Electronic Journal of Differential Equations,
Vol. 1999(1999), No. 30, pp. 1-21.
Title: Radial minimizers of a Ginzburg-Landau functional
Authors: Yutian Lei, (Jilin Univ., Changchun China)
Zhuoqun Wu (Jilin Univ., Changchun China)
Hongjun Yuan (Jilin Univ., Changchun China)
Abstract:
We consider the functional
$$
E_\varepsilon(u,G) =\frac 1p\int_G|\nabla u|^p
+\frac{1}{4\varepsilon^p}\int_G(1-|u|^2)^2
$$
with $p>2$ and $d>0$, on the class of functions
$W=\{u(x)=f(r)e^{id\theta} \in W^{1,p}(B,C);
f(1)=1,f(r)\geq 0\}$. The location of the zeroes of the
minimizer and its convergence as $\varepsilon$ approaches zero
are established.
Submitted June 8, 1999. Published September 9, 1999.
Math Subject Classifications: 35J70
Key Words: Ginzburg-Landau functional; radial functional; zeros of a minimizer.