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UNIFORM EXPONENTIAL STABILITY OF LINEAR

ALMOST PERIODIC SYSTEMS IN BANACH SPACES

D. N. Cheban

Abstract. This article is devoted to the study linear non-autonomous dynamical

systems possessing the property of uniform exponential stability. We prove that

if the Cauchy operator of these systems possesses a certain compactness property,

then the uniform asymptotic stability implies the uniform exponential stability. For
recurrent (almost periodic) systems this result is precised. We also show application

for different classes of linear evolution equations: ordinary linear differential equations

in a Banach space, retarded and neutral functional differential equations, and some

classes of evolution partial differential equations.

Introduction

Let A(t) be a continuous n × n matrix-function and H(A) be the family of all
matrix-functions B = lim

n→+∞
Atn , where {tn} ⊂ R, Atn(t) = A(tn + t) and the

convergence Atn → B is uniform on every compact subset of R. The following
result is well known.

Theorem [25,2,6]. Let A be a bounded and uniformly continuous matrix-function
on R, then the following conditions are equivalent:
1. The trivial solution of equation

x′ = A(t)x (0.1)

is uniformly exponentially stable.
2. The trivial solution of equation (0.1) is uniformly asymptotically stable.
3. The trivial solution of equation (0.1) and every equation

y′ = B(t)y (B ∈ H(A)) (0.2)

is asymptotically stable.

For equations in infinite-dimensional spaces conditions 1, 2, and 3 are not equiva-
lent; see examples in [10, 24, 15]. However, in the general infinite-dimensional case
condition 1 implies condition 2, and condition 2 implies condition 3.
Linear non-autonomous dynamical systems satisfying one of the conditions 1, or

2, or 3 are studied in [10]; see also Theorem 1.1 below. In this article we show that

2000 Mathematics Subject Classifications: 34C35, 34C27, 34K15, 34K20, 58F27, 34G10.

Key words and phrases: non-autonomous linear dynamical systems, global attractors,

almost periodic system, exponential stability, asymptotically compact systems.
c©2000 Southwest Texas State University and University of North Texas.
Submitted January 4, 2000. Published April 17, 2000.

1



2 D. N. Cheban EJDE–2000/29

if the operator corresponding to the the Cauchy problem for (0.1) satisfies some
compactness condition, then condition 3 implies condition 1 (see Theorems 2.3 and
2.4).
For recurrent (almost periodic) systems this result is made precise in Theorems

3.2, 3.3 and 3.4. Applications of this result to different classes of linear evolution
equations (ordinary linear differential equations in a Banach space, retarded and
neutral functional differential equations, some classes of evolution partial differential
equations) are given.

1. Linear non-autonomous dynamical systems

Assume that X and Y are complete metric spaces, R is the set of real numbers,
Z is the set of integer numbers, T = R or Z, T+ = {t ∈ T : t ≥ 0} and T− = {t ∈
T|t ≤ 0}. Denote by (X,T+, π) a semigroup dynamical system on X and (Y,T, σ)
a group dynamical system on Y . A triple 〈(X,T+, π), (Y,T, σ), h〉, where h is a
homomorphism of (X,T+, π) onto (Y,T, σ), is called a non-autonomous dynamical
system.
Systems (X,T+, π) have be classified as follows: (see [7,9])

• Point dissipative, if there is K ⊆ X such that for all x ∈ X

lim
t→+∞

ρ(xt,K) = 0, (1.1)

where xt = πtx = π(t, x).
• Compactly dissipative, if (1.1) holds uniformly with respect to x on compact
subsets of X.

• Locally dissipative, if for any point p ∈ X there is δp > 0 such that (1.1) takes
place uniformly with respect to x ∈ B(p, δp) = {x ∈ X : ρ(x, p) < δp}.

Let (X,T, π) be compactly dissipative and K be a compact set that is attractor of
all compact subsets of X, and let

J = Ω(K) = ∩t≥0∪τ≥tπτK .

Then the set J does not depend on selection of the attractor K, and is charac-
terized by the properties of the dynamical system (X,T, π) only; see, for example,
[7,9,19,20]). The set J is called the Levinson centre of the compactly dissipative
system (X,T, π).
A non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be point

(compactly, locally) dissipative, if the autonomous dynamical system (X,T+, π) is
so.
Let (X,h, Y ) be a locally trivial Banach fibre bundle over Y [3]. A non-autonomous

dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be linear if the mapping πt :
Xy → Xyt is linear for every t ∈ T+ and y ∈ Y, where Xy = {x ∈ X|h(x) = y}
and yt = σ(t, y). Let | · | be some norm on (X,h, Y ) such that | · | is co-ordinated
with the metric ρ on X (that is ρ(x1, x2) = |x1 − x2| for any x1, x2 ∈ X such
that h(x1) = h(x2)). Point, compactly, and locally dissipativity criteria for linear
systems are obtained in [10].
The entire trajectory of the semigroup dynamical system (X,T+, π) passing

through the point x ∈ X at t = 0 is defined as the continuous map γ : T→ X that
satisfies the conditions γ(0) = x and πtγ(s) = γ(s + t) for all t ∈ T+ and s ∈ T.
Let Φx be the set of all entire trajectories of (X,T+, π) passing through x at t = 0
and Φ = ∪{Φx : x ∈ X}.



EJDE–2000/29 Uniform exponential stability 3

Theorem 1.1 [10]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system and Y be a compact set. Then the following assertions hold:

1. 〈(X,T+, π), (Y,T, σ), h〉 is point dissipative if and only if lim
t→+∞

|xt| = 0 for all

x ∈ X.
2. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is compactly dis-
sipative if and only if 〈(X,T+, π), (Y,T, σ), h〉 is point dissipative and there exists
a number M ≥ 0 such that the inequality

|xt| ≤M |x| (1.2)

takes place for all x ∈ X and t ∈ T+.
3. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is locally dissi-
pative if and only if there exist positive numbers N and ν such that the inequality
|xt| ≤ Ne−νt|x| takes place for all x ∈ X and t ∈ T+.

From the Banach-Steinhauss theorem it follows that point dissipativity and com-
pact dissipativity are equivalent for autonomous linear systems. An example of lin-
ear autonomous dynamical system which is compactly dissipative, but is not locally
dissipative is constructed in [10].

Theorem 1.2 [7,8]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system, Y be a compact set. Then the following assertions take place:

1. If (X,T+, π) is completely continuous (i.e. for all bounded subset A ⊂ X there
exists a positive number l = l(A) such that πlA is precompact), then from point
dissipativity of 〈(X,T+, π), (Y,T, σ), h〉 follows its local dissipativity;

2. If (X,T+, π) is asymptotically compact (i.e. for all bounded sequences {xn} ⊂ X
and {tn} → +∞ the sequence {xntn} is precompact if it is bounded), then from
compact dissipativity of 〈(X,T+, π), (Y,T, σ), h〉 results its local dissipativity.

Recall that a measure of noncompactness [20, 27] on a complete metric space X is a
function β from the bounded sets of X to the nonnegative real numbers satisfying:

(i) β(A) = 0 for A ⊂ X if and only if A is precompact
(ii) β(A ∪B) = max[β(A), β(B)]
(iii) β(A+B) ≤ β(A) + β(B) for all A,B ⊂ X if the space X is linear.
The Kuratowski measure of non-compactness α is defined by

α(A) = inf{d : A has a finite cover of diameter < d}.

The dynamical system (X,T+, π) is said to be conditionally β-condensing [20]
if there exists t0 > 0 such that β(π

t0B) < β(B) for all bounded sets B in X
with β(B) > 0. The dynamical system (X,T+, π) is said to be β-condensing if
it is conditionally β-condensing and the set πt0B is bounded for all bounded sets
B ⊆ X.
According to Lemma 2.3.5 in [20, p.15] and Lemma 3.3 in [7] the conditional

condensing dynamical system (X,T+, π) is asymptotically compact.

LetX = E×Y , A ⊂ X, and Ay = {x ∈ A : pr2x = y}. ThenA = ∪{Ay : y ∈ Y }.
Let Ãy = pr1Ay and Ã = ∪{Ãy : y ∈ Y }. Note that if the space Y is compact,
then a set A ⊂ X is bounded in X if and only if the set Ã is bounded in E.
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Lemma 1.3. The equality α(A) = α(Ã) takes place for all bounded sets A ⊂ X,

where α(A) and α(Ã) are the Kuratowski measure of non-compactness for the sets

A ⊂ X and Ã ⊂ E.

Proof. Let ε > 0 and A be a bounded subset inX, then there are sets A1, A2, . . . , An
such that A = ∪{Ai : i = 1, 2, . . . , n} and diamAi < α(A) + ε. Note that Ã =

∪{Ãi : i = 1, 2, . . . , n} and diam Ãi ≤ diamAi < α(A) + ε, and consequently,

α(Ã) ≤ α(A).

Let ε be a positive constant, A be a bounded set in X, Ã = ∪{Ãk : k =
1, 2, . . . ,m} and diam Ãk < α(Ã)+ε. Since Y is compact, there are sets Y1, Y2, . . . , Y`
such that Y1 ∪ Y2 ∪ · · · ∪ Y` = Y and diamYj < ε (j = 1, 2, . . . `). Let Ai =

pr−11 (Ãi) ∩A, and

Aij = pr
−1
2 (pr2(pr

−1
1 (Ãi) ∩A) ∩ Yj) ∩Ai .

Note that Aij ⊆ Ãi × Yj , and that

diamAij ≤ diam Ãi + diamYj < α(Ã) + ε+ ε = α(A) + 2ε .

Since A = ∪{Aij : i = 1, 2, . . . , n, j = 1, 2, . . . , `}, it follows that α(A) ≤ α(Ã) and

α(A) = α(Ã). wich concludes the present proof.

Let E be a Banach space and ϕ : T+×E×Y 7→ E be a continuous mapping with
ϕ(0, u, y) = u and ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all u ∈ E, y ∈ Y and
t, τ ∈ T+. The triplet 〈E,ϕ, (Y,T, σ)〉 is called a continuous cocycle on (Y,T, σ)
with fibre E.

The dynamical system (X,T+, π) is called a skew-product system [25] if X =
E × Y and π = (ϕ, σ) ( i.e. π(t, (u, y)) = (ϕ(t, u, y), σ(t, y)) for all u ∈ E, y ∈ Y
and t, τ ∈ T+).
A cocycle ϕ is called conditionally α-condensing if there exists t0 > 0 such that

for any bounded set B ⊆ E the inequality α(ϕ(t0, B, Y )) < α(B) holds if α(B) > 0.
The cocycle ϕ is called α-condensing if it is a conditional α-condensing cocycle and
the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded for all bounded set
B ⊆ E.
A cocycle ϕ is called conditional α-contraction of order k ∈ [0, 1), if there

exists t0 > 0 such that for any bounded set B ⊆ E for which ϕ(t0, B, Y ) =
∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded the inequality α(ϕ(t0, B, Y )) ≤ kα(B)
holds. The cocycle ϕ is called α-contraction if it is a conditional α-contraction
cocycle and the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded for all
bounded sets B ⊆ E.

Lemma 1.4. Let Y be compact and the cocycle ϕ be α-condensing. Then the skew-
product dynamical system (X,T+, π), generated by the cocycle ϕ, is α-condensing.

Proof. Let A ⊂ X be a bounded subset, t0 > 0 and α(A) > 0, then

π(t0, A) = ∪ {π(t0, Ay |y ∈ Y }

= ∪ {(ϕ(t0, Ay, y), yt)|y ∈ Y } ⊆ ϕ(t0, Ã, Y )× Y.
(1.3)
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Since A is bounded, Ã is also bounded in E and according to the condition of
the lemma the set ϕ(t0, Ã, Y ) is bounded and, consequently, π(t0, A) is bounded.
According to Lemma 1.3 and (1.3) we have

α(π(t0, A)) = α(∪{(ϕ(t0, Ay , y), yt0)|y ∈ Y }) ≤ α(ϕ(t0, Ã, Y )) < α(Ã) = α(A).

The lemma is proved.

Theorem 1.5. Let E be a Banach space, ϕ be a cocycle on (Y,T, σ) with fibre E
and the following conditions be fulfilled:
1. ϕ(t, u, y) = ψ(t, u, y) + γ(t, u, y) for all t ∈ T+, u ∈ E and y ∈ Y.
2. There exists a function m : R+ → R+ satisfying the condition m(t)→ 0 as t→
+∞ such that |ψ(t, u1, y)−ψ(t, u2, y)| ≤ m(t)|u1−u2| for all t ∈ T+, u1, u2 ∈ E
and y ∈ Y .

3. γ(t, A, Y ) is compact for all bounded A ⊂ X and t > 0.
Then the cocycle ϕ is an α-contraction.

Proof. Let ε > 0 and A be a bounded set in E, then there are sets A1, A2, . . . , An
such that A = ∪{Ai : i = 1, 2, . . . , n} and diamAi < α(A) + ε for i = 1, 2, . . . , n.
Since Y is compact, then there are a sets Y1, Y2, . . . , Ym such that Y1∪Y2∪· · ·∪Ym =
Y with condition diamYj < ε for all j = 1, 2, . . . ,m.
Let t0 be a positive number such that m(t0) < 1. We note that

ϕ(t0, A, Y ) ⊆ ψ(t0, A, Y ) + γ(t0, A, Y )

= ∪{ψ(t0, Ai, Yj)|i = 1, 2, . . . , n; j = 1, 2, ..,m} + γ(t0, A, Y ).
(1.4)

According to the conditions of Theorem 1.5, α(γ(t0, A, Y )) = 0 and

diamψ(t0, Ai, y) ≤ m(t0) diamAi

for all y ∈ Y . Thus we have

|ψ(t0, u1, y1)− ψ(t0, u2, y2)| ≤ |ψ(t0, u1, y1)− ψ(t0, u2, y1)|

+ |ψ(t0, u2, y1)− ψ(t0, u2, y2)|
(1.5)

and, consequently,

diamψ(t0, Ai, y) ≤ m(t0) diamAi + diamψ(t0, u2, Yj) for all y ∈ Yj . (1.6)

Since Y is compact, from (1.5)-(1.6) follows the inequality

diamψ(t0, Ai, Yj) ≤ m(t0) diamAi ≤ m(t0)(α(A) + ε)

and, consequently, α(ϕ(t0, A, Y )) ≤ m(t0)α(A). The theorem is proved.

2. Exponential stable linear non-autonomous dynamical systems

Lemma 2.1 [14]. Let m : T+ → T+ satisfy the following conditions:
1. There exists a positive constant M such that m(t) ≤M for all t ∈ T+.
2. m(t)→ 0 as t→ +∞.
3. m(t+ τ) ≤ m(t)m(τ) for all t, τ ∈ T+.
Then there exist two positive constants N and ν such that m(t) ≤ Ne−νt for all
t ∈ T+.
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Theorem 2.2. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system, Y be a compact set. Then the following conditions are equivalent:
1. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is uniformly ex-
ponentially stable, i.e. there exist two positive constants N and ν such that
|π(t, x)| ≤ Ne−νt|x| for all t ∈ T+ and x ∈ X.

2. ‖πt‖ → 0 as t→ +∞, where ‖πt‖ = sup{|πtx| : x ∈ X, |x| ≤ 1}.
3. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is locally dissi-
pative.

Proof. According to Theorem 1.1, conditions 1 and 3 are equivalent. Now we will
prove that the conditions 1 and 2 are equivalent. It is clear that from 1 follows 2.
According to condition 2 there exists L > 0 such that

‖πt‖ ≤ 1 (1.7)

for all t ≥ L. We claim that the family of operators {πt : t ∈ [0, L]} is uniformly
continuous, that is, for any ε > 0 there is a δ(ε) > 0 such that |x| ≤ δ implies
|xt| ≤ ε for all t ∈ [0, L]. On the contrary, assume that there are ε0 > 0, δn > 0
with δn → 0, |xn| < δn and tn ∈ [0, L] such that

|xntn| ≥ ε0. (1.8)

Since (X,h, Y ) is a locally trivial Banach fibre bundle and Y is compact, the zero
section Θ = {θy : y ∈ Y, θy ∈ Xy, |θy| = 0} of (X,h, Y ) is compact and, con-
sequently, we can assume that the sequences {xn} and {tn} are convergent. Put
x0 = lim

n→+∞
xn and t0 = lim

n→+∞
tn, then x0 = θy0 (y0 = h(x0)). Passing to the

limit in (1.8) as n → +∞, we obtain 0 = |x0t0| ≥ ε0. This last inequality contra-
dicts the choice of ε0, and hence proves the above assertion. If γ > 0 is such that
|πtx| ≤ 1 for all |x| ≤ γ and t ∈ [0, L], then

|xt| ≤
1

γ
|x| (1.9)

for all t ∈ [0, L] and x ∈ X. We put M = max{γ−1, 1}, then from (1.7) and (1.9)
follows

‖πt‖ ≤M (1.10)

for all t ≥ 0 and x ∈ X. Consider the function m(t) = ‖πt‖. We note that
m(t+ τ) ≤ m(t)m(τ) for all t, τ ∈ T+ and m(t) ≤M for all t ∈ T+ and m(t)→ 0
as t → +∞. According to Lemma 2.1 there exist positive numbers N and ν such
that m(t) ≤ Ne−νt for all t ∈ T+. Thus |π(t, x)| ≤ ‖πt‖|x| ≤ Ne−νt|x| for all
t ∈ T+ and x ∈ X. The theorem is proved.

Let B = {x ∈ X : ∃γ ∈ Φx such that sup
t∈T
|γ(t)| < +∞}.

Theorem 2.3. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system, Y be compact and (X,T+, π) be conditionally α-condensing. Then the
following assertions are equivalent:
1. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is point dissi-
pative and this system doesn’t admit non-trivial bounded trajectories on T, i.e.
B ⊆ Θ = {θy : y ∈ Y, θy ∈ Xy, |θy| = 0}.
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2. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is uniformly ex-
ponentially stable.

Proof. Denote by Θ = {θy : y ∈ Y, θy ∈ Xy, |θy| = 0} the zero section of the vector
fibering (X,h, Y ). Since (X,h, Y ) is locally trivial and Y is compact, the zero sec-
tion Θ is compact and an invariant set of the dynamical system (X,T+, π). Taking
into account that the dynamical system (X,T+, π) is conditionally α-condensing,
according to Theorem 2.4.8 [20] the set Θ is orbitally stable and in particular there
exists a positive constant N such that |xt| ≤ N |x| for all t ∈ T+ and x ∈ X. By
virtue of Theorem 1.1 the dynamical system (X,T+, π) is compactly dissipative and
according to Theorem 1.2 (X,T+, π) is locally dissipative. It follows from Theorem
2.2 that (X,T+, π) is uniformly exponentially stable.

Let now the non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 be uni-
formly exponentially stable, then according to Theorem 2.2 it is locally dissipative.
Let J be its Levinson’s centre (i.e. maximal compact invariant set of dynamical
system (X,T+, π)) . We note that according to the linearity of non-autonomous dy-
namical system 〈(X,T+, π), (Y,T, σ), h〉 we have J = Θ. Let ϕ be a entire bounded
trajectory of dynamical system (X,T+, π) . Since the non-autonomous dynamical
system 〈(X,T+, π), (Y,T, σ), h〉 is conditionally α-condensing, in particulary, it is
asymptotically compact and the set M = ϕ(T) is precompact. In fact, the set M
is invariant Ω(M) = M and in view of Lemma 3.3 [7] the set M is precompact.
We note that ϕ(T) ⊆ J = Θ because J is the maximal compact invariant set of
(X,T+, π). The theorem is proved.

Remark 2.4. Theorem A in [26] implies a version of Theorem 2.3 under slightly
stronger assumptions.

Theorem 2.5. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system, Y be compact and (X,T+, π) be completely continuous, i.e. for any bounded
set A ⊆ X there exists a positive number ` such that π`(A) is precompact. Then
the following assertions are equivalent:

1. The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is uniformly ex-
ponentially stable.

2. lim
t→+∞

|πtx| = 0 for all x ∈ X.

Proof. It is clear that condition 1 implies 2. Now we will show that condition 1
follows from 2. According to Theorem 1.1 the non-autonomous dynamical system
〈(X,T+, π), (Y,T, σ), h〉 is point dissipative. Since the dynamical system (X,T+, π)
is completely continuous, by virtue of Theorem 1.2 the dynamical system (X,T+, π)
is locally dissipative. To prove the theorem it is sufficient to refer to Theorem 2.2.

3. Linear non-autonomous dynamical system with a minimal base

In this section we study a linear non-autonomous dynamical system 〈(X,T+, π),
(Y,T, σ), h〉 with compact minimal base (Y,T, σ).

Theorem 3.1 [4,5]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system and the following conditions hold:

1. Y is compact and minimal ( i.e. Y = H(y) = {yt : t ∈ T} for all y ∈ Y );
2. for any x ∈ X there exists Cx ≥ 0 such that |xt| ≤ Cx for all t ∈ T+;
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3. the mapping y 7→ ‖πty‖ is continuous, where ‖π
t
y‖ is the norm of the linear

operator πty = π
t|Xy , for every t ∈ T+ or (X,T+, π) is a skew-product dynamical

system.
Then there exists M ≥ 0 such that

|π(t, x)| ≤M |x| (3.1)

holds for all t ∈ T+ and x ∈ X.

Theorem 3.2. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system and the following conditions hold:
1. Y is compact and minimal.
2. The dynamical system (X,T+, π) is asymptotically compact.
3. The mapping y 7→ ‖πty‖ is continuous, where ‖π

t
y‖ is the norm of the linear

operator πty = π
t|Xy , for every t ∈ T+ or (X,T+, π) is a skew-product dynamical

system.
Then the non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is uniformly
exponentially stable if and only if

lim
t→+∞

|πtx| = 0 (3.2)

for all x ∈ X.

Proof. It is clear that from uniform exponential stability of the non-autonomous
dynamical system 〈(X,T+, π), (Y,T, σ), h〉 follows the equality (3.2).
From condition (3.2) and minimality of (Y,T, σ) by virtue of Theorem 3.1 it

follows that for the non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 the
inequality (3.1) holds and according to Theorem 1.1 this system is compactly dis-
sipative. Since the dynamical system (X,T+, π) is asymptotically compact, to
finish the proof of the Theorem it is sufficient to remark that according to The-
orem 2.13 [8] every compactly dissipative and asymptotically compact dynamical
system is locally dissipative. Thus a linear non-autonomous dynamical system
〈(X,T+, π), (Y,T, σ), h〉 is locally dissipative and, consequently, it is uniform expo-
nentially stable. The theorem is proved.

Theorem 3.3 [5]. Assume that 〈(X,T+, π), (Y,T, σ), h〉 is a linear non-autonomous
dynamical system, generated by a cocycle ϕ, (X,T+, π) is asymptotically compact,
and there is an M > 0 such that |ϕ(t, u, y)| ≤M |u| for all (u, y) ∈ X = E× Y and
t ∈ T+. Then the following assertions hold.
(i) For any (u, y) ∈ B = {x ∈ X : ∃γ ∈ Φx such that sup

t∈T
|γ(t)| < +∞} the set

Φ(u,y) consists of a single entire recurrent trajectory.
(ii) B is closed in X.
(iii) (X,T+, π) induces a group dynamical system (B,T, π) on B.
(iv) (B, h, Y ) is a finite dimensional vector subfibering of (X,h, Y ), i.e. dimBy does

not depend on y ∈ Y .

Theorem 3.4. Suppose that the following conditions are satisfied:
1. A dynamical system (Y,T, σ)is compact and minimal.
2. A linear non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is generated
by cocycle ϕ (i.e. X = E × Y , π = (ϕ, σ) and h = pr2 : X 7→ Y ).
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3. The dynamical system (X,T+, π) is conditionally α-condensing.
4. There exists a positive number M such that |ϕ(t, u, y)| ≤M |u| for all t ∈ Y and

t ∈ T+.
Then there are two vectorial positively invariant subfiberings (X0, h, Y ) and (Xs, h, Y )
of (X,h, Y ) such that:
a. Xy = X

0
y +X

s
y and X

0
y ∩X

s
y = 0y for all y ∈ Y , where 0y = (0, y) ∈ X = E×Y

and 0 is the zero in the Banach space E.
b. The vector subfibering (X0, h, Y ) is finite dimensional, invariant (i.e. πtX0 =
X0 for all t ∈ T+) and every trajectory of the dynamical system (X,T+, π)
belonging to X0 is recurrent.

c. There exist two positive numbers N and ν such that |ϕ(t, u, y)| ≤ Ne−νt|u| for
all (u, y) ∈ Xs and t ∈ T+.

Proof. Let X0 = B, then according to Theorem 3.3, statement b holds. Denote by
Py the projection of Xy = h

−1(y) to By = B∩h−1(y), then Py(u, y) = (P(y)u, y) for
all u ∈ E,P2(y) = P(y) and the mapping P : Y → [E] ( y 7→ P(y)) is continuous,
where by [E] denotes the set of all linear continuous operators acting on E. Now
we set Xsy = Q(y)Xy and X

s = ∪{Xsy : y ∈ Y }, where Q(y) = IdE − P(y). We
will show that Xs is closed in X. In fact, let {xn} = {(un, yn)} ⊆ Xs and x0 =
(u0, y0) = lim

n→∞
xn. Note that Py0(x0) = (P(y0)u0, y0) = ( lim

n→∞
P(yn)un, y0) =

(0, y0) = 0y0 and, consequently, x0 ∈ X
s
y0
⊆ Xs.

Let (Xs,T+, π) be the dynamical system induced by (X,T+, π). It is clear that
under the conditions of Theorem 3.4 the dynamical system (Xs,T+, π) is asymp-
totically compact and every positive semi-trajectory is precompact and, conse-
quently, lim

t→∞
|π(t, x)| = 0 for all x ∈ Xs because the dynamical system (Xs,T+, π)

doesn’t have a non-trivial entire trajectory bounded on T. In fact, if we sup-
pose that it is not true, then there exist x0 = (u0, y0) and tn → +∞ such that:
|u0| 6= 0, lim

n→+∞
π(tn, x) = x0 and through point x0 pass a non-trivial entire trajec-

tory bounded on T. This contradiction proves the necessary assertion. Thus we
can apply Theorem 2.3 according which there exist two positive constants N and
ν such that |ϕ(t, u, y)| ≤ Ne−νt|u| for all (u, y) ∈ Xs and t ∈ T+. The theorem is
proved.

4. Some classes of linear uniformly exponentially
stable non-autonomous differential equations

Let Λ be a complete metric space of linear operators that act on a Banach space E
and C(R,Λ) be the space of all continuous operator-functions A : R→ Λ equipped
with the open-compact topology and (C(R,Λ),R, σ) be the dynamical system of
shifts on C(R,Λ).

Ordinary linear differential equations. Let Λ = [E] and consider the linear
differential equation

u′ = A(t)u , (4.1)

where A ∈ C(R,Λ). Along with equation (4.1), we shall also consider its H-class,
that is, the family of equations

v′ = B(t)v , (4.2)

where B ∈ H(A) = {Aτ : τ ∈ R}, Aτ (t) = A(t + τ) (t ∈ R), and the bar denotes
closure in C(R,Λ). Let ϕ(t, u,B) be the solution of equation (4.2) that satisfies the



10 D. N. Cheban EJDE–2000/29

condition ϕ(0, u,B) = u. We put Y = H(A) and denote the dynamical system of
shifts on H(A) by (Y,R, σ). Then the triple 〈(X,R+, π), (Y,R, σ), h〉 is a linear non-
autonomous dynamical system, where X = E × Y , π = (ϕ, σ); i.e., π((v,B), τ) =
(ϕ(τ, v,B),Bτ ) and h = pr2 : X → Y ).

Lemma 4.1 [11,13].
(i) The mapping (t, u,A) 7→ ϕ(t, u,A) of R×E×C(R, [E]) to E is continuous, and
(ii) the mapping A 7→ U(·,A) of C(R, [E]) to C(R, [E]) is continuous, where U(·,A)
is the Cauchy operator [17] of equation (4.1).

Theorem 4.2. Let A ∈ C(R,Λ) be compact (i.e. H(A) is a compact set of
(C(R,Λ),R, σ) ), then the following conditions are equivalent:
1. The trivial solution of equation (4.1) is uniformly exponentially stable, i.e. there
exist positive numbers N and ν such that ‖U(t,A)U(τ,A)−1‖ ≤ Ne−(t−τ) for
all t ≥ τ.

2. There exist positive numbers N and ν such that ‖U(t,B)U(τ,B)−1‖ ≤ Ne−(t−τ)

for all t ≥ τ and B ∈ H(A).
3. lim
t→+∞

sup{‖U(t,B)‖ : B ∈ H(A)} = 0.

Proof. Applying Theorem 2.2 to the non-autonomous system 〈(X,R+, π), (Y,R, σ), h〉,
generated by equation (4.1), we obtain the equivalence of conditions 2 and 3. Ac-
cording to Lemma 3 [11] conditions 1 and 2 are equivalent. The theorem is proved.

Theorem 4.3. Let A ∈ C(R,Λ) be recurrent with respect to t ∈ T (i.e. H(A)
is a compact and minimal set of (C(R,Λ),R, σ) ), the non-autonomous system
〈(X,R+, π),
(Y,R, σ), h〉 generated by equation (4.1) is asymptotically compact. Then the fol-
lowing conditions are equivalent:
1. The trivial solution of equation (4.1) is uniformly exponentially stable, i.e. there
exist positive numbers N and ν such that ‖U(t,A)U(τ,A)−1‖ ≤ Ne−(t−τ) for
all t ≥ τ.

2. lim
t→+∞

sup |ϕ(t, u,B)| = 0 for every u ∈ E and B ∈ H(A).

Proof. According to Lemma 4.1 the mapping U(t, ·) : [E] → [E] is continuous
and, consequently, the mapping B 7→ ‖U(t,B)‖ is also continuous for every t ∈
T. Now applying Theorem 3.2 to non-autonomous system 〈(X,R+, π), (Y,R, σ), h〉
generated by equation (4.1), we obtain the equivalence of conditions 1. and 2.. The
theorem is proved.

We now formulate some sufficient conditions for the α− condensedness (in par-
ticular, asymptotical compactness) of the linear non-autonomous dynamical system
generated by equation (4.1).

Theorem 4.4. Let A ∈ C(R, [E]),A(t) = A1(t) +A2(t) for all t ∈ R, and assume
that H(Ai) (i = 1, 2) are compact and the following conditions hold:
(i) The zero solution of the equation

u′ = A1(t)u (4.3)

is uniformly asymptotically stable, that is, there are positive numbers N and ν
such that

‖U(t,A1)U
−1(τ,A1)‖ ≤ Ne

−ν(t−τ) (4.4)
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for all t ≥ τ (t, τ ∈ R), where U(t,A1) is the Cauchy operator of equation (4.3).
(ii) The family of operators {A2(t) : t ∈ R+} is uniformly completely continuous,
that is, for any bounded set A ⊂ E the set {A2(t)A : t ∈ R+} is precompact.
Then the linear non-autonomous dynamical system generated by equation (4.1)

is an α-contraction.

Proof. First of all we note that the set ϕ(t, A, Y ) is bounded for every t > 0
and bounded set A ⊆ E. Let B ∈ H(A). Then there are {tn} ⊂ T such that
B(t) = B1(t) + B2(t) and Bi(t) = lim

t→+∞
Ai(t+ tn). Note that

ϕ(t, v,B) = U(t,B1)v +

∫ t
0

U(t,B1)U
−1(τ,B1)B2(τ)ϕ(τ, v,B)dτ. (4.5)

By Lemma 4.1,

U(t,Bi) = lim
t→+∞

U(t,Aitn), Aitn(t) = Ai(t+ tn),

and the equality

U(t,A1tn)U
−1(τ,A1tn) = U(t+ tn,A1)U

−1(τ + tn,A1)

and inequality (4.4) imply that

‖U(t,B1)U
−1(τ,B1)‖ ≤ Ne

−ν(t−τ) (4.6)

for all t ≥ τ and B1 ∈ H(A1). By Theorem 1.5, Theorem 4.4 will be proved if we
can prove that the set

{

∫ t
0

U(t,B1)U
−1(τ,B1)B2(τ)ϕ(τ, v,B)dτ : (v,B) ∈ A}

is precompact for every t > 0 and every bounded positively invariant set A ⊆ E×Y .
We put

KtA = {B2(τ)ϕ(τ, v,B) : τ ∈ [0, t], (v,B) ∈ A}

and we note that the set KtA is compact. Really, the set ϕ([0, t], A) = ∪{ϕ(τ, v,B) :
τ ∈ [0, t], (v,B) ∈ A} is bounded because |ϕ(τ, v,B)| ≤ eMtr for all τ ∈ [0, t]
and (v,B) ∈ A, where r = sup{|v| : ∃B ∈ H(A), such that (v,B) ∈ A} and
M = sup{‖A(t)‖ : t ∈ T}. Then

∫ t
0

U(t,B1)U
−1(τ,B1)B2(τ)ϕ(τ, v,B)dτ

∈ t conv{U(t,B1)U
−1(τ,B1)w : 0 ≤ τ ≤ t,B1 ∈ H(A1), w ∈ K

t
A}. (4.7)

Since H(A1),H(A), and KtA are compact sets, then formula (4.7), condition (ii)
of Theorem 4.4 , and Lemma 4.1 imply that {U(t,B1)U−1(τ,B1)w : 0 ≤ τ ≤ t,B1 ∈
H(A1), w ∈ KtA} is compact, which completes the proof of the theorem.
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Theorem 4.5. Let H(A) be compact and assume that there is a finite-dimensional
projection P ∈ [E] such that
(i) the family of projections {P (t) : t ∈ R}, where P (t) = U(t,A)PU−1(t,A), is
precompact in [E], and

(ii) there are positive numbers N and ν such that

‖U(t,A)QU−1(τ,A)‖ ≤ Ne−ν(t−τ)

for all t ≥ τ, where Q = I − P .
Then the linear non-autonomous dynamical system generated by equation (4.1)

is an α-contraction.

Proof. Since the family of projections P (t) = U(t,A)PU−1(t,A) is precompact
in [E], the family H = {P (t) : t ∈ R} is uniformly completely continuous, where
the bar denotes closure in [E]. Indeed, let A be a bounded subset of E, {xn} ⊆
{QA : Q ∈ H}, and εn ↓ 0. Then there are tn ∈ R and vn ∈ A such that
|xn − P (tn)vn| ≤ εn. Since the sequence {P (tn)} is precompact, we can assume
that it converges. Let L = lim

n→+∞
P (tn). Then L is completely continuous, which

implies that the sequence {x′n} = {Lvn} is precompact. Note that

|xn − x
′
n| ≤ |xn − P (tn)vn|+ |P (tn)vn − Lvn| ≤ εn + ‖P (tn)− L‖|vn|,

which implies that |xn − x′n| → 0 as n→ +∞. Hence, {xn} is precompact.
Assume that B ∈ H(A) and {tn} ⊂ R are such that

B = lim
n→+∞

Atn , P (B) = lim
n→+∞

P (Atn),

where P (Atn) = U(tn,A)PU
−1(tn,A). The assertions proved above imply that the

family {P (B) : B ∈ H(A)} is uniformly completely continuous. Note that Q(B) =
lim
n→+∞

Q(Atn), where Q(B) = I − P (B) and Q(Atn) = I − P (Atn). Moreover,

condition (ii) of Theorem 4.5 implies that

‖U(t,Atn )QU
−1(τ,Atn)‖ ≤ Ne

−ν(t−τ) (4.7)

for all t ≥ τ . Passing to the limit in (4.7) as n → +∞ and taking into account
Lemma 4.1, we obtain that

‖U(t,B)QU−1(τ,B)‖ ≤ Ne−ν(t−τ)

for all t ≥ τ and B ∈ H(A). We complete the proof of the theorem by observing
that U(t,B)Q(B) + U(t,B)P (B) = U(t,B) and applying Theorem 1.5.

Theorem 4.6. Suppose that the following conditions are satisfied:
1. The operator-function A ∈ C(R, [E]) is recurrent with respect to t ∈ R.
2. The linear non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 generated
by equation (4.1) is conditionally α-condensing.

3. the trivial solution of equation (4.1) is uniformly stable in the positive direction,
i.e. there exist a positive number M such that

‖U(t,A)U−1(τ,A)‖ ≤M (4.8)
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for all t ≥ τ .
Then there are two vectorial positively invariant subfibers (X0, h, Y ) and (Xs, h, Y )
of (X,h, Y ) such that:
a. Xy = X

0
y +X

s
y and X

0
y ∩X

s
y = 0y for all y ∈ Y , where 0y = (0, y) ∈ X = E×Y

and 0 is the zero in the Banach space E.
b. The vectorial subfiber (X0, h, Y ) is finite dimensional, invariant (i.e. πtX0 = X0

for all t ∈ T+) and every trajectory of a dynamical system (X,T+, π) belonging
to X0 is recurrent.

c. There exist two positive numbers N and ν such that |ϕ(t, u,B)| ≤ Ne−νt|u| for
all (u,B) ∈ Xs and t ∈ T+, where ϕ(t, u,B) = U(t,B)u.

Proof. Assume that B ∈ H(A) and {tn} ⊂ R are such that B = lim
n→+∞

Atn , then

condition (3) of Theorem 4.6 implies that

‖U(t,Atn)U
−1(τ,Atn)‖ ≤ N (4.8)

for all t ≥ τ . Passing to the limit in (4.8) as n → +∞ and taking into account
Lemma 4.1, we obtain that

‖U(t,B)U−1(τ,B)‖ ≤ N

for all t ≥ τ and B ∈ H(A) and, consequently,

‖U(t,B)‖ ≤ N

for all t ≥ 0 and B ∈ H(A). Now to finish the proof of Theorem 4.6 it is sufficiently
to refer on Theorem 3.4.

Partial linear differential equations. Let Λ be some complete metric space of
linear closed operators acting into Banach space E ( for example Λ = {A0+B|B ∈
[E]}, where A0 is a closed operator that acts on E). We assume that the following
conditions are fulfilled for equation (4.1) and its H− class (4.2):
a. for any v ∈ E and B ∈ H(A) equation (4.2) has exactly one mild solution
ϕ(t, v,B) (i.e. ϕ(·, v,B) is continuous, differentiable and stisfies of equation (4.2)
) defined on R+ and satisfies the condition ϕ(0, v,B) = v;

b. the mapping ϕ : (t, v,B)→ ϕ(t, v,B) is continuous in the topology of R+ ×E ×
C(R; Λ);

c. for every t ∈ R+ the mapping U(t, ·) : H(A)→ [E] is continuous, where U(t, ·) is
the Cauchy operator of equation (4.2), i.e. U(t,B)v = ϕ(t, v,B) (t ∈ R+, v ∈ E
and B ∈ H(A) ).

Under the above assumptions the equation (4.1) generates a linear non-autonomous
dynamical system 〈(X,R+, π), (Y,R, σ), h〉, where X = E × Y, π = (ϕ, σ) and h =
pr2 : X → Y. Applying the results from § 2 and § 3 to this system, we will obtain
the analogous assertions for different classes of partial differential equations.
We will consider examples of partial differential equations which satisfy the above

conditions a-c.
Example 4.7. A closed linear operator A : D(A) 7→ E with dense domain

D(A) is said [21] to be sectorial if one can find a ϕ ∈ (0, π2 ), an M ≥ 1, and a real
number a such that the sector

Sa,ϕ = {λ : ϕ ≤ |arg(λ− a)| ≤ π, λ 6= a}
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lies in the resolvent set ρ(A) of A and ‖(λI −A)−1‖ ≤M |λ− a|−1 for all λ ∈ Sa,ϕ.
An important class of sectorial operators is formed by elliptic operators [21,22].
Consider the differential equation

u′ = (A1 +A2(t))u, (4.9)

whereA1 is a sectorial operator that does not depend on t ∈ R, and A2 ∈ C(R, [E]).
The results of [21,23] imply that equation (4.9) satisfies conditions a.-c..
Example 4.8. Let H be a Hilbert space with a scalar product 〈·, ·〉 = | ·

|2,D(R+,H) be the set of all infinite differentiable, bounded functions on R+ with
values into H.
Denote by (C(R, [H]),R, σ) a dynamical system of shifts on C(R, [H]). Consider

the equation ∫

R+

[< u(t), ϕ′(t) > + < A(t)u(t), ϕ(t) >]dt = 0, (4.10)

along with the family of equations

∫

R+

[< u(t), ϕ′(t) > + < B(t)u(t), ϕ(t) >]dt = 0, (4.11)

where B ∈ H(A) = {Aτ |τ ∈ R}, Aτ (t) = (t + τ) and the bar denotes closure in
C(R, [H]).
The function u ∈ C(R+,H) is called a solution of equation (4.10), if (4.10) takes

place for all ϕ ∈ D(R+,H).
Assume that the operator A(t) is self-adjoint and negative definite, i.e., A(t) =

−A1(t) + iA2(t) for all t ∈ R, where A1(t) and A2(t) are self-adjoint and

〈A1(t)u, u〉 ≥ α|u|
2 (4.12)

for all t ∈ R and u ∈ H, where α > 0. Let (H(A),R, σ) be a dynamical system
of shifts on H(A), ϕ(t, v,B) be a solution of (4.11) with condition ϕ(0, v,B) = v,
X = H ×H(A), X be a set of all the points 〈u,B〉 ∈ X such that through point
u ∈ H passes a solution ϕ(t, u,A) of equation (4.10) defined on R+. According
to Lemma 2.21 in [12] the set X is closed in X. In virtue of Lemma 2.22 in
[12] the triple (X,R+, π) is a dynamical system on X (where π = (ϕ, σ) ) and
〈(X,R+, π), (Y,R, σ), h〉 is a linear non-autonomous dynamical system, where h =
pr2 : X → Y = H(A). Applying the results from [1] it is possible to show that for
every t the mapping B 7→ U(t,B) (where U(t,B)v = ϕ(t, v,B)) from H(A) into [H]
is continuous and, consequently, for this system Theorem 2.2 is applicable. Thus
the following assertion takes place.

Theorem 4.9. Let A ∈ C(R, [H]) be compact, then the following assertion hold:
1. The trivial solution of equation (4.1) is uniformly exponentially stable, i.e. there
exist positive numbers N and ν such that ‖U(t,B)‖ ≤ Ne−νt for all t ≥ 0 and
B ∈ H(A).

2. lim
t→+∞

sup{‖U(t,B)‖ : B ∈ H(A)} = 0.

Proof. According to Lemma 2.23 in [12] from (4.12) follows the condition 1. In
virtue of Theorem 2.2 the conditions 1 and 2 are equivalent. The theorem is proved.
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We will give the example of a boundary value problem reducing to an equation of
type (4.10). Let Ω be a bounded domain in Rn, Γ be the boundary of Ω, Q = R+×Ω
and S = R+ × Γ. Consider the first initial boundary value problem in Ω for the
equation

∂u

∂t
= L(t)u u|t=0 = ϕ, u|S = 0 , (4.13)

where

L(t)u =

n∑
i,j=1

∂

∂xi
(aij(t, x)

∂u

∂xj
)− a(t, x)u

According to the Riesz theorem, the operator A(t) is defined by

〈A(t)u, ϕ〉 = −

∫

Ω

[

n∑
i,j=1

aij(t, x)
∂u

∂xj

∂ϕ

∂xi
+ a(t, x)uϕ]dx.

If aij(t, x) = aji(t, x) and the functions aij(t, x) and a(t, x) are bounded and uni-
formly continuous with respect to t ∈ R uniformly with respect to x ∈ Ω, then for
equation (4.13) Theorem 2.2 is applicable for H = Ẇ 1

2 (Ω).

Linear functional-differential equations.
Let r be a positive number, C([a, b],Rn) be the Banach space of continuous

functions ϕ : [a, b] → Rn with the supremum norm, and C = C([−r, 0],Rn). Let
σ ∈ R, α ≥ 0 and u ∈ C([σ − r, σ + α],Rn). For any t ∈ [σ, σ + α] we define ut ∈ C
by ut(θ) = u(t + θ), with −r ≤ θ ≤ 0. Denote by A = A(C,Rn) the Banach space
of all linear continuous operators acting from C into Rn equipped with the operator
norm. Consider the equation

u′ = A(t)ut , (4.14)

where A ∈ C(R,A). We put H(A) = {Aτ : τ ∈ R}, Aτ (t) = A(t + τ), where the
bar denotes closure in the topology of uniform convergence on every compact of R.
Along with equation (4.14) we also consider the family of equations

u′ = B(t)ut , (4.15)

where B ∈ H(A). Let ϕt(v,B) be a solution of equation (4.15) with condition
ϕ0(v,B) = v defined on R+. We put Y = H(A) and denote by (Y,R, σ) the
dynamical system of shifts on H(A). Let X = C × Y and π = (ϕ, σ) the dy-
namical system on X defined by the equality π(τ, (v,B)) = (ϕτ (v,B),Bτ ). The
non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 (h = pr2 : X → Y ) is
linear. The following assertion takes place.

Lemma 4.10[4]. Let H(A) be compact in C(R,A), then the non-autonomous dy-
namical system 〈(X,R+, π), (Y,R, σ), h〉 generated by equation (4.14) is completely
continuous.

Theorem 4.11. Let H(A) be compact. Then the following assertions are equiva-
lent:
1. For any B ∈ H(A) the zero solution of equation (4.15) is asymptotically stable,
i.e. lim

t→+∞
|ϕt(v,B)| = 0 for all v ∈ C and B ∈ H(A)
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2. The zero solution of equation (4.14) is uniformly exponentially stable, i.e. there
are positive numbers N and ν such that |ϕt(v,B)| ≤ Ne−νt|v| for all t ≥ 0, v ∈ C
and B ∈ H(A).

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be the linear non-autonomous dynamical sys-
tem, generated by equation (4.14). According to Lemma 4.10 this system is com-
pletely continuous and to finish the proof it is sufficient to refer to Theorem 2.5.

Consider the neutral functional differential equation

d

dt
Dxt = A(t)xt , (4.16)

where A ∈ C(R,A) and D ∈ A is an operator nonatomic at zero [19, p.67]. As
well as in the case of equation (4.14), the equation (4.16) generates a linear non-
autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉, where X = C × Y , Y =
H(A) and π = (ϕ, σ). The following statement takes place.

Lemma 4.12. Let H(A) be compact and the operator D is stable; i.e., the zero
solution of the homogeneous difference equation Dyt = 0 is uniformly asymptotically
stable. Then the linear non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉,
generated by equation (4.16), is conditionally α-condensing.

Proof. According to [20, p.119, formula (5.18)] the mapping ϕt(·,B) : C → C can
be written as

ϕt(·,B) = St(·) + Ut(·,B)

for all B ∈ H(A), where Ut(·,B) is conditionally completely continuous for t ≥ r.
Also there exist positive constants N, ν such that ‖St‖ ≤ Ne−νt(t ≥ 0). Then the
proof is completed by referring to Theorem 1.5.

Theorem 4.13. Let A ∈ C(R,A) be recurrent (i.e. H(A) is compact minimal
set in the dynamical system of shifts (C(R,A),R, σ) ) and D is stable, then the
following assertions are equivalent:
1. The zero solution of equation (4.14) and all equations

d

dt
Dxt = B(t)xt , (4.17)

where B ∈ H(A), is asymptotically stable, i.e. lim
t→+∞

|ϕt(v,B)| = 0 for all v ∈

C and B ∈ H(A) (ϕt(v,B) is the solution of equation (4.17) with condition
ϕ0(v,B) = v).

2. The zero solution of equation (4.16) is uniformly exponentially stable, i.e. there
are positive numbers N and ν such that |ϕt(v,B)| ≤ Ne−νt|v| for all t ≥ 0, v ∈ C
and B ∈ H(A).

3. All solutions of all equations (4.17) are bounded on R+ and they don’t have
non-trivial solutions bounded on R .

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be the linear non-autonomous dynamical sys-
tem, generated by equation (4.16). According to Lemma 4.12 this system is condi-
tionally α condensing. To finish the proof of Theorem 4.13 it is sufficient to refer
to Theorems 2.3 and 3.4. The theorem is proved.
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Theorem 4.14. Let A ∈ C(R,A) be recurrent (i.e. H(A) is compact minimal in
the dynamical system of shifts (C(R,A),R, σ) ), D is stable, and all solutions of all
equations (4.17) are bounded on R+.
Let 〈(X,T+, π), (Y,T, σ), h〉 be the linear non-autonomous dynamical system gen-

erated by equation (4.16).
Then there are two positively invariant vector subfiberings (X0, h, Y ) and (Xs, h, Y )

of (X,h, Y ) such that:
a. Xy = X

0
y +X

s
y and X

0
y ∩X

s
y = 0y for all y ∈ Y , where 0y = (0, y) ∈ X = E×Y

and 0 is the zero in the Banach space E.
b. The vector subfibering (X0, h, Y ) is finite dimensional, invariant (i.e.πtX0 = X0

for all t ∈ T+) and every trajectory of a dynamical system (X,T+, π) belonging
to X0 is recurrent.

c. There exist two positive numbers N and ν such that |ϕt(v,B)| ≤ Ne−νt|v| for
all (v,B) ∈ Xs, where ϕt(v,B) = U(t,B)v and U(t,B) is the Cauchy operator of
equation (4.17).

Proof. Let 〈(X,T+, π), (Y,T, σ), h〉 be the linear non-autonomous dynamical sys-
tem generated by equation (4.16). In virtue of Lemma 4.12 this non-autonomous
dynamical system is conditionally α-condensing. According to Theorem 1.6 [5]
there exists a positive number M such that |ϕt(v,B)| ≤ M |v| for all t ≥ 0, v ∈ C
and B ∈ H(A). To finish the proof of Theorem 4.14 it is sufficient to refer to
Theorem 3.4.
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