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ON THE SMALLNESS OF THE (POSSIBLE) SINGULAR SET IN SPACE
FOR 3D NAVIER-STOKES EQUATIONS

Zoran Grujić

Abstract

We utilize L∞ estimates on the complexified solutions of 3D Navier-Stokes equa-
tions via a plurisubharmonic measure type maximum principle to give a short proof of

the fact that the Hausdorff dimension of the (possible) singular set in space is less or
equal 1 assuming chaotic, Cantor set-like structure of the blow-up profile.

1. Introduction

The problem of global regularity for 3D Navier-Stokes equation (NSE) is one of
the most challenging problems in the mathematical theory of fluid dynamics. Since
the fundamental work of Leray [L] in 1930’s, we know the existence of global weak
solutions; however, the existence of strong (regular) solutions is known only locally
in time. Some partial regularity results appeared already in the Leray’s work - later
on, various partial regularity results were obtained in [FT1], [Sch1], [Sch2], [CKN]
and [St]. The best result up to date is in [CKN] - it implies that for every T > 0,
one-dimensional Hausdorff measure of the singular set in Ω × (0, T ) is 0. If we are
looking at a snapshot, i.e. at the singular set in space for some fixed singular time Ts,
we do not have a better estimate. The best we can say is again that one-dimensional
Hausdorff measure of the singular set STs in Ω× {Ts} is 0. The proof of the [CKN]
result is based on a local theory - local blow-up estimates on families of shrinking
space-time cylinders. The main tools in the proof are localized energy inequality,
local interpolation and localized estimates on the pressure. A simplified proof using
essentially the same tools appeared recently in [Li].

In this paper, we present a completely different, short proof of the fact that
dH(STs) ≤ 1 (dH denotes the Hausdorff dimension of a set) assuming chaotic, Cantor
set-like structure. Instead of developing local theory, we utilize L∞ estimates on the
complexified solutions via a plurisubharmonic measure type maximum principle. In
fact, we prove a more general result, namely that u ∈ L∞(0, Ts;Lαw(Ω)), coupled
with the Cantor set-like geometry implies that dH(STs) ≤ 3 − α, for all 2 ≤ α <
3. We would like to point out that chaotic structure of the blow-up profile is a
physically interesting case in the sense that some theories explain 3D turbulence via
the existence of a chaotic singular set [L], [M].

The paper is organized as follows. In Chapter 2, we recall some analyticity prop-
erties of 3D NSE, as well as some basic estimates. Chapter 3 contains a plurisub-
harmonic measure-type maximum principle, and Chapter 4 the main result.
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2. Some known properties of solutions

We consider normalized (unit viscosity, period = 2π) NSE in Ω = [0, 2π]3 with
periodic boundary conditions and potential force.

∂u

∂t
−4u+ (u · ∇)u+∇π = 0 ,

∇ · u = 0 (2.1)

for (x, t) ∈ Ω× (0,∞), supplemented with the initial condition

u(x, 0) = u0(x), x ∈ Ω,

where the R3-valued function u is the velocity and the R-valued function π is the
pressure. Also, we require that∫

Ω

u(x, t) dx = 0, t ≥ 0, (2.2)

and ∇ · u0 = 0.

A self-contained presentation of various aspects of the mathematical theory of
the NSE can be found in [CF].

The basic energy estimate for the NSE is obtained (formally) multiplying the
equations by u in L2(Ω). Integrating by parts, utilizing ∇ · u = 0 and applying
Poincaré inequality one arrives at

‖u(t)‖2L2 ≤ ‖u0‖
2
L2e

−ct , (2.3)

for all t > 0, i.e. L2 norm decays exponentially in time. For a weak solution,
exponential decay is valid only for a large enough t; however,

‖u(t)‖L2 ≤ ‖u0‖L2 (2.3)′

is valid a.e. in t.

Let now M, t > 0 and denote by Ωt(M) a super-level set

{x ∈ Ω : |u(x, t)| ≥M}.

Then, (2.3)′ implies the following weak-L2 estimate on any weak solution of (2.1).

λ3(Ωt(M)) ≤
‖u0‖2L2
M2

, (2.4)

for all M > 0, a.e. in t, where λ3 denotes Lebesgue measure on R3.

The following theorem is an L∞ description of local in time analytic smoothing
of 3D NSE.H1- version was previously obtained in [FT2] via Gevrey-class technique.

Theorem 2.1 [GK]. Let T = 1/
(
c‖u0‖2L∞(1 + log+ ‖u0‖L∞)

2
)
. Then, the solution

u of (2.1), (2.2) on (0,T) satisfies the following property: for every t ∈ (0, T ), u is a
restriction of an analytic function u(x, y, t) + iv(x, y, t) in the region

Rt = {x+ iy ∈ C
3 : |y| ≤ c−1t1/2}.

Moreover, there exists an absolute constant K such that

‖u(·, y, t)‖L∞ + ‖v(·, y, t)‖L∞ ≤ K‖u0‖L∞ ,

for t ∈ (0, T ) and (x, y) ∈ Rt.
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3. A plurisubharmonic measure type maximum principle in Cn

The following Cn version of “2-constants” theorem for product domains follows
from a general theorem that is expressed in terms of plurisubharmonic measures [Ga]
and the fact that for product domains plurisubharmonic measure can be expressed
in terms of one-dimensional harmonic measures [GaKa].

Theorem 3.1. Let D1,D2, . . . ,Dn be open sets in C, and let E1, E2, . . . , En be
such that Ei ⊂ ∂Di, for i = 1, 2, . . . , n. Denote by ωEi harmonic measures of Ei
with respect to Di, and assume that f is a bounded analytic function on D =
D1 ×D2 × . . .×Dn satisfying the following property:

‖f‖L∞(Ei) ≤M2,

for i = 1, 2, . . . , n, and
‖f‖L∞({Ei) ≤M1,

for i = 1, 2, . . . , n (the inequalities are in the sense of lim sup through the interior of
Di). Then

|f(z)| ≤M
inf(ωE1 (z),ωE2(z),...,ωEn(z))
2 M

1−inf(ωE1 (z),ωE2(z),...,ωEn (z))
1 ,

for all z ∈ D.

4. Uniform Cantor sets and the main result

We start with a standard construction of a uniform one-dimensional Cantor set
(c.f. [F]).

Let m ≥ 2 be an integer and s > 1. Start with an interval [0, L], and then
construct a uniform Cantor set Cm,s inductively in the following way. In every step,
each basic interval I is replaced by m equally spaced subintervals of lengths 1

sm
I,

the ends of I coinciding with the ends of the extreme subintervals. The limit set is
Cm,s.

Using standard techniques, one can prove the following result.

Proposition 4.1. Let Cm,s be an one-dimensional uniform Cantor set with param-
eters m ∈ N, m ≥ 2 and s > 1. Then

dHCm,s =
logm

log s+ logm
.

Remark 4.2 For every fixed m, the range of Hausdorff dimension of Cm,s is (0, 1),
i.e. it covers all fractal dimensions.

We will construct our three-dimensional Cantor sets as products of uniform
one-dimensional Cantor sets.

The estimate in Theorem 3.1 implies that the worst case scenario is when all
component sets have the same harmonic measure, and so we will assume that all
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three one-dimensional Cantor sets in the product are of the same type. Hence, our
singular set in space Sm,s will have the form

Sm,s = Cm,s × Cm,s × Cm,s. (4.1)

Although Hausdorff dimension of a product is not always equal to the sum of
Hausdorff dimensions of the components, it is true if the Hausdorff and the upper
box dimensions of the component sets coincide. One can easily check that for one-
dimensional uniform Cantor sets, and thus Proposition 4.1 implies the following.

Proposition 4.3. Let Sm,s be the set defined in (4.1). Then

dHSm,s =
3 logm

log s+ logm
.

Remark 4.4 Two-parameter family of the sets Sm,s is a reasonable model for a
chaotic singular set - the Hausdorff dimension has the range (0, 3).

A weak-type estimate (e.g. (2.4)) imposes a decay rate on the super-level sets
Ωt(M). On the other hand, we assumed a chaotic structure of the singular set which
imposes a dispersion of the sets Ωt(M). The idea is to combine these two properties
via Theorem 3.1 - shortly, harmonic measure should eliminate a blow-up scenario in
which the singular set is too chaotic, i.e. if dHSm,s is too big.

Before we precisely formulate our assumption on the geometry of the blow-up
profile, we recall the following local in time existence and uniqueness result.

Theorem 4.5 [L]. Let ∇u0 ∈ L2(Ω). Then, there exists T ∗(‖∇u0‖L2) > 0 such
that (1.1), (1.2) has a unique regular solution on (0, T ∗).

Start with the initial data u0, ‖∇u0‖L2 < ∞, and let Ts ≥ T
∗ be the first

(possible) singular time. Assume that STs = Sm,s, and consider the following build-
up of the flow compatible with the standard construction of Sm,s.

Let 0 < ε < Ts, and let [Ts − ε, Ts) = ∪∞k=1Ik, where {Ik}
∞
k=1 is a disjoint

decomposition of [Ts − ε, Ts) in the intervals Ik = [ak, bk), (bk − ak)→ 0, k →∞.

Denote by Skm,s the kth generation in the standard construction of Sm,s, and
assume that for τ ∈ Ik,

Ωτ (M) ⊂ S
k
m,s, (A1)

and
1

c
(
1

s
)k ≤ λ1(Πi(Ωτ (M))), (A2)

i = 1, 2, 3, all M satisfying

1

K4
‖u(τ)‖L∞ ≤M ≤

1

K3
‖u(τ)‖L∞ .

Above, c ≥ 1 is a suitable absolute constant, K > 1 is the absolute constant from
Theorem 2.1, λ1 denotes 1D Lebesgue measure, and Πi the projection on the ith
coordinate.
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Remark 4.6 2π(1/s)k is the linear measure of the kth generation in the standard
construction of Sm,s.

We are now ready to state the main result.

Theorem 4.7. Let ∇u0 ∈ L2(Ω), and let Ts be the first (possible) singular time.
Assume that the blow-up profile is given by (A1)-(A2), and u ∈ L∞(0, Ts;Lαw(Ω)),
for some 2 ≤ α < 3. Then

dHSTs ≤ 3− α.

Remark 4.8 u ∈ L∞(0, Ts;L2w(Ω)) is not an assumption - it follows from (2.4).

Proof: We argue by contradiction. Assume that dHSTs = 3 − α + η, for some
0 < η < α. Then, a simple calculation utilizing Proposition 4.3 implies the following
relation between the parameters s,m,

s = (sm)
(α−η)/3

. (4.2)

Translating the estimate from Theorem 2.1 in time, we obtain that for any
t ∈ (0, Ts), the solution u is a restriction of an analytic function u = u+ iv with the
uniform radius of analyticity at time

τ(t) = t+
c

‖u(t)‖2L∞(log ‖u(t)‖L∞)
2

(4.3)

at least
ρ(τ(t)) =

c

‖u(t)‖L∞ (log ‖u(t)‖L∞)
. (4.4)

Also,
‖u(τ(t))‖L∞({z=x+iy∈C3: |y|≤ρ(τ(t))}) ≤ K‖u(t)‖L∞ . (4.5)

Let t ∈ [Ts − ε, Ts) be an “escaping time”, i.e. ‖u(t′)‖L∞ > ‖u(t)‖L∞ , for all
t < t′ < Ts, and define

M(t) =
1

K3
‖u(t)‖L∞ .

Consider now τ = τ(t), where τ(t) is given by (4.3). Then, τ ∈ Ik for some
k ∈ N, and one can easily check (using (4.5) and the fact that t is an escaping time)
that M(t) satisfies both inequalities required in our geometric assumption.

Hence, (A1) − (A2) coupled with u ∈ L∞(0, Ts;Lαw(Ω)) (we can choose an
escaping time t such that Lαw bound holds at τ) imply

(
1

s
)k ≤ c

1

M(t)α/3
. (4.6)

Inserting (4.2), we arrive at

(
1

c
M(t))

α
α−η ≤ (sm)k. (4.7)
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Since α
α−η > 1, for every c

∗ > 0, there exists M∗(c∗;α, η) > 0 such that

c∗M(t) logM(t) ≤ (sm)k, (4.8)

for all M(t) ≥ M∗. c∗ will be chosen later in the proof. Notice that we can always
choose an escaping time t such that M(t) is large enough.

To be able to successfully apply Theorem 3.1, harmonic measure

ωΠ1((Ωτ(t)(M(t)))per)(w), (4.9)

with respect to

D1τ(t) = {z1 = x1 + iy1 ∈ C : 0 ≤ y1 ≤ ρ(τ(t))}

(we could work with any coordinate projection), computed at

w ∈ {z1 = x1 + iy1 ∈ C : y1 =
ρ(τ(t))

2
}

should stay uniformly bounded away from 1
2 .

Since

ρ(τ(t)) =
c

‖u(t)‖L∞(log ‖u(t)‖L∞ )
=

c

K3M(t) log(K3M(t))
≥

c

M(t) log(M(t))
,

(4.10)
for M(t) large enough, and since the length of an interval in Skm,s is

2π(
1

sm
)k,

an elementary harmonic measure computation (taking into account (A1)) implies
that it is enough to require that

M(t) logM(t)

(sm)k
≤
1

c∗
, (4.11)

for a sufficiently large c∗(m, s) (this is true for all k ≥ k∗(s), and we can always
assume that k is large enough). More precisely, there exists c∗(m, s) such that
(4.11) implies

ωΠ1((Ωτ(t)(M(t)))per)(w) ≤
1

4
, (4.12)

for all w ∈ {z1 = x1 + iy1 ∈ C : y1 =
ρ(τ(t))
2 }.

Harmonic measure condition (4.11) is equivalent to (4.8), and hence satisfied
for an appropriate escaping time t.

Consider now positive part of the domain of analyticity of u(τ(t)),

Dτ(t) = {z = x+ iy ∈ C
3 : 0 ≤ yi ≤ ρ(τ(t)), i = 1, 2, 3}.
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Then, the estimate (4.5) implies

‖u(τ(t))‖L∞(∂Dτ(t)) ≤ K
4M(t). (4.13)

Also,

|u(τ(t), z)| ≤M(t), (4.14)

for z ∈ Gτ(t) = ∂Dτ(t) − {{z = x + iy ∈ C
3 : yi = ρ(τ(t)), i = 1, 2, 3} ∪

(Ωτ(t)(M(t)))per}.

Since the harmonic measure of the projection of Bτ(t) = ∂Dτ(t) − Gτ(t) is by
(4.12) less or equal to 34 uniformly in a set containing Pτ(t) = {z = x + iy ∈ C

3 :

yi =
ρ(τ(t))
2 , i = 1, 2, 3}, Theorem 3.1 yields

‖u(τ(t)‖L∞(Pτ(t)) ≤ (K
4M(t))

3/4
M(t)

1/4
= ‖u(t)‖L∞ . (4.15)

By symmetry (u(z) = u(z)), the same estimate holds on negative part of domain
Dτ(t) as well, and thus the maximum principle gives

‖u(τ(t))‖L∞ ≤ ‖u(t)‖L∞ , (4.16)

contradicting t being an escaping time. �
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