appl. 76 (1997), 265–288.

[2] H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowsky and
Prékopa-Leindler theorems, including inequalities for log concave functions,
and with an application to the diffusion equation, J. Funct. Anal. 22 (1976),
366–389.

[3] L. A. Caffarelli, A. Friedman, Convexity of solutions of semilinear
elliptic equations, Duke Math. J. 52 (1985), 431–456.

[4] A. Greco, G. Porru, Convexity of solutions to some elliptic partial dif-
ferential equations, SIAM J. Math. Anal. 24 (1993), 833–839.

[5] B. Kawohl, Convexity in the parabolic dead core problem, unpublished
manuscript.

[6] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture
Notes in Math. 1150, Springer-Verlag 1985.



12 Log-concavity in some parabolic problems EJDE–1999/19

[7] B. Kawohl,When are solutions to nonlinear elliptic boundary value prob-
lems convex? Comm. Partial Differential Equations 10 (1985), 1213–1225.

[8] A. U. Kennington, Power concavity and boundary value problems, Indi-
ana Univ. Math. J. 34 (1985), 687–704.

[9] A. U. Kennington, Convexity of level curves for an initial value problem,
J. Math. Anal. Appl. 133 (1988), 324–330.

[10] N. J. Korevaar, Capillary surface convexity above convex domains, Indi-
ana Univ. Math. J. 32 (1983), 73–82.

[11] N. J. Korevaar, Convex solutions to nonlinear elliptic and parabolic
boundary value problems, Indiana Univ. Math. J. 32 (1983), 603–614.

[12] G. Porru, S. Serra, Maximum principles for parabolic equations, J. Aus-
tral. Math. Soc. Ser. A 56 (1994), 41–52.

[13] M. H. Protter, H. F. Weinberger, Maximum principles in differential
equations, Prentice Hall, Englewood Cliffs, N.J., 1967.

[14] M. Renardy, R. C. Rogers, An introduction to partial differential equa-
tions, Springer-Verlag 1993.

Antonio Greco
Dipartimento di Matematica, Università di Cagliari
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