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ON COMMUTING DIFFERENTIAL OPERATORS

R. WEIKARD

Abstract. The theory of commuting linear differential expressions has re-
ceived a lot of attention since Lax presented his description of the KdV hier-
archy by Lax pairs (P,L). Gesztesy and the present author have established
a relationship of this circle of ideas with the property that all solutions of the
differential equations Ly = zy, z ∈ C, are meromorphic. In this paper this
relationship is explored further by establishing its existence for Gelfand-Dikii
systems with rational and simply periodic coefficients.

1. Introduction

The theory of commuting linear differential expressions was begun by Floquet [6]
in 1879 and advanced significantly when Wallenberg [20] and Schur [18] addressed
it some 25 years later. An even bigger impact had Burchnall and Chaundy with
a series of papers ([1], [2], [3]) in the 1920s when they discovered a relationship
with algebraic geometry (see Section 2). The exploration of commuting differential
expressions was again taken up in the 1970s and 1980s because of the connection
with completely integrable partial differential equations. The ones in question here
are the Gelfand-Dikii systems which may be represented by equations of the type
Lt = [P,L] where P and L are linear differential expressions. The most famous
such equation is the Korteweg-de Vries (KdV) equation

qt =
1

4
qxxx +

3

2
qqx

which is obtained by choosing L = D2+q and P = D3+ 32qD+
3
4qx when D denotes

the differential expression d/dx. The letters P and L where chosen by Gelfand and
Dikii in honor of Peter Lax who first represented the KdV equation using a Lax
pair [14].
Only a select few expressions L will allow the existence of an expression P whose

order is relatively prime to the order of L but which commutes with L and, due
to the Burchnall-Chaundy theorem, such L are also called algebro-geometric (see
Section 2 for precise statements and definitions). From the works of Its and Matveev
[11] and Krichever [12], [13] it is clear that the coefficients of L should be given
in terms of specific differential polynomials of a Riemann theta function (i.e., a

1991 Mathematics Subject Classification. 34M05, 37K10, 37K20 .
Key words and phrases. Meromorphic solutions,Commuting differential expressions,
Lax pairs, KdV, Gelfand-Dikii systems .
c©2000 Southwest Texas State University and University of North Texas.
Submitted February 22, 2000. Published March 9, 2000.

1



2 R. WEIKARD EJDE–2000/19

polynomial in that function and its derivatives). However, to recognize whether a
given differential expression is algebro-geometric, this knowledge is of little value.
The aim of the present paper is to give an easily verifiable sufficient condition

to ensure that a given differential expression L (with rational or simply periodic
coefficients) is algebro-geometric (see Theorem 1). A few years ago such a character-
ization was obtained by Gesztesy and myself for expressions of the form L = D2+q
with an elliptic potential q (see [7]). In fact, we found that L is algebro-geometric
if and only if the equation Ly = zy has only meromorphic solution regardless what
z is. The corresponding relationship exists also for rational and simply periodic
potentials of D2 + q (see [22]) and for the more general AKNS system (at least in
the case of elliptic coefficients, see [8]). The clue in [7] was to consider the indepen-
dent variable of the equation y′′+ qy = zy as a complex variable and use a classical
theorem of Picard treating equations with elliptic coefficients. For a survey of this
and related approaches to integrable systems see [9].
In retrospect it is clear from the work of Its and Matveev [11] and of Segal

and Wilson [19] that the solutions of Ly = zy are necessarily meromorphic if L is
algebro-geometric. However, it seems that nobody thought that this was peculiar.
The following theorem, which establishes sufficient conditions for a differential

expression to be algebro-geometric, will be proven in this paper:

Theorem 1. Suppose that the coefficients of the differential expression

L = Dn + qn−2D
n−2 + ...+ q0

are either

• rational functions, which are bounded at infinity, or else
• meromorphic, simply periodic functions with period p, which remain bounded
as |=(x/p)| tends to infinity.

If, regardless of z ∈ C, all solutions of the differential equation Ly = zy are mero-
morphic then L is algebro-geometric.

Therefore, given a differential expression L in one of the classes indicated, it
suffices to examine the behavior of the solutions of Ly = zy near the finitely many
singular points of the equation. This is a routine, if lengthy, task.

Proof of Theorem 1. Theorem 3 gives a sufficient condition for L to be algebro-
geometric provided the equation Ly = zy has a solution of a certain form. That
this is indeed so is guaranteed by Theorem 7 in the rational case (choose t(x) = x)
and by Theorem 8 in the simply periodic case (choose t(x) = exp(2πix/p)).

The proofs of Theorems 7 and 8 rely on results by Halphen and Floquet (con-
cerned with the rational and simply periodic case, respectively). These, in turn,
are modeled after the above mentioned theorem of Picard. The proof of Theorem 3
is suggested by the work of Burchnall and Chaundy [3].
While in the case of the KdV hierarchy the corresponding theorem was first

proven for elliptic potentials the current methods are not easily adaptable to elliptic
coefficients of L when n > 2. The reason is that the known proofs for the KdV
hierarchy rely on the recursion relation through which the hierarchy may be defined.
An analogous representation is unknown for general n (see however [4] for n = 3).
The current proof, on the other hand, does not extend to the elliptic case because
the relationship between λ and z, which is algebraic for rational and simply periodic
coefficients, is transcendental in the case of elliptic coefficients.
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In Section 2 we will review the theory of Burchnall and Chaundy and prove a
characterization of algebro-geometric potentials. Section 3 presents the Halphen
theorem and an analogous version of the Floquet theorem. Section 4 establishes
that in the cases considered certain solutions are of the form required by Theorem
3. An important ingredient for this part is the asymptotic behavior of the solutions
as the spectral parameter tends to infinity. This is, of course, a well researched
subject and the reader is reminded of the basic facts, following Wasow [21], in the
appendix.

2. Burchnall-Chaundy theory

Definition 1. A differential expression L of order n ≥ 2 and leading coefficient
one is called algebro-geometric if there exists a natural number m, relatively prime
with respect to n, a polynomial Q of the form

Q(p, `) = pn − `m +
∑
a,b≥0

am+bn<nm

ca,bp
a`b,(1)

and a differential expression P of order m, such that
1. Q(P,L) = 0 and
2. if L ∈ C[R] for some first order differential expression R then P 6∈ C[R].

The most trivial examples of algebro-geometric differential expressions are given
by expressions with constant coefficients when one may choose P = D, the operator
of taking a first derivative.

Theorem 2. Suppose P and L are differential expressions of relatively prime or-
ders m and n respectively. Then P and L commute if and only if there exists a
polynomial of the form (1) such that Q(P,L) = 0.

This theorem, obtained in the early 1920s by Burchnall and Chaundy [1], may
serve as a characterization for algebro-geometric differential expressions:

Corollary 1. A differential expression L of order n ≥ 2 and leading coefficient
one is algebro-geometric if and only if there exists a natural number m, relatively
prime with respect to n and a differential expression P of order m, such that
1. [P,L] = 0 and
2. if L ∈ C[R] for some first order differential expression R then P 6∈ C[R].

The restriction to n ≥ 2 is due to the fact that L = D+q(x) and [P,L] = 0 imply
that P ∈ C[L] regardless what q is. This is seen as follows: Suppose P commutes
with L and is of order m. Without loss of generality we may assume that P has
leading coefficient one. Then P −Lm commutes with L, has order less than m and
a constant leading coefficient. Induction proves the claim.
Now consider the differential expression L̂ = Dn + q̂n−1D

n−1 + ... + q̂0 and let
E be the operator of multiplication by exp(

∫ x
q̂n−1dt/n). Then

L = EL̂E−1 = Dn + qn−2D
n−2 + ...+ q0(2)

for appropriate functions q0, ..., qn−2. We call L the normal form of L̂. If P̂ is

some other differential expression and if P = EP̂E−1, then [P,L] = 0 if and only if

[P̂ , L̂] = 0. Therefore, to characterize the algebro-geometric differential expressions
we may restrict ourselves to those which are of the form (2).
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If L ∈ C[R] for some first order differential expression R = D + a(x) and if L
is of the form (2) then a must be constant, that is L has constant coefficients and
it commutes with P = D and hence is algebro-geometric. On the other hand, if L
is in the form (2) and does not have constant coefficients then it is not in C[R] for
any first order expression R and we obtain the following characterization:

Corollary 2. The differential expression L given in (2) is algebro-geometric if and
only if there exists a natural number m, relatively prime with respect to n, and a
differential expression P of order m such that [P,L] = 0.

We will now give a sufficient condition for L to be algebro-geometric in terms of
the solutions of the differential equations Ly = zy.

Theorem 3. Let L be a differential expression of the form (2) and suppose that,
for every z ∈ C, the equation Ly = zy has a solution of the form

ψ(λ, x) = (λg + rg−1(t(x))λ
g−1 + ...+ r0(t(x))) exp(λx)

where r0, ..., rg−1 are rational functions, t is a meromorphic function, and

λn + ρn−2λ
n−2 + ...+ ρ0 = z

for certain complex numbers ρ0, ..., ρn−2. Then there exists a differential expression
P whose order m is relatively prime with respect to n such that [P,L] = 0. In
particular, L is algebro-geometric.

Proof. Define

U = Dg + rg−1(t(x))D
g−1 + ...+ r0(t(x))

and

L0 = D
n + ρn−2D

n−2 + ...+ ρ0.

Then consider the differential expressions V = LU − UL0. Since L0(exp(λx)) =
z exp(λx) and U(exp(λx)) = ψ(λ, x) we obtain

V (exp(λx)) = (L − z)U(exp(λx)) = (L− z)ψ(λ, x) = 0

for every λ ∈ C. Since the functions exp(λx) are linearly independent for distinct
λ we obtain that V is the zero expression, that is,

LU = UL0.

Let {y1, ..., yg} be a basis of kerU . To each element y` of this basis we may associate
a differential expression H` with constant coefficients in the following way. Since
y` ∈ kerU , so is L0y` and, in fact, L

j
0y` for every j ∈ N. Since kerU is finite-

dimensional there exists a k ∈ N and complex numbers β0, ..., βk such that β0 = 1
and

k∑
j=0

βk−jL
j
0y` = 0.

Then define H` =
∑k
j=0 βk−jL

j
0. Since the expressions H` commute among them-

selves we obtain that kerU ⊂ ker(Dj
∏g
`=1H`) for any nonnegative integer j. Let

Sµ be the set of all differential expressions H of order µ with constant coefficients
such that kerU ⊂ kerH . We have just shown that Sµ is not empty provided µ is
sufficiently large. Hence there exists the number

m = min{µ ∈ N : gcd(µ, n) = 1, Sµ 6= ∅}.
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Let P0 be an element of Sm. Since kerU ⊂ kerP0, we obtain that there exists an
expression P such that PU = UP0. Hence [P,L]U = PLU − LPU = UP0L0 −
UL0P0 = U [P0, L0] = 0 and thus [P,L] = 0. In view of Corollary 2 this proves that
L is algebro-geometric.

3. The theorems of Picard, Floquet, and Halphen

As mentioned in the introduction the proof of Theorem 1 relies on classical
theorems by Floquet and Halphen concerning the linear differential equation

y(n) + qn−1y
(n−1) + ...+ q0y = 0(3)

with simply periodic and rational coefficients, respectively. These theorems, in
turn, where inspired by a theorem of Picard which is concerned with the elliptic
case.
While Picard’s theorem [17] will not be used I state it for the sake of its historic

significance.

Theorem 4. Assume that the coefficients q0, ..., qn−1 in (3) are elliptic functions
with common fundamental periods 2ω1 and 2ω2. If the differential equation (3) has
only meromorphic solutions then it has a solution which is elliptic of the second
kind1.

Halphen’s theorem is concerned with the rational case. A proof is given by Ince
[10] and this proof can be used to state the following version which is different from
Ince’s version.

Theorem 5. Let the coefficients q0, ..., qn−1 in (3) be rational functions which are
bounded at infinity and define ρj = limx→∞ qj. If the differential equation (3) has
only meromorphic solutions then there is a solution R(x) exp(λx) where R is a
rational function and λ satisfies

λn + ρ1λ
n−1 + ...+ ρn = 0.

Floquet’s famous theorem (see e.g. Eastham [5] or Magnus and Winkler [15])
on periodic differential equation, though inspired by Picard’s results, has a broader
scope but also gives less information on the structure of solutions when compared
with the theorems by Picard and Halphen. We will therefore provide a below an
analogue of Picard’s or Halphen’s theorem for the simply periodic case.
Let us first remember a few basic facts from the theory of meromorphic, simply

periodic functions (for more information see, e.g., Markushevich [16], Chapter III.4).
If f is a meromorphic periodic function with period 2π then

f∗(t) = f(−i log(t))

is meromorphic on C− {0}. If f is entire then f∗ is analytic on C− {0}.
A meromorphic simply periodic function q with period p which has only finitely

many poles in the period strip {x ∈ C : 0 ≤ <(x/p) < 1} and which is bounded as
|=(x/p)| tends to infinity is of the form

q(x) =
a0 + a1e

2πix/p + ...+ ame
2πimx/p

b0 + b1e2πix/p + ...+ bme2πimx/p
.

1A function f is called elliptic of the second kind, if it is meromorphic and if there exist two
numbers a1 and a2, independent over the real numbers, and two numbers ρ1 and ρ2 such that
f(x+ a1) = ρ1f(x) and f(x+ a2) = ρ2f(x) for all x.
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We will call such functions bounded at the ends of the period strip. Note that

lim
=(x/p)→∞

q(x) =
a0

b0
= q∗(0)

and
lim

=(x/p)→−∞
q(x) =

am

bm
= q∗(∞).

Theorem 6. Let the coefficients q0, ..., qn−1 in (3) be meromorphic, simply periodic
with period p, and bounded at the ends of the period strip. If the differential equation
(3) has only meromorphic solutions then there is a solution R(e2πix/p) exp(iλx)
where R is a rational function and λ satisfies

(iλ)n + q∗n−1(0)(iλ)
n−1 + ...+ q∗0(0) = 0.

Since a proof of this theorem does not seem to be readily available I will give an
outline below. But first I will present a few lemmas which will be needed.

Lemma 1. Let v be a polynomial with v(0) 6= 0, abbreviate eix by t, and suppose
that

y(x) =
u(t)

v(t)
tλ

is meromorphic with respect to x. Then

y(k)(x) =
tλ

v(t)k+1

k∑
j=0

tjfj,k(λ, t)u
(j)(t)

where the fj,k are polynomials in both of their variables and u
(j) denotes the j-th

derivative of u with respect to t. In particular, fj,j(λ, t) = (iv(t))
j . Moreover,

deg fj,k(λ, ·) ≤ k deg v.

Proof. The first statement follows immediately from an induction over k. In fact

fj,k+1 = iv((λ+ j)fj,k + fj−1,k) + it(vf
′
j,k − (k + 1)v

′fj,k)

where primes denote derivatives with respect to t and fj,k = 0 unless j ∈ {0, ..., k}.
This implies that fj,j(λ, t) = (iv(t))

j . The statement about the degree of
fj,k(λ, ·) follows now, for fixed j, by another induction over k.

Lemma 2. The polynomials fj,k in Lemma 1 have the following property:

fj,k(λ, 0) = (iv(0))
kgj,k(λ)

where gj,k is a polynomial of degree k − j with leading coefficient
(
k
j

)
. Moreover,

g0,k(λ) = λ
k.

Proof. These statements are also proven by induction.

Proof of Theorem 6. Without loss of generality we assume that p = 2π. For con-
venience we also introduce qn = 1.
Each of the coefficients qj has at most finitely many poles in the period strip

{x ∈ C : 0 ≤ <(x) < 2π}. These poles will be denoted by x1, ..., xm. From
Floquet’s theorem we know that there is a solutions of Ly = zy of the form

ψ(x) = φ(x)eiλx

where φ is a periodic function with period 2π and λ is a suitable complex number
which is determined up to addition of an arbitrary integer. By hypothesis φ is a



EJDE–2000/19 ON COMMUTING DIFFERENTIAL OPERATORS 7

meromorphic function and its poles may occur only at the points x1, ..., xm and
their translates. Therefore there exist positive integers sj and a polynomial

v(t) =

m∏
j=1

(t− eixj )sj

such that v(eix)φ(x) is an entire meromorphic function which is periodic with period
2π. This implies that there is a function u0 which is analytic on C−{0} such that
u0(e

ix) = v(eix)φ(x). We want to show that u0 is a rational function.
Now multiply (3) by v(eix)n+1 and perform the substitution y(x) = tλu(t)/v(t)

with t = eix.
With the aid of Lemma 1 equation (3) turns into

n∑
j=0

tjpj(t)u
(j)(t) = 0(4)

where

pj(t) =

n∑
k=j

v(t)n−kq∗k(t)fj,k(λ, t)

and where, of course, q∗k(t) = qk(−i log(t)).
Because all solutions of (3) are meromorphic any pole of any of the coefficients

must be a regular singular point of the differential equation. Therefore the poles
of qj have order n − j at worst and the functions v(t)q∗n−1(t), ..., v(t)

nq∗0(t) are
polynomials. This implies that the coefficients pj in (4) are polynomials. Zero and
infinity are singular points of the equation (4) and, since pn(0) = (iv(0))

n 6= 0, we
obtain that zero is in fact a regular singular point. This, in turn, implies that the
isolated singularity t = 0 of u0 can not be an essential singularity, i.e., u0 is analytic
in C with the exception of a possible pole at zero.
Moreover, at least one of the indices of the singular point t = 0 of equation

(4) must be an integer because zero is an isolated singularity for the solution u0.
Remember that λ is only determined up to the addition of an integer. Therefore
and because u0(t)t

λ = (t−mu0(t))t
λ+m we can and will choose the smallest integer

index to be zero. Having made this convention u0 is now analytic at zero, i.e., u0 is
an entire function. The product of all the indices, which equals the constant term
of the indicial equation, must now be zero, too. Hence

0 =
n∑
k=0

ikq∗k(0)g0,k(λ) =
n∑
k=0

q∗k(0)(iλ)
k

which is the desired relationship for λ. The theorem will now be proved once we
show that u0 is a polynomial. To see this we have to study its behavior at infinity.
Let s = 1/t and define integers aj,k by the equality

u(j)(t) =

j∑
k=1

aj,ks
j+kw(k)

where u(t) = w(s). This yields, in particular, aj,j = (−1)j . Also define a0,0 = 1
and aj,0 = 0 for any j ∈ N.
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Introducing s as the independent variable we find

0 = v(t)−n
n∑
j=0

tjpj(t)u
(j) =

n∑
k=0

skp̃k(s)w
(k)(5)

where

p̃k(s) = v(1/s)
−n

n∑
j=k

aj,kpj(1/s) =

n∑
j=k

n∑
m=j

aj,kq
∗
m(1/s)

fj,m(λ, 1/s)

v(1/s)m
.

Recall from Lemma 1 that the degree of fj,m(λ, ·) is not larger than the degree of
vm. Hence the functions p̃k are bounded at zero. In particular, p̃n(s) = (−i)n is
bounded but also different from zero. It now follows that s = 0 is a regular singular
point of equation (5). Therefore, and since s = 0 must be an isolated singularity of
w0(s) = u0(1/s), the function w0 behaves like an integer power near zero. This, in
turn implies that the entire function u0 behaves like an integer power at infinity,
i.e., u0 is a polynomial.

4. The structure of solutions

4.1. The rational case.

Theorem 7. Consider the differential expression

L = Dn + qn−2D
n−2 + ...+ q0

where qn−2, ..., q0 are rational functions which have respectively the limits ρn−2,
..., ρ0 at infinity. Assume that, for all z ∈ C all solutions of the equation Ly = zy
are meromorphic. Then Ly = zy has a solution of the form

ψ(λ, x) = (λg + rg−1(x)λ
g−1 + ...+ r0(x)) exp(λx)

where r0, ..., rg−1 are rational functions and

z = λn + ρn−2λ
n−2 + ...+ ρ0.

Proof. If L has constant coefficients the theorem is trivially true with g = 0. Hence
assume that L does not have constant coefficients.
By Halphen’s theorem the equation Ly = zy has a solution of the form ψ(λ, x) =

Rλ(x) exp(λx) where Rλ is a rational function and z = λn + ρn−2λ
n−2 + ... + ρ0.

The only thing left to investigate is the behavior of Rλ in terms of λ.
All finite singular points of the equation Ly = zy must be regular singular points.

Therefore qj has no poles of order larger than n− j. Also the poles of Rλ must be
located at the poles of the coefficients qj . Hence there exist positive integers sj and
a polynomial

v(x) =

m∏
j=1

(x− xj)
sj .

such that the function vψ(λ, ·) is entire and the functions v2qn−2, ..., vnq0 are
polynomials. Therefore

ψ(λ, x) =
p(λ, x)

v(x)
exp(λx)

where

p(λ, x) =

N∑
j=0

cj(λ)x
j .
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Hence

0 = ψ(n) + qn−2ψ
(n−2) + ...+ (q0 − λ

n − ...− ρ0)ψ =
exp(λx)

v(x)n+1
F (λ, x).

Since vjqn−j are polynomials the function F (λ, ·) is a polynomial whose coefficients
are polynomials in c0, ..., cn, and λ. In fact, as polynomials in c0, ..., cn these co-
efficients are homogeneous of degree one. Each of these coefficients must be zero
and therefore the coefficients cj satisfy a system of linear homogeneous algebraic
equations with coefficients in C[λ]. A nontrivial solution exists and its components
(the coefficients cj) are rational functions of λ. Hence

p(λ, x) =
1

h(λ)

N∑
j=0

c̃j(λ)x
j

where c̃0, ..., c̃n, and h are polynomials. Without loss of generality we may assume
that h is a constant. Hence, for some integer g,

p(λ, x) = vg(x)λ
g + vg−1(x)λ

g−1 + ...+ v0(x)

and

ψ(λ, x) = (rg(x)λ
g + rg−1(x)λ

g−1 + ...+ r0(x)) exp(λx)

where rj = vj/v for j = 0, ..., g. Since z
1/n = λ + O(λ−1) as λ tends to infinity,

asymptotic considerations along the lines of Wasow [21] prove that rg(x) = 1. For
the sake of completeness Wasow’s technique is outlined in the appendix.

4.2. The simply periodic case.

Theorem 8. Consider the differential expression

L = Dn + qn−2D
n−2 + ...+ q0

where qn−2, ..., q0 are simply periodic meromorphic functions which are bounded at
the ends of the period strip. Let the period be p and define ρk = lim=(x/p)→∞ qk(x)
for k = 0, ..., n−2. Assume that, for all z ∈ C, all solutions of the equation Ly = zy
are meromorphic. Then Ly = zy has a solution of the form

ψ(λ, x) = (λg + rg−1(t(x))λ
g−1 + ...+ r0(t(x))) exp(λx),

where t(x) = exp(2πix/p), r0, ..., rg−1 are rational functions, and

z = λn + ρn−2λ
n−2 + ...+ ρ0.

Proof. If L has constant coefficients the theorem is trivially true with g = 0. Hence
assume that L does not have constant coefficients.
Theorem 6 applies and gives us a solution

uλ(t(x))

v(t(x))
exp(iλx)

where uλ and v are polynomials. Again, we only have to study the behavior of uλ
with respect to λ. A similar proof as above, another call on Wasow’s theorem, and
a replacing iλ by λ shows the validity of the present claim.
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Appendix A. Asymptotic behavior

Suppose the functions qn−2, ..., q0 are analytic in some open set Ω containing
x0. We want to study the behavior of solutions of the differential equation

Ly = y(n) + qn−2y
(n−2) + ...+ q0y = µ

ny

as µ tends to infinity.
Let

T =




1 ... 1
µσ1 ... µσn
...

...
(µσ1)

n−1 ... (µσn)
n−1




where σ1, ..., σn denote the different n-th roots of one. The substitution

(y(x), ..., y(n−1)(x))t = Tu(x− x0)

and letting ε = 1/µ transforms the equation Ly = µny into a system εu′ = A(ε, ·)u
where

A(ε, t) =

n∑
j=0

Aj(t)ε
j

with A0 = diag(σ1, ..., σn), A1 = 0, and Aj analytic in a vicinity of zero.
When r is a positive number and I a real open interval we denote by S(r, I) the

set {z ∈ C : |z| < r, arg(z) ∈ I} and by K(r) the set {z ∈ C : |z| < r}.
Then, by a repeated application of Theorem 26.2 of Wasow [21] and its proof

(in particular, the formulas 25.19 – 25.22) and because of the absence of a term
εA1(t), there exist numbers ρ and δ, an interval I, and matrix-valued functions
P : K(ρ)× S(δ, I)→ C and B : K(ρ)× S(δ, I)→ C such that

1. P is holomorphic in both variables.
2. Asymptotically, as ε tends to zero in S(δ, I),

P (t, ε) ∼ I +
∞∑
j=2

Pj(t)ε
j .

3. The transformation u = Pw takes the equation εu′ = A(ε, ·)u into the com-
pletely decoupled system

εw′ = B(ε, ·)w

where B is diagonal and has the asymptotic expansion

B(ε, t) ∼ A0 +
∞∑
j=2

Bj(t)ε
j

as ε tends to zero in S(δ, I).

A fundamental matrix of εw′ = B(ε, ·)w is

w(ε, t) = exp(ε−1
∫ t
0

B(ε, s)ds) = exp(A0µt) exp(εC(t))

for a suitable diagonal matrix C(t). Since P0(t) = I and exp(εC(t)) = I +O(ε) we
obtain for the asymptotic behavior of u

u(ε, t) = (I +O(ε)) exp(A0µx).
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Linear independent solutions of Ly = µny are given by

yj(µ, x) =

n∑
k=1

uk,j(ε, x− x0) =
n∑
k=1

(δj,k +O(ε)) exp(µσj(x − x0))

= (1 +O(µ−1)) exp(µσj(x− x0)).
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8 (1879), suppl., 1–132.

7. F. Gesztesy and R. Weikard, Picard potentials and Hill’s equation on a torus, Acta Math.
176 (1996), 73–107.

8. , A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy,
Acta Math. 181 (1998), 63–108.

9. , Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies—an analytic
approach, Bull. Amer. Math. Soc. (N.S.) 35 (1998), 271–317.

10. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.
11. A. R. Its and V. B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton
solutions of the Korteweg-de Vries equation, Theoret. Math. Phys. 23 (1975), 343–355.

12. I. M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry,

Funct. Anal. Appl. 11 (1977), 12–26.
13. , Methods of algebraic geometry in the theory of non-linear equations, Russ. Math.
Surv. 32:6 (1977), 185–213.

14. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Math.
Phys. 21 (1968), 467–490.

15. W. Magnus and S. Winkler, Hill’s Equation, Dover, New York, 1979.
16. A. I. Markushevich, Theory of Functions in a Complex Variable (three volumes in one),
Chelsea 1965.

17. E. Picard, Sur une classe d’équations différentielles linéaires, C. R. Acad. Sci. Paris 90 (1880),
128–131.
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