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Antimaximum principle for elliptic problems with

weight ∗

T. Godoy, J.-P. Gossez, & S. Paczka

Abstract

This paper is concerned with the antimaximum principle for the linear
problem with weight −∆u = λm(x)u+h(x), under Dirichlet or Neumann
boundary conditions. We investigate the following three questions: Where
exactly can this principle hold? If it holds, does it hold uniformly or
not? If it holds uniformly, what is the exact interval of uniformity? We
will in particular obtain a variational characterization of this interval of
uniformity.

1 Introduction

This paper is concerned with the antimaximum principle (in brief AMP) for the
problem

−∆u = λm(x)u + h(x) in Ω, Bu = 0 on ∂Ω . (1.1)

Here Ω is a smooth bounded domain in RN and Bu = 0 represents either the
Dirichlet or the Neumann homogeneous boundary conditions.
Let us first consider the case where there is no weight, i.e. m(x) ≡ 1 in

Ω. It is then a standard consequence of the maximum principle that if λ <
λ1 (where λ1 denotes the principal eigenvalue of −∆ under the corresponding
boundary conditions) and if h is a nonnegative function that is not identically
zero, then the solution u of (1.1) is strictly positive in Ω. Clément and Peletier
[5] investigated the situation where λ > λ1 and proved the following AMP: given
a nonnegative function h, not identically zero, there exists δ = δ(h) > 0 such
that if λ1 < λ < λ1 + δ, then any solution u of (1.1) is strictly negative in Ω.
To describe this situation, we will say that the AMP holds at the right of the
eigenvalue λ1. It is also shown in [5] that δ can be taken independent of h for
the Neumann problem in dimension N = 1. We will say in this latter case that
the AMP holds uniformly and denote by δ1 the largest δ admissible.
Recent works dealing with this AMP (without weight) include [3] (irregular

domains), [13] (exact Lp space where h should be taken), [14] (extension to op-
erators of higher order), [7] (connection with the Fučik spectrum), [8] (extension
to the p-Laplacian), [2] (variational characterization of δ1).
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When a weightm(x) is introduced in (1.1), the situation gets more involved.
Indeed, generally, two principal eigenvalues (i.e. eigenvalues associated to non-
negative eigenfunctions) are present. Moreover, as we will see in Remark 5.4
below, the connection between AMP and Fučik spectrum does not hold anymore
(even when the weight does not change sign). The only work we know which
deals with the AMP in the presence of weight is that of Hess [10]. It is proved
there, in the Dirichlet case, with a weight m in C(Ω) which changes sign in Ω,
that the AMP holds at the right of the positive principal eigenvalue and at the
left of the negative principal eigenvalue.
Our purpose in this paper is to answer rather completely for (1.1) the follow-

ing three questions: (i) Where exactly can the AMP hold? (ii) If it holds, does
it hold uniformly or not? (iii) If it holds uniformly, what is the exact interval
of uniformity (i.e. the value of δ1 above)?
To give an idea of our results, let us consider the Neumann problem, with

a weight m in L∞(Ω) which changes sign in Ω. Suppose first
∫
Ωm 6= 0, say∫

Ω
m < 0. It is then known that there are two principal eigenvalues: 0 and a

positive one which we denote by λ∗ (cf. [4], [12] as well as Section 2 below).
We show that the AMP holds at the right of λ∗ and at the left of 0. Moreover
it is nonuniform when N ≥ 2 and uniform when N = 1. In the latter case the
intervals of uniformity are exactly λ∗ < λ ≤ λ̄(m) and −λ̄(−m) ≤ λ < 0, where

λ̄(m) := inf

{ ∫
Ω
(u′)2 , u ∈ H1(Ω) ,

∫
Ω
mu2 = 1 ,

and u vanishes somewhere in Ω

}
. (1.2)

We also show in this latter case that the AMP still holds at the right of λ̄(m)
and at the left of −λ̄(−m), of course now non uniformly. Suppose now

∫
Ω
m = 0.

In this singular case, 0 is the unique principal eigenvalue. We show that the
AMP holds at the right and at the left of 0. Moreover it is nonuniform when
N ≥ 2 and uniform when N = 1. In the latter case the intervals of uniformity
are exactly 0 < λ ≤ λ̄(m) and −λ̄(−m) ≤ λ < 0, with λ̄(m) as in (1.2). In this
latter case also the AMP still holds (non uniformly) at the right of λ̄(m) and at
the left of −λ̄(−m).
We will also see, as a final answer to question (i) above, that the AMP can

not hold far away to the right of λ̄(m) or to the left of −λ̄(−m) (cf. Theorem
3.6). This is true for all N , with a suitable extension of definition (1.2) to higher
dimension (cf. formula (3.1)).
Our methods of proof are rather different from those in the linear papers

[5], [10] (which however deal with more general non-selfadjoint operators). Our
present approach is more in the line of the nonlinear works [8], [2]. We observe
in particular that an expression analogous to (1.2) was introduced in [2] in the
context of the p-Laplacian. However in [2] (and also in [7]), the answers to
questions (ii), (iii) above were derived from information on the Fučik spectrum.
As already mentioned, the connection between AMP and Fučik spectrum does
not hold anymore in the presence of weight, and a different approach has to be
introduced. In this respect the comparison between λ∗ and λ̄ in Lemma 3.1 as
well as the argument of completing a square in the proof of Theorem 3.6 are the
crucial steps which lead to sharp answers to questions (i), (ii), (iii) above.
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Our results relative to the Neumann problem, as briefly described above,
are stated in detail in Section 3 and proved in Section 4 (for a general operator
in divergence form). The somewhat simpler case of the Dirichlet problem is
briefly considered in Section 5. The main differences in that case concern the
spectrum itself (since there is no singular case of the type

∫
Ωm = 0) and the

fact that the AMP is nonuniform for all dimensions. In Section 2 we collect
some preliminary results on the principal eigenvalues of a selfadjoint Neumann
problem with weight.

2 Principal eigenvalues in the Neumann case

A large part of this paper is concerned with the Neumann problem

Lu = λm(x)u + h(x) in Ω, ∂u/∂νL = 0 on ∂Ω. (2.1)

Here Ω is a C1,1 bounded domain in RN , L is an uniformly elliptic symmetric
expression of the form

Lu := −
N∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)

with real-valued coefficients aij ∈ C0,1(Ω), and ∂/∂νL represents the conormal
derivation on ∂Ω associated to L. The real-valued functions m and h belong
respectively to L∞(Ω) and Lp(Ω), where p = 1 if N = 1 and p > N if N ≥ 2.
Unless otherwise stated, we will always assume in addition to the above that m
changes sign in Ω, i.e.

meas {x ∈ Ω;m(x) > 0} > 0 and meas {x ∈ Ω; m(x) < 0} > 0 . (2.2)

Also, without loss of generality, changing λ in (2.1) if necessary, we can assume

|m(x)| < 1 a.e. in Ω. (2.3)

Solutions of (2.1) are understood in the weak sense: u ∈ H1(Ω) with

a(u, v) = λ

∫
Ω

muv +

∫
Ω

hv ∀v ∈ H1(Ω), (2.4)

where a(u, v) denotes the Dirichlet form associated to L:

a(u, v) :=

N∑
i,j=1

∫
Ω

aij
∂u

∂xj

∂v

∂xi
.

By the Lp regularity theory, such a solution u belongs to W 2,p(Ω) ⊂ C1(Ω).
Our purpose in this preliminary section is to collect some results relative to

the principal eigenvalues of the associated problem

Lu = λm(x)u in Ω, ∂u/∂νL = 0 on ∂Ω. (2.5)
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Most of those results can be found in [4], [12], although not in the same form
nor with the same degree of generality. For the sake of completeness and for
later reference, some proofs will be sketched.
The fundamental tool is the following form of the strong maximum principle.

Proposition 2.1 Let u be a solution of the problem

Lu+ a0(x)u = h in Ω, ∂u/∂νL = 0 on ∂Ω, (2.6)

with a0 ∈ L∞(Ω), a0 ≥ 0, h as above and h 	 0. Then u satisfies

u > 0 in Ω. (2.7)

Proof. As already observed, u ∈ C1(Ω) so that (2.7) makes sense. Taking
−u− as testing function in (2.6), one deduces u ≥ 0 in Ω. Theorem 8.19 in [9]
then implies u > 0 in Ω. The conclusion (2.7) can then be derived by using the
Hopf boundary lemma as given e.g. in Proposition 1.16 from [6]. One should
observe here that this last step involves the verification of the fact that the
weak solution u satisfies the pointwise equality ∂u/∂νL = 0 on ∂Ω. This can be
achieved through a standard argument based on integration by parts. Q.E.D.
We are thus interested in the principal eigenvalues of (2.5). Clearly 0 is

a principal eigenvalue, with the nonzero constants as eigenfunctions. We also
observe that if λ ∈ R is a principal eigenvalue with eigenfunction u 	 0, then
u > 0 in Ω. (This follows from Proposition 2.1, by writing equation (2.5) as
Lu± λu = λ(m± 1)u and using (2.3)).
The following expression will play a central role in our approach:

λ∗(m) := inf

{
a(u, u); u ∈ H1(Ω) and

∫
Ω

mu2 = 1

}
. (2.8)

Proposition 2.2 (i) Suppose
∫
Ωm < 0. Then λ∗(m) > 0 and λ∗(m) is the

unique nonzero principal eigenvalue; moreover the interval ]0, λ∗(m)[ does not
contain any eigenvalue. (ii) Suppose

∫
Ω
m ≥ 0. Then λ∗(m) = 0; moreover, if∫

Ωm = 0, then 0 is the unique principal eigenvalue.

Proposition 2.2 of course also applies to the weight −m. In particular, if∫
Ωm > 0, then −λ∗(−m) is the unique non zero principal eigenvalue of (2.5).

Proof of Proposition 2.2 In case (i), using Lemma 2.3 below, one sees that
the infimum (2.8) is achieved, so that λ∗(m) > 0. Replacing u by |u| if necessary,
one observes that this infimum is achieved at a function u 	 0. By Lagrange
multipliers, u solves an equation of the form (2.5) for some λ ∈ R. Taking
u as testing function in this equation, one concludes that λ = λ∗(m), which
shows that λ∗(m) is a principal eigenvalue. In case (ii), if

∫
Ω
m > 0, then the

infimum (2.8) is achieved at a suitable nonzero constant, so that λ∗(m) = 0.
The case

∫
Ωm = 0 requires a little more care. (Note that in this case, the

infimum (2.8) is not achieved). We pick ψ ∈ H1(Ω) with
∫
Ω
mψ > 0 and put
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u = uε := (1 + εψ)/[
∫
Ω
m(1 + εψ)2]1/2 in (2.8), where ε > 0 is chosen sufficiently

small so that the denominator in the definition of uε does not vanish. An easy
calculation shows that a(uε, uε)→ 0 as ε→ 0, which yields λ∗(m) = 0.
The fact that if

∫
Ωm < 0, then ]0, λ∗(m)[ does not contain any eigenvalue

easily follows from the definition (2.8) of λ∗(m). Finally the two statements
relative to the uniqueness of the principal eigenvalues follow from the more
general Proposition 2.4 below. Q.E.D.

Lemma 2.3 Assume
∫
Ω
m < 0. Then there exists a constant c > 0 such that

a(u, u) ≥ c
∫
Ω u
2 for all u ∈ H1(Ω) with

∫
Ωmu

2 = 1

Proof. Assume by contradiction that for each k = 1, 2, . . . , there exists uk ∈
H1(Ω) with

∫
Ωmu

2
k = 1 and a(uk, uk) ≤ (1/k)

∫
Ω u
2
k. One distinguishes two

cases: either ||uk||L2 remains bounded (for a subsequence), or ||uk||L2 → +∞
(for a subsequence). In this latter case one considers the normalization vk =
uk/||uk||L2 . It is then easily verified that each of the two cases leads to a
contradiction with

∫
Ω
m < 0. Q. E. D.

In the following, we will generally only deal with the case
∫
Ω
m ≤ 0. The

case
∫
Ωm > 0 can be reduced to this one by considering the weight −m. The

two propositions below concern problem (2.1), with λ 6∈ [0, λ∗(m)] in the first
one, and λ ∈ [0, λ∗(m)] in the second one.

Proposition 2.4 Suppose
∫
Ω
m ≤ 0. If λ 6∈ [0, λ∗(m)], then problem (2.1) with

h ≥ 0 has no solution u 	 0.

Proof. Assume that there exists a solution u 	 0 of (2.1) for some λ ∈ R
and some h ≥ 0. Applying Proposition 2.1, we get u > 0 in Ω, and so u can
be written as u = e−v with say v ∈ C1(Ω). We pick w ∈ H1(Ω) ∩ L∞(Ω) and
take evw2 as testing function in (2.1). A simple calculation using the idea of
“completing a square” yields

λ

∫
Ω

mw2 = a(w,w)−

∫
Ω

hevw2 −

∫
Ω

< A(∇w +w∇v), (∇w +w∇v) >, (2.9)

where A denotes the matrix (aij(x)) of the coefficients of L and <,> the scalar
product in RN . Consequently

λ

∫
Ω

mw2 ≤ a(w,w) (2.10)

for all w ∈ H1(Ω) ∩ L∞(Ω). Since one can clearly restrict oneself to this class
of functions in the definition (2.8) of λ∗(m), one deduces from (2.10) that
λ ≤ λ∗(m), and also that −λ ≤ λ∗(−m). Since λ∗(−m) = 0 by that part
of Proposition 2.2 which is already proved, we can conclude λ ∈ [0, λ∗(m)]. Q.
E. D.

Remark 2.5 The calculation in the above proof will be used again in Section
4. It is inspired from [11].
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Proposition 2.6 Suppose
∫
Ω
m ≤ 0. Then the problem (2.1) with h 	 0 does

not admit any solution if λ = 0 or λ∗(m). It admits a unique solution, which is
> 0 in Ω, if 0 < λ < λ∗(m).

Proof. The nonexistence results follow easily by taking for testing function in
(2.1) the corresponding eigenfunctions. Suppose now 0 < λ < λ∗(m), and let u
be the unique solution of (2.1). Clearly u 6≡ 0. We claim that u ≥ 0. Indeed, if
this is not so, then u− 6≡ 0, and by taking −u− as testing function in (2.1), one
gets

a(u−, u−) = λ

∫
Ω

m(u−)2 −

∫
Ω

hu−. (2.11)

If a(u−, u−) = 0, then u is a constant < 0, which is easily seen to be impossible.
If a(u−, u−) > 0, then (2.11) implies

∫
Ω
m(u−)2 > 0 and consequently, by the

definition of λ∗(m), a(u−, u−) ≥ λ∗(m)
∫
Ωm(u

−)2; combining with (2.11) then
yields again a contradiction. So u 	 0, and by Proposition 2.1, we conclude
u > 0 in Ω. Q. E. D.
Finally, for later reference, we mention the following result whose proof can

be carried out exactly as that of Theorem 1.13 in [6].

Proposition 2.7 Suppose
∫
Ω
m ≤ 0. The principal eigenvalues 0 and λ∗(m)

are simple.

Remark 2.8 The above results can easily be adapted to the simpler case where
m does not change sign in Ω, say m 	 0. In this case λ∗(m) = 0 and 0 is the
unique principal eigenvalue. Problem (2.1) with h 	 0 has no solution u ≥ 0 if
λ > 0, and no solution at all if λ = 0; its (unique) solution is > 0 in Ω if λ < 0.

3 Antimaximum principle in the Neumann case

We consider in this section problem (2.1) with the same assumptions on Ω, L,m
and h as in Section 2. The following expression will play an important role in
our study of the AMP:

λ̄(m) := inf

{
a(u, u) : u ∈ H1(Ω) ,

∫
Ωmu

2 = 1
and u vanishes on some ball in Ω

}
. (3.1)

It is easily seen that when N = 1, this definition coincides with that given in
(1.2). (This follows from the fact that if u ∈ H1(]a, b[) and vanishes at x0 with,
say, x0 < b, then uε defined for ε > 0 by uε(x) = u(x) if x < x0, uε(x) = 0 if
x0 ≤ x ≤ x0 + ε, uε(x) = u(x− ε) if x > x0 + ε, converges to u in H

1(]a, b[) as
ε → 0). Clearly λ∗(m) ≤ λ̄(m). The following lemma makes more precise the
relation between these two members.

Lemma 3.1 If N ≥ 2, then λ∗(m) = λ̄(m). If N = 1, then λ∗(m) < λ̄(m).
Moreover, in the latter case, there is no eigenvalue in ]λ∗(m), λ̄(m)].
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As in Section 2, we can limit ourselves without loss of generality in the study
of (2.1) to the case ∫

Ω

m ≤ 0 . (3.2)

We recall that if
∫
Ωm < 0 and 0 < λ < λ∗(m), then the solution u of (2.1) with

h 	 0 is > 0 in Ω. If
∫
Ωm = 0, then no result of the type “h 	 0 implies u ≥ 0”

holds. With respect to the AMP, we have the following three results. Theorem
3.2 concerns the AMP in general, and its nonuniformity when N ≥ 2. Theorem
3.4 characterizes the interval of uniformity when N = 1. Theorem 3.5 shows
that some form of the AMP still holds outside this interval of uniformity.

Theorem 3.2 Assume (3.2). (i) Given h 	 0, there exists δ = δ(h) > 0 such
that if λ∗(m) < λ < λ∗(m) + δ or −δ < λ < 0, then any solution u of (2.1)
satisfies u < 0 in Ω. (ii) If N ≥ 2, then no such δ independent of h exists
(either at the right of λ∗(m) or at the left of 0).

Remark 3.3 In the case where there is no weight and L = −∆, the fact that
the AMP is nonuniform for N ≥ 2 (and for all N under the Dirichlet boundary
conditions) was already observed in [5] by using Green function. A similar
observation was also derived in [2] (see also [7]) in the case of the p-Laplacian
(without weight) by using the Fučik spectrum. It is not clear whether the
approach based on Green function can be adapted to the context of Theorem
3.2. On the other hand the approach based on the Fučik spectrum can not be
adapted, as we will see in Remark 5.4.

Theorem 3.4 Assume (3.2) and N = 1. (i) If λ∗(m) < λ ≤ λ̄(m) or −λ̄(−m) ≤
λ < 0, then any solution u of (2.1) with h 	 0 satisfies u < 0 in Ω. (ii) λ̄(m)
and −λ̄(−m) are respectively the largest and the smallest numbers such that the
preceding implications hold.

Theorem 3.5 Assume (3.2) and N = 1. (i) Given h 	 0, there exists δ =
δ(h) > 0 such that if λ̄(m) < λ < λ̄(m) + δ or −λ̄(−m) − δ < λ < −λ̄(−m),
then any solution u of (2.1) satisfies u < 0 in Ω. (ii) No such δ independent of
h exists (either at the right of λ̄(m) or at the left of −λ̄(−m)).

Our final result makes precise the statement in the introduction that the
AMP cannot hold far away to the right of λ̄(m) or to the left of −λ̄(−m).

Theorem 3.6 Assume (3.2). (i) Given ε > 0, there exists h 	 0 such that for
any λ ≥ λ̄(m) + ε, (2.1) has no solution u satisfying u < 0 in Ω. (ii) Given
ε > 0, there exists h 	 0 such that for any λ ≤ −λ̄(−m) − ε, (2.1) has no
solution u satisfying u < 0 in Ω.

Remark 3.7 Assume (3.2). The following four numbers

−λ̄(−m) ≤ −λ∗(−m) = 0 ≤ λ∗(m) ≤ λ̄(m)

thus control the domains of validity of the maximum principle and of the anti-
maximum principle.
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4 Proofs

Proof of Lemma 3.1 We start with the case N ≥ 2 and introduce the
following functions: for N ≥ 3

vk(x) :=



1 if |x| ≥ 1/k,

2k|x| − 1 if 1/2k < |x| < 1/k,

0 if |x| ≤ 1/2k,

while for N = 2,

vk(x) :=



1− 2/k if |x| ≥ 1/k,

|x|δk − 1/k if (1/k)1/δk < |x| < 1/k,

0 if |x| < (1/k)1/δk ,

where δk ∈]0, 1[ is chosen so that (1/k)δk = 1−1/k. A simple calculation shows
that vk converges to the constant function 1 in H

1
loc(R

N ) as k → ∞. Fix now

x0 ∈ Ω. Then, for any given u ∈ H1(Ω) ∩ L∞(Ω), the function u(x)vk(x − x0)
vanishes on some ball in Ω and converges to u in H1(Ω) as k →∞. This easily
yields the conclusion λ∗(m) = λ̄(m).
We now turn to the proof that for N = 1,

λ∗(m) < λ̄(m). (4.1)

As observed at the beginning of Section 3, when N = 1,

λ̄(m) = inf

{
a(u, u) : u ∈ H1(Ω) ,

∫
Ωmu

2 = 1 ,
and u vanishes somewhere in Ω

}
. (4.2)

Since H1(Ω) is compactly imbedded in C(Ω), the infimum in (4.2) is achieved.
Replacing u by |u| if necessary, we can assume that it is achieved at u ≥ 0.

Claim 4.1 u vanishes at exactly one point x0 in Ω = [a, b]. Moreover u ∈
C1[a, x0] ∩ C1[x0, b] and

u′(x0−) < 0 < u′(x+0 ) (4.3)

(where (4.3) is modified into 0 < u′(x+0 ) if x0 = a, and similarly if x0 = b).

Proof. Part of the argument here is adapted from [2]. We first show that if u
vanishes at some x0 ∈ Ω, then

a(u, v) = λ̄(m)

∫
Ω

muv (4.4)

for all v ∈ Vx0 = {v ∈ H
1(Ω); v(x0) = 0}. Indeed one has

λ̄(m) = inf
{
a(v, v); v ∈ Vx0 and

∫
Ω

mv2 = 1
}
,
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where the latter infimum is also achieved at u. Applying the standard theorem
on Lagrange multipliers in the Hilbert space Vx0 , u solves an equation like (4.4)
with some multiplier λ instead of λ̄(m). But taking v = u, one gets λ = λ̄(m),
which yields (4.4). Assume now by contradiction that u vanishes at at least two
points x1 and x2 ∈ Ω. So u satisfies (4.4) for all v ∈ Vx1 and also for all v ∈ Vx2 .
Since any v ∈ H1(Ω) can be written as v1 + v2 with v1 ∈ Vx1 and v2 ∈ Vx2 , we
conclude that u satisfies (4.4) for all v ∈ H1(Ω), i.e. that u is a solution of

Lu = λ̄(m)mu in Ω, ∂u/∂νL = 0 on ∂Ω.

Proposition 2.1 then implies u > 0 in Ω, contradiction. So u vanishes at exactly
one point x0.
Finally, assuming for instance a < x0 < b, equation (4.4) implies that u

solves the mixed problem

Lu = λ̄(m)mu in ]a, x0[, u
′(a) = u(x0) = 0 .

This implies u ∈ C1[a, x0]. Moreover u′(x0) < 0 because otherwise u solves the
corresponding Neumann problem on ]a, x0[ and consequently, by Proposition
2.1, u > 0 on [a, x0], a contradiction. A similar argument on [x0, b] completes
the proof of the claim.
The idea of the proof of (4.1) is now the following. Define, for ε ≥ 0, uε(x) =

max(u(x), ε). Clearly uε → u in H1(Ω) as ε→ 0, and so
∫
Ω
mu2ε > 0 for ε suf-

ficiently small. Putting J(ε) = a(uε, uε)/
∫
Ω
mu2ε and J(0) = a(u, u)/

∫
Ω
mu2,

we will show below that

lim sup
ε→0,ε>0

J(ε)− J(0)

ε
< 0 . (4.5)

This implies in particular J(ε) < J(0) for ε > 0 sufficiently small. Consequently

λ∗(m) ≤ J(ε) < J(0) = λ̄(m),

which yields (4.1).
We will prove (4.5) in the case x0 = a. The argument can be easily adapted

if x0 > a. So u ∈ C1[a, b], u > 0 in ]a, b], u(a) = 0, u′(a+) > 0; moreover L is
of the form Lu = −(p(x)u′)′, with p(x) ≥ p0 > 0 on [a, b]. Writing u′(a+) = α,
we first fix c > a such that u′(x) ≥ α/2 and α/2 (x − a) ≤ u(x) ≤ 2α (x − a)
on [a, c]. In the following, ε > 0 will be taken sufficiently small so that u(x) ≥ ε
sur [c, b]. We have

a(uε, uε) = a(u, u)−

∫
u<ε

p(u′)2

≤ a(u, u)− (ε/2α)p0(α/2)
2,∫

Ω

mu2ε =

∫
Ω

mu2 +

∫
u<ε

(mu2ε −mu
2)

=

∫
Ω

mu2 +O(ε3),
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and consequently

J(ε)− J(0)

ε
≤ −p0(α/8)

(∫
Ω

mu2ε

)−1
+O(ε2),

which yields (4.5).
To conclude the proof of Lemma 3.1, it remains to see that when N = 1,

there is no eigenvalue in ]λ∗(m), λ̄(m)]. Let λ > λ∗(m) be an eigenvalue, with
associated eigenfunction u. By Proposition 2.2, u changes sign and consequently
vanishes somewhere in Ω. Taking u as testing function in Lu = λmu, one gets

a(u, u) = λ

∫
Ω

mu2, (4.6)

which implies λ ≥ λ̄(m). Suppose now by contradiction that λ = λ̄(m). Since,
by (4.6),

∫
Ωmu

2 > 0, we have
∫
Ωm(u

+)2 > 0 or
∫
Ωm(u

−)2 > 0. Consider the
first case (the argument is similar in the second case). Taking u+ as testing
function in Lu = λ̄(m)mu, one gets

a(u+, u+) = λ̄(m)

∫
Ω

m(u+)2,

which shows that u+ is a nonnegative minimizer in (4.2). The claim above
then implies that u+ vanishes at exactly one point, which is impossible since u
changes sign. Q. E. D.

Remark 4.2 Functions like vk in the proof above were used in [7] in the study
of the asymptotic behavior of the first curve in the Fučik spectrum. Note that no
approximation such as that considered at the beginning of the proof of Lemma
3.1 for N ≥ 2 is possible when N = 1 since, in that case, H1 convergence implies
uniform convergence.

Remark 4.3 Lemma 3.1 still holds, with the same proof, if m does not change
sign, with m 	 0.

Proof of Theorem 3.2. We first prove part (i) at the right of λ∗(m) (the
argument at the left of 0 is similar). Assume by contradiction the existence for
some h 	 0 of sequences λk > λ∗(m) and uk such that λk → λ∗(m),

Luk = λkmuk + h in Ω, ∂uk/∂νL = 0 on ∂Ω (4.7)

and
uk ≥ 0 somewhere in Ω. (4.8)

We distinguish two cases: either ||uk||L2 remains bounded, or, for a subsequence,
||uk||L2 → +∞. In the first case, one derives from (4.7) that uk remains bounded
in W 2,p(Ω). Going to the limit in (4.7), one gets a solution u of

Lu = λ∗(m)mu+ h in Ω, ∂u/∂νL = 0 on ∂Ω,
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which is impossible by Proposition 2.6. In the second case, one considers vk =
uk/||uk||L2 , and arguing in a similar way from

Lvk = λkmvk + h/||uk||L2 in Ω, ∂vk/∂νL = 0 on ∂Ω,

one gets that, for a subsequence, vk → v in C1(Ω) where ||v||L2 = 1 and

Lv = λ∗(m)mv in Ω, ∂v/∂νL = 0 on ∂Ω.

Consequently v is an eigenfunction associated to λ∗(m) and so either v > 0 in
Ω or v < 0 in Ω. In the first case, we deduce vk > 0 in Ω for k sufficiently
large, which leads to a contradiction with Proposition 2.4. In the second case
we deduce vk < 0 in Ω for k sufficiently large, which leads to a contradiction
with (4.8). (This argument to derive the AMP is adapted from [8]).
Part (ii) of Theorem 3.2 is a consequence of Theorem 3.6 since (3.2) and

N ≥ 2 imply λ̄(m) = λ∗(m) and λ̄(−m) = λ∗(−m) = 0. Q. E. D.

Proof of Theorem 3.4. We start with part (i) in the case λ∗(m) < λ ≤ λ̄(m)
(the case −λ̄(−m) ≤ λ < 0 can be treated similarly). Let u be a solution of
(2.1) for some h 	 0. By Proposition 2.4, u can not be ≥ 0, i.e. u− 6≡ 0. Taking
−u− as testing function in (2.1), we get

a(u−, u−) = λ

∫
Ω

m(u−)2 −

∫
Ω

hu−. (4.9)

If a(u−, u−) = 0, then u =Cst< 0 and we are finished. If a(u−, u−) > 0, then
(4.9) implies

∫
Ωm(u

−)2 > 0 and so

a(u−, u−)/

∫
Ω

m(u−)2 ≤ λ. (4.10)

Suppose first λ < λ̄(m). Then (4.10) implies that u− is not admissible in the
definition (1.2) of λ̄(m). Consequently u− does not vanish in Ω, i.e. u < 0 in Ω.
Suppose now λ = λ̄(m). If u− does not vanish in Ω, we are finished as above.
If u− vanishes somewhere in Ω, then (4.10) (with λ = λ̄(m)) implies that u− is
a nonnegative minimizer in the definition of λ̄(m). By the claim in the proof
of Lemma 3.1, u− vanishes at exactly one point. But (4.9) (with λ = λ̄(m))
implies

∫
Ω
hu− = 0, so that u− vanishes on the set of positive measure where

h > 0, a contradiction.
Part (ii) of Theorem 3.4 is a consequence of Theorem 3.6. Q. E. D.

Proof of Theorem 3.5. We first prove part (i) at the right of λ̄(m) (the argu-
ment is similar at the left of −λ̄(−m)). Assume by contradiction the existence
for some h 	 0 of sequences λk > λ̄(m) and uk such that λk → λ̄(m),

Luk = λkmuk + h in Ω , ∂uk/∂νL = 0 on ∂Ω (4.11)

and
uk ≥ 0 somewhere in Ω. (4.12)
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As in the proof of Theorem 3.2, we distinguish two cases: either ||uk||L2 remains
bounded, or, for a subsequence, ||uk||L2 →∞. In the first case, one obtains that,
for a subsequence, uk converges in C

1(Ω) to a solution u of

Lu = λ̄(m)mu+ h in Ω , ∂u/∂νL = 0 on ∂Ω ;

moreover, by (4.12), u ≥ 0 somewhere in Ω. But this contradicts the fact that
the AMP holds for λ = λ̄(m) (cf. Theorem 3.4). In the second case, one
considers vk = uk/||uk||L2 and obtains that, for a subsequence, vk converges in
C1(Ω) to a nonzero solution v of

Lv = λ̄(m)mv in Ω, ∂v/∂νL = 0 on ∂Ω.

This again yields a contradiction since by Lemma 3.1, λ̄(m) is not an eigenvalue.
Part (ii) of Theorem 3.5 clearly follows from the sharpness of λ̄(m) and

−λ̄(−m) in Theorem 3.4. Q. E. D.

Proof of Theorem 3.6. We prove part (i) (part (ii) is proved similarly).
Assume by contradiction that there exists ε > 0 such that for any h 	 0 there
exists λ with λ ≥ λ̄(m) + ε such that (2.1) has a solution u < 0 in Ω. We start
with w ∈ H1(Ω) ∩ L∞(Ω) satisfying

∫
Ωmw

2 > 0 and vanishing on some ball

in Ω, as in the definition (3.1) of λ̄(m). Then we choose h 	 0 with supph∩
suppw = ∅, and finally we consider λ = λw and u = uw as provided by the above
contradictory hypothesis. So −u > 0 in Ω and consequently can be written as
−u = e−v with v ∈ C1(Ω). We then take evw2 as testing function in (2.1). A
simple calculation using the idea of “completing a square”, as in the proof of
Proposition 2.4, yields a relation analogous to (2.9):

λ

∫
Ω

mw2 = a(w,w) +

∫
Ω

hevw2 −

∫
Ω

〈A(∇w + w∇v), (∇w + w∇v)〉 .

Here the integral involving h vanishes since h and w have disjoint supports.
Consequently

λ̄(m) + ε ≤ λw ≤ a(w,w)
( ∫
Ω

mw2
)−1

for all w as above. Taking the infimum with respect to w yields λ̄(m)+ε ≤ λ̄(m),
a contradiction. Q. E. D.

Remark 4.4 It is clear from the above proof that the function h in Theorem
3.6 can be taken in C∞c (Ω), with support of arbitrary small diameter. Similarly
the statements (ii) in each of Theorems 3.2, 3.4 and 3.5 still hold if one restricts
h 	 0 to vary in C∞c (Ω) with support of arbitrarily small diameter.

Remark 4.5 The above arguments can easily be adapted to the case where
m does not change sign in Ω, say m 	 0, as in Remark 2.8. In this case the
AMP holds at the right of 0. It is nonuniform when N ≥ 2 and uniform when
N = 1. In this latter case the interval of uniformity is exactly 0 < λ ≤ λ̄(m),
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with λ̄(m) given by (1.2); moreover the AMP still holds at the right of λ̄(m), in
a nonuniform way. Finally, as in Theorem 3.6, the AMP cannot hold far away
to the right of λ̄(m).

Remark 4.6 The above results can also be adapted to the case where L is
replaced by

L0u := Lu+ a0(x)u,

where a0 ∈ L∞(Ω) satisfies a0 	 0. In this case 0 is not anymore an eigenvalue.
If m changes sign, the principal eigenvalues are λ∗(m) and −λ∗(−m), with
λ∗(m) defined by (2.8) where a(u, v) now stands for the Dirichlet form associated
to L0. λ̄(m) is defined similarly, and the domains of validity of the maximum
principle and the antimaximum principle are again controlled by the following
four numbers:

−λ̄(−m) ≤ −λ∗(−m) < 0 < λ∗(m) ≤ λ̄(m).

If m does not change sign, say m 	 0, then only the following two numbers play
a role:

0 < λ∗(m) ≤ λ̄(m).

5 Dirichlet boundary conditions

In this section we briefly consider the Dirichlet problem

L0u = λm(x)u + h(x) in Ω, u = 0 on ∂Ω , (5.1)

where L0u = Lu+ a0(x)u, with a0 ∈ L∞(Ω), a0 ≥ 0 in Ω. The assumptions on
Ω, L,m and h are the same as in Section 2.
The basic spectral theory for (5.1) is well described in [6]. There are two

principal eigenvalues: λ1(m) > 0 and −λ1(−m) < 0, where

λ1(m) := inf{a(u, u);u ∈ H
1
0 (Ω) and

∫
Ω

mu2 = 1},

with a(u, v) the Dirichlet form associated to L0. If −λ1(−m) < λ < λ1(m)
and h 	 0, then (5.1) has a (unique) solution u, which satisfies u > 0 in Ω and
∂u/∂ν < 0 on ∂Ω (where ∂/∂ν represents exterior normal derivation). With
respect to the AMP, we have the following two results.

Theorem 5.1 (i) Given h 	 0, there exists δ = δ(h) > 0 such that if λ1(m) <
λ < λ1(m) + δ or −λ1(−m) − δ < λ < −λ1(−m), then any solution u of (5.1)
satisfies u < 0 in Ω and ∂u/∂ν > 0 on ∂Ω. (ii) No such δ independent of h
exists (either at the right of λ1(m) or at the left of −λ1(−m)).

Theorem 5.2 (i) Given ε > 0 there exists h 	 0 such that for any λ ≥ λ1(m)+
ε, (5.1) has no solution u satisfying u < 0 in Ω. (ii) Similar statement at the
left of −λ1(−m).
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As indicated in the introduction, part (i) of Theorem 5.1 in the case of a
weight m in C(Ω) was proved in [10].

The proof of part (i) of Theorem 5.1 can be carried out by contradiction in a
way similar to the proof of Theorem 3.2. Part (ii) of Theorem 5.1 follows from
Theorem 5.2. Let us sketch the proof of the latter.

Proof of Theorem 5.2. We only consider part (i). Assume by contradiction
that there exists ε > 0 such that for any h 	 0 there exists λ with λ ≥ λ1(m)+ ε
such that (5.1) has a solution u satisfying u < 0 in Ω. We start with w ∈ C∞c (Ω)
satisfying

∫
Ωmw

2 > 0. Then we choose h 	 0 with supp h∩ supp w = ∅, and
finally we consider λ = λw and u = uw as provided by the above contradictory
hypothesis. So −u > 0 in Ω and consequently can be written as −u = e−v with
v ∈ C1(Ω). We take evw2 ∈ C1c (Ω) as testing function in (5.1). By a calculation
identical to that in the proof of Theorem 3.6, we get

λ1(m) + ε ≤ λw ≤ a(w,w)
( ∫
Ω

mw2
)−1

for all w as above. Since the infimum of the right-hand side with respect to w
is equal to λ1(m), we reach a contradiction. Q. E. D.

Remark 5.3 Similar results hold when the weight does not change sign in Ω.

Remark 5.4 We insist on the fact that the nonuniformity of the AMP in The-
orem 5.1 holds for any weight. This should be compared with the recent result
in [1] that if N = 1 and m has compact support in Ω, then the first curve in the
corresponding Fučik spectrum is not asymptotic to the horizontal and vertical
lines through (λ1(m), λ1(m)) (even if m does not change sign). It follows that
the qualitative and quantitative connections between “uniformity of the AMP”
and “existence of a gap at infinity in the Fučik spectrum between the first curve
and the horizontal and vertical lines through (λ1(m), λ1(m))”, which were ob-
served in [7] when m(x) ≡ 1, do not hold any more in general in the presence
of a weight.
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