\documentclass[twoside]{article} \usepackage{amssymb, amsthm, amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Cesaro asymptotic equipartition \hfil EJDE--2000/70} {EJDE--2000/70\hfil Stefan Boller \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol.~{\bf 2000}(2000), No.~70, pp.~1--11. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu \quad ftp ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Cesaro asymptotic equipartition of energy in the coupled case % \thanks{ {\em Mathematics Subject Classifications:} 36G10, 47B25, 47D03, 34D05. \hfil\break\indent {\em Key words:} Cesaro asymptotic equipartition of energy; selfadjoint operator matrices; \hfil\break\indent direct sum Hilbert space; evolution equations; initial boundary value problem; \hfil\break\indent coupled boundary condition. \hfil\break\indent \copyright 2000 Southwest Texas State University. \hfil\break\indent Submitted March 14, 2000. Published November 20, 2000.} } \date{} % \author{ Stefan Boller } \maketitle \begin{abstract} It is well known from earlier results that certain types of selfadjoint operators, e.g. operators allowing a representation as operator matrices, show equipartition of energy. In this paper we examine the question whether there are more selfadjoint operators showing equipartition of energy in the Cesaro mean. For this purpose we proof a necessary and sufficient criterion for equipartition of energy and use this criterion to show equipartition for a system of partial differential equations with a coupled boundary condition. \end{abstract} \newtheorem{thm}{Theorem}[section] \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \theoremstyle{definition} \newtheorem{defn}{Definition}[section] \theoremstyle{remark} \newtheorem{rem}{Remark}[section] \numberwithin{equation}{section} \newcommand{\thmref}[1]{Theorem~\ref{#1}} \newcommand{\lemref}[1]{Lemma~\ref{#1}} \newcommand{\corref}[1]{Corollary~\ref{#1}} \newcommand{\defnref}[1]{Definition~\ref{#1}} % Enclose the argument in vert-bar delimiters: \newcommand{\abs}[1]{\left\lvert#1\right\rvert} % Enclose the argument in double-vert-bar delimiters: \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\SProd}[2]{\bigl\langle#1\rvert#2\bigr\rangle} % Hilbert-R"aume \renewcommand{\H}{\mathcal{H}} % Definitionsbereich, Nullraum und Wertebereich \newcommand{\Dom}[1]{\mathcal{D}(#1)} \newcommand{\Ran}[1]{\mathcal{W}(#1)} \newcommand{\Lim}[1]{\lim_{#1\rightarrow\infty}} \section{Introduction} In this paper we examine the phenomenon of asymptotic equipartition of energy for abstract evolution equations involving selfadjoint operators. This means that if a Hilbert space $\H$ is the direct sum of $n$ Hilbert spaces $\H_{i}$ ($i=1,\dots,n$), then, roughly speaking, each component contributes equal parts to the conserved total energy. More precisely, let $\pi_{i}$ be the (orthogonal) projections on the $i$-th component of $\H$ with respect to this decomposition and let $A$ be be a selfadjoint operator on $\H$ with domain $\Dom{A}$. Then we consider the following evolution equation: \begin{equation}\label{Diffgl} \begin{split} D_{0}u(t)&=Au(t)\\ u(0)&=u_0, \end{split} \end{equation} where $D_{0}=\frac{1}{2\pi i}\partial_{0}$ is the differentiation with respect to the time $t$. The uniquely determined solution of \eqref{Diffgl} is the unitary group $U(t):=e^{2\pi iAt}$ generated by $2\pi iA$. Since $U(\cdot)$ is unitary, the square of the norm $\norm{u(t)}^{2}$ (the energy) of $u(t)$ is conserved, i.e. \begin{equation*} \sum_{i=1}^{n}\norm{\pi_{i}u(t)}^{2}=\norm{u(t)}^{2}= \norm{U(t)u_{0}}^{2}=\norm{u_{0}}^{2}=\mbox{const.} \end{equation*} Now we can give the following \begin{defn}\label{equipartition} \begin{enumerate} \item The selfadjoint operator $A$ admits \textbf{asymptotic equipartition of energy}, if for all $u_{0}\in\H$ and the corresponding solution $u(t)$ the following asymptotic condition is true \begin{equation} \Lim{t}\norm{\pi_i u(t)}^{2}=\frac{1}{n}\norm{u_0}^{2}. \end{equation} (See \cite{GS79}) \item The selfadjoint operator $A$ admits \textbf{asymptotic equipartition of energy in the Cesaro sense}, if for all $u_{0}\in\H$ and the corresponding solution $u(t)$ the following asymptotic condition is true \begin{equation} \Lim{T}\frac{1}{T}\int_{0}^{T}\norm{\pi_i u(t)}^{2}dt= \frac{1}{n}\norm{u_0}^{2}. \end{equation} \end{enumerate} \end{defn} The earliest results concerning energy equipartition seem to be presented by Brodsky (\cite{Br67}) and Lax and Phillips (\cite[Cor. 2.3, p. 106]{LaxPhi67}). In the following there was a continuing interest in this question. In particular Goldstein and Sandefur contributed a lot to this area (e.g. \cite{Go69}, \cite{Go70}, \cite{GS79}, \cite{Go86}, \cite{GS87}, they treated also more general situations). Goldstein (\cite{Go70}) and Duffin (\cite{Du70}) showed results concerning energy equipartition from a finite time on. Also Picard and Seidler (cf. e.g. \cite{PiSe87}, \cite{Pi86}, \cite{Pi91}) examined equipartition results, where they choose matrices of operators as an ansatz for the operator $A$. For further contributions consult the references. A recent paper is written by Goldstein, de~Laubenfels and Sandefur (\cite{GLS93}). In the known results on equipartition the operator $A$ is assumed to be decomposable in operators with special properties, e.g. as a matrix of closed operators or generators of (regularized) semigroups. This is typically the case for a partial differential equation with decoupled boundary conditions, i.e. when the boundary condition restricts the components separately. In this paper we want to examine, if there are more operators not belonging to this class, which nevertheless show equipartition of energy. For simplicity we restrict our considerations to the case of energy equipartition in the Cesaro sense for 2-component systems ($n=2$ in \defnref{equipartition}). After giving some prerequisites in section \ref{sec3} we proof a necessary and sufficient condition for asymptotic energy equipartition in section \ref{sec3:2}. This condition contains some previous results. Further we apply this condition in section \ref{sec2:2} to a system of partial differential equations with a coupled boundary condition. In the last section we give a short outlook on open questions in this area. \section{Prerequisites} \label{sec3} As the starting point for our considerations we use the following ansatz given by Picard and Seidler in \cite{PiSe87} essentially equivalent to that examined by Goldstein in \cite{Go69}, \cite{Go70}. They considered $2\times 2$-operator-matrices in $\H=\H_{1}\oplus\H_{2}$ of the form \begin{equation*} A=\begin{pmatrix}0&B^{*}\\B&0\end{pmatrix} \end{equation*} with $B:\Dom{B}\subset\H_{1}\to\H_{2}$ a densely defined, closed operator and the corresponding initial value problem \begin{equation}\label{AnfsProbl} \begin{split} D_{0}u&=Au\\ u(0)&=u_{0}\in\H. \end{split} \end{equation} They proved the following theorem concerning equipartition in the Cesaro sense: \begin{thm}\label{satzPic2} For every initial value $u_{0}\in\H$ the following asymptotic relations hold \begin{equation*} \begin{split} \Lim{T}\frac{1}{T}\int_{0}^{T}\norm{\pi_{1}u(t)}^{2}dt &=\tfrac{1}{2}\norm{Qu_{0}}^{2}+\norm{\pi_{1}Pu_{0}}^{2}\\ \Lim{T}\frac{1}{T}\int_{0}^{T}\norm{\pi_{2}u(t)}^{2}dt &=\tfrac{1}{2}\norm{Qu_{0}}^{2}+\norm{\pi_{2}Pu_{0}}^{2}, \end{split} \end{equation*} where $P$, $Q=I-P$ are the projections to the kernel and the closure of the range of $A$, respectively. \end{thm} For the proof of this theorem the following lemma is essential. We will use this lemma later, so we cite it here. \begin{lem}\label{lemPic} Let $E_{\lambda}$ be the spectral measure of $A$ and $T:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$. Then \begin{equation*} TE_{I}=E_{-I}T \end{equation*} for all intervals $I\subset\mathbb{R}$. \end{lem} As a corollary of \thmref{satzPic2} we get the following result originally showed by Goldstein in \cite[Theorem 4]{Go70}: \begin{cor}\label{corPic} We have energy equipartition in the Cesaro sense for every initial value $u_{0}\in\H$ of \eqref{AnfsProbl} if and only if $0$ is not an eigenvalue of $A$. \end{cor} If looking for a criterion for equipartition of energy in the Cesaro sense we must examine the asymptotic behaviour of \begin{equation}\label{produkt} S_{u_{0}}(t):=\SProd{u(t)}{T u(t)}= \norm{\pi_{1}u(t)}^{2}-\norm{\pi_{2}u(t)}^{2}, \end{equation} where $u(t)$ is the solution of \eqref{Diffgl} for the initial value $u_{0}$ and $T$ is the operator defined in \lemref{lemPic}. We see that we have energy equipartition if and only if \begin{equation}\label{eqpart} \Lim{T}\frac{1}{T}\int_{0}^{T}S_{u_{0}}(t)dt= \Lim{T}\frac{1}{T}\int_{0}^{T}\norm{\pi_{1}u(t)}^{2}dt -\Lim{T}\frac{1}{T}\int_{0}^{T}\norm{\pi_{2}u(t)}^{2}dt= 0. \end{equation} Inserting the unitary group $e^{2\pi iAt}$ generated by $2\pi iA$ in \eqref{produkt} we get: \begin{equation*} S_{u_{0}}(t)=\SProd{\exp(2\pi iAt)u_{0}}{T\exp(2\pi iAt)u_{0}}. \end{equation*} For the examination of this expression the following theorem about a functional calculus for scalar products of non-commuting operator functions is quite useful. \begin{thm}\label{prodsatz} Let $A,B$ be selfadjoint (unbounded) operators on a Hilbert space $\H$, $T$ a bounded operator on $\H$. Let further $f,g:\mathbb{R}\to\mathbb{C}$ be measurable functions (measurable with respect to the Borel-$\sigma$-algebras on $\mathbb{R}$ and $\mathbb{C}$, respective), and $x\in\Dom{f(A)}$, $y\in\Dom{g(B)}$. Further let $\overline{f}\otimes g$ be integrable with respect to $\mu_{x,y}$, where $\mu_{x,y}$ is the uniquely determined (complex) measure on the Borel-$\sigma$-algebra $\Sigma^{2}$ in $\mathbb{R}^{2}$, such that for every measurable rectangle $R=M_{1}\times M_{2}$ ($M_{1},M_{2}\in\Sigma$, $\Sigma$ the Borel-$\sigma$-algebra on $\mathbb{R}$) \begin{equation*} \mu_{x,y}(R)=\SProd{E_{M_{1}}x}{TF_{M_{2}}y} \end{equation*} is valid. Here $E_{M_{1}}$ and $F_{M_{2}}$ are the spectral measures with respect to the two operators $A$ and $B$, resp. For this measure we have the following result: \begin{equation}\label{prodgleich} \SProd{f(A)x}{Tg(B)y}= \int_{\mathbb{R}\times\mathbb{R}}\overline{f}\otimes gd^{2}\mu_{x,y}. \end{equation} \end{thm} \begin{proof} The proof is standard measure theory, so we omit the details (cf. \cite{Bol}). \end{proof} \begin{cor}\label{cor31} The assertion of \thmref{prodsatz} applies in particular to bounded, measurable functions $f$, $g$. \end{cor} \section{A Criterion for Energy Equipartition for Selfadjoint Operators} \label{sec3:2} We want to use \corref{cor31} for the examination of \eqref{produkt}. Let $T$ be the following bounded operator on $\H$: \begin{equation*} (u,v)\mapsto T(u,v)=(u,-v). \end{equation*} According to \corref{cor31} we have \begin{equation}\label{eq3:2:1} S_{u_{0}}(t)=\int_{\mathbb{R}\times\mathbb{R}}\exp(-2\pi i(\lambda-\mu) t) d^{2}\nu_{u_{0}}(\lambda,\mu), \end{equation} where $\nu_{u_{0}}$ is the measure of \thmref{prodsatz} for $\SProd{E_{M_{1}}u_{0}}{TE_{M_{2}}u_{0}}$, with $E_{\lambda}$ the spectral measure of $A$. Now we will prove the following theorem giving a necessary and sufficient criterion for energy equipartition. \begin{thm}\label{satz3:2:1} If $u_{0}\in\H$, $S_{u_{0}}$ as in \eqref{eq3:2:1}, then \begin{equation*} \Lim{T}\frac{1}{T}\int_{0}^{T}{S_{u_{0}}(t)dt}= \int_{\left\{\lambda=\mu\right\}}{d^{2}\nu_{u_{0}}(\lambda,\mu)} . \end{equation*} \end{thm} \begin{proof} Applying Fubini's theorem and the dominated convergence theorem we get \begin{equation*} \begin{split} \Lim{T}\frac{1}{T}\int_{0}^{T}{S_{u_{0}}(t)dt} &=\Lim{T}\frac{1}{T}\int_{0}^{T}\left({\int_{\mathbb{R}\times\mathbb{R}} \exp(-2\pi i(\lambda-\mu) t)d^{2}\nu_{u_{0}}(\lambda,\mu)}\right)dt\\ &=\Lim{T}\frac{1}{T}\int_{\left\{\lambda\not=\mu\right\}} {\left(\int_{0}^{T}{\exp(-2\pi i(\lambda-\mu) t)dt}\right) d^{2}\nu_{u_{0}}(\lambda,\mu)}\\ &\quad+\Lim{T}\frac{1}{T}\int_{\left\{\lambda=\mu\right\}} {\left(\int_{0}^{T}{\exp(-2\pi i(\lambda-\mu) t)dt}\right) d^{2}\nu_{u_{0}}(\lambda,\mu)}\\ &=\int_{\left\{\lambda\not=\mu\right\}} {\Lim{T}\frac{\exp(-2\pi i(\lambda-\mu)T)-1}{-2\pi i(\lambda-\mu)T} d^{2}\nu_{u_{0}}(\lambda,\mu)}\\ &\quad+\int_{\left\{\lambda=\mu\right\}}{d^{2}\nu_{u_{0}}(\lambda,\mu)}\\ &=\int_{\left\{\lambda=\mu\right\}}{d^{2}\nu_{u_{0}}(\lambda,\mu)}, \end{split} \end{equation*} which proves the assertion. \end{proof} As a consequence of this theorem we can formulate \begin{thm}\label{satz3:2:2} Asymptotic energy equipartition in the Cesaro sense for the operator $A$ holds, if and only if \begin{equation}\label{int:beh} \int_{\left\{-K<\lambda=\mu\leq K\right\}} {d^{2}\nu_{u_{0}}(\lambda,\mu)}=0 \end{equation} for every $u_{0}\in\H$ and every $K\in\mathbb{R}^{+}$. \end{thm} \begin{proof} It follows from \eqref{eqpart} with the help of \thmref{satz3:2:1}. \end{proof} For calculation purposes the next lemma is useful. \begin{lem}\label{satz3:2:3} We have \begin{equation*} \int_{\left\{-K<\lambda=\mu\leq K\right\}}{d^{2}\nu_{u_{0}}(\lambda,\mu)}= \Lim{n}\sum_{k=-n}^{n}{\SProd{E_{I_{k}^{(n)}}u_{0}} {TE_{I_{k}^{(n)}}u_{0}}}, \end{equation*} where \begin{equation*} I_{k}^{(n)}:=\left\{\lambda\in\mathbb{R}\vert (k-\tfrac{1}{2})\epsilon_{n}<\lambda\leq(k+\tfrac{1}{2})\epsilon_{n} \right\} \quad(k=-n,\dots,n) \end{equation*} for $n\in\mathbb{N}$ and $\epsilon_{n}=\frac{2K}{2n+1}$. \end{lem} \begin{proof} By the dominated convergence theorem we get \begin{equation*} \int{\chi_{\left\{-K<\lambda=\mu\leq K\right\}} d^{2}\nu_{u_{0}}(\lambda,\mu)} =\Lim{n}\sum_{k=-n}^{n} \int{\chi_{(I_{k}^{(n)}\times I_{k}^{(n)})}(\lambda,\mu) d^{2}\nu_{u_{0}}(\lambda,\mu)}, \end{equation*} because \begin{equation*} \chi_{\left\{-K<\lambda=\mu\leq K\right\}}= \Lim{n}\chi_{\bigcup_{k=-n}^{k=n}(I_{k}^{(n)}\times I_{k}^{(n)})}, \end{equation*} where $\chi_{M}$ is the characteristic function of the set $M$. Furthermore we get \begin{equation*} \begin{split} \int{\chi_{(I_{k}^{(n)}\times I_{k}^{(n)})}(\lambda,\mu) d^{2}\nu_{u_{0}}(\lambda,\mu)} &=\int{\chi_{I_{k}^{(n)}}(\lambda)\chi_{I_{k}^{(n)}}(\mu) d^{2}\nu_{u_{0}}(\lambda,\mu)}\\ &=\SProd{E_{I_{k}^{(n)}}u_{0}} {TE_{I_{k}^{(n)}}u_{0}}. \end{split} \end{equation*} \end{proof} \begin{rem} From the last result we can extract the condition given by Picard and Seidler in \cite{PiSe87} using \lemref{lemPic}. \end{rem} In the case of operators with compact resolvent we get the following simple criterion. \begin{cor}\label{cor3:1} Let $A$ be an operator with compact resolvent. Then we have energy equipartition in the Cesaro sense if and only if \begin{equation*} \norm{\pi_1 P_j u_{0}}^{2}=\norm{\pi_2 P_j u_{0}}^{2} \text{ for all $u_{0}\in\H$.} \end{equation*} \end{cor} \begin{proof} If $A$ has a compact resolvent there exists an at most countably infinite set of eigenvalues of $A$ with no (finite) accumulation point. Hence there exists an $N\in\mathbb{N}$, such that in every interval $I_{k}^{(N)}$ of \lemref{satz3:2:3} lies at most one eigenvalue, i.e. $E_{I_{k}^{(n)}}=0$ or $E_{I_{k}^{(n)}}=P_j$, where $P_j$ is the (orthogonal) projection on the eigenspace for the eigenvalue, which lies in the interval $I_{k}^{(n)}$. Using \lemref{satz3:2:3} and \thmref{satz3:2:2} we get the condition: \begin{equation*} 0=\Lim{n}\sum_{k=-n}^{n}{\SProd{E_{I_{k}^{(n)}}u_{0}} {T E_{I_{k}^{(n)}}u_{0}}} =\sum_{j}{\SProd{P_j u_{0}}{T P_j u_{0}}} \text{ for all $u_{0}\in\H$.} \end{equation*} Here the summation extends over all $j$, that lie in the interval $(-K,K\rbrack$. Since the condition is true for every $u_{0}$ and every $K\in\mathbb{R}^{+}$, the assertion follows. \end{proof} \begin{rem} The condition of \corref{cor3:1} can be formulated also in terms of the eigenvectors of $A$. Let $B_k:=\left\{x_j^{(k)}\right\}$ be a (finite) orthonormal basis of the eigenspace of the $k$-th eigenvalue $\lambda_k$. Then the condition of \corref{cor3:1} becomes \begin{equation*} \SProd{\pi_i x_j^{(k)}}{\pi_i x_l^{(k)}}=\frac{1}{2}\delta_{jl} \quad i=1,2,\forall j,k,l. \end{equation*} \end{rem} \section{Energy Equipartition for a System with Coupled Boundary Condition}\label{sec2:2} In this section we examine as an example for the theorem just proven an operator which can not be regarded as a matrix of operators like in the articles of Picard and Seidler (\cite{PiSe87}, \cite{Pi91}). We consider on the Hilbert space $\H:=L_{2,p}(I)\oplus L_{2,q}(I)$, with the scalar product \begin{equation*} \SProd{(u,v)}{(u',v')}_{\H}:=\SProd{u}{u'}_{p}+\SProd{v}{v'}_{q}:= \SProd{p^{-1}u}{u'}_{0}+\SProd{q^{-1}v}{v'}_{0}, \end{equation*} where $p,q\in L_{\infty}(I)$ with $p(x),q(x)\geq c_{0}>0$ for almost every $x\in I$ ($I=(a,b)$ with $a,b\in\mathbb{R}$), the following operator: \begin{subequations}\label{Op:Def} \begin{equation} A= \begin{pmatrix} 0 &pD\\ qD&0 \end{pmatrix} \end{equation} with domain \begin{equation} \Dom{A}:=\{(u,v)\in\H_{1}(I)\oplus\H_{1}(I)| u(a)+\alpha v(a)=0\land u(b)+\beta v(b)=0\}, \end{equation} where $\H_{1}(I)=W^{1}_{2}(I)$ is the Sobolev space of once differentiable $L_{2}$-functions ($\H_{1}(I)\subset\mathbf{C}(\overline{I})$!). \end{subequations} By a simple calculation we see that this operator is selfadjoint for $\alpha,\beta$ being purely imaginary but can not be regarded as an operator matrix (with respect to the given decomposition of $\H$), if $\alpha\not=0$ or $\beta\not=0$. Also one can see that $\lambda=0$ is an eigenvalue if and only if $\alpha=\beta$. With standard arguments we can now show that $A$ is an operator with compact resolvent (cf. e.g. \cite[ch.7.4, p.142ff]{Le86} or \cite{Bol}). We get the following \begin{thm}\label{komp} \begin{enumerate} \item $\Ran{A}$ is closed, where $\Ran{A}$ is the range of $A$. \item $A^{-1}: \Ran{A}\rightarrow\Dom{A}\cap\Ran{A}$ exists, \item $A^{-1}$ is compact. \end{enumerate} \end{thm} If we restrict $A$ to the range $\Ran{A}$ we get a selfadjoint operator with compact resolvent, which will be denoted again with $A$. Using \corref{cor3:1} we prove now the following \begin{thm}\label{randbed} Energy equipartition in the Cesaro sense is true for the operator $A$, if and only if the components $v_{i}$, $w_{i}$ of the (orthonormal) eigenvectors $u_{i}$ corresponding to the eigenvalue $\lambda_{i}$ fulfill the following condition \begin{equation}\label{rand} \left[\overline{w_{i}}v_{j}\right]_{a}^{b}=0\quad\text{for every $i,j$.} \end{equation} \end{thm} \begin{proof} With the orthonormality of the eigenvectors we get \begin{equation*} \begin{split} \lambda\delta_{ij} &=\lambda \SProd{u_{i}}{u_{j}}_{\H} =\SProd{\lambda u_{i}}{u_{j}}_{\H} =\SProd{A u_{i}}{u_{j}}_{\H}=\\ &=\SProd{pD w_{i}}{v_{j}}_{p}+ \SProd{qD v_{i}}{w_{j}}_{q} =\SProd{D w_{i}}{v_{j}}_{0}+ \SProd{D v_{i}}{w_{j}}_{0}. \end{split} \end{equation*} Integrating by parts and inserting the differential equation we get furthermore \begin{equation*} \begin{split} \SProd{D w_{i}}{v_{j}}_{0}+\SProd{D v_{i}}{w_{j}}_{0}&= \SProd{w_{i}}{D v_{j}}_{0}+\SProd{D v_{i}}{w_{j}}_{0} -\frac{1}{2\pi i}\left[\overline{w_{i}}v_{j}\right]_{a}^{b}=\\ &=\SProd{w_{i}}{q^{-1}\lambda w_{j}}_{0} +\SProd{q^{-1}\lambda w_{i}}{w_{j}}_{0} -\frac{1}{2\pi i}\left[\overline{w_{i}}v_{j}\right]_{a}^{b}=\\ &=2\lambda\SProd{w_{i}}{w_{j}}_{q} -\frac{1}{2\pi i}\left[\overline{w_{i}}v_{j}\right]_{a}^{b}. \end{split} \end{equation*} Hence \begin{equation*} \SProd{w_{i}}{w_{j}}_{q}=\frac{1}{2}\delta_{ij} +\frac{1}{4\pi i\lambda}\left[\overline{w_{i}}v_{j}\right]_{a}^{b}. \end{equation*} Similarly we get \begin{equation*} \SProd{v_{i}}{v_{j}}_{q}=\frac{1}{2}\delta_{ij} -\frac{1}{4\pi i\lambda}\left[\overline{w_{i}}v_{j}\right]_{a}^{b}, \end{equation*} which shows the assertion with the help of \corref{cor3:1}. \end{proof} As an example for operators satisfying the condition of the last theorem but not belonging to the class considered in \cite{PiSe87}, i.e. $\alpha\not=0$ or $\beta\not=0$, we examine now the special case $p=q$ with $p\in\mathbf{C}_{1}(\overline{I})$. Then the components $v,w$ of the eigenvectors are continuously differentiable and the eigenvalue equation for the operator $A$ can be formulated classically. So we have simple spectrum by the Picard-Lindel\"of theorem. Further we get the following conservation law: \begin{lem}\label{erhaltung} Let $A$ be as described above and let $u,v$ be the components of the eigenvectors of $A$, then \begin{equation*} \abs{v}^{2}+\abs{w}^{2}=const. \end{equation*} \end{lem} \begin{proof} By multiplication of the differential equation by $\overline{(pD)v}$ and $(pD)w$, resp., we get \begin{equation*} \begin{split} \overline{(pD)v}(pD)w&=\overline{(pD)v}\lambda v\\ (pD)w\overline{(pD)v}&=(pD)w\overline{\lambda w}. \end{split} \end{equation*} Hence ($0\not=\lambda\in\mathbb{R}$): \begin{equation*} -(D\overline{v})v=(Dw)\overline{w} \end{equation*} and \begin{equation*} D\abs{v}^{2}=(Dv)\overline{v}+(D\overline{v})v= -(D\overline{w})w-(Dw)\overline{w}=-D\abs{w}^{2}. \end{equation*} \end{proof} Now we can derive the following \begin{thm} Let $A$ be as in \lemref{erhaltung}. We have energy equipartition in the Cesaro sense for $A$ iff $\alpha=\beta$ or $\alpha=-1/\beta$. \end{thm} \begin{proof} Inserting the boundary condition in \lemref{erhaltung} and \thmref{randbed} we get \begin{equation*} \abs{w(b)}^{2}=\frac{-\alpha^{2}+1}{-\beta^{2}+1}\abs{w(a)}^{2}. \end{equation*} and \begin{equation*} \begin{split} \overline{w(b)}v(b)-\overline{w(a)}v(a)&= \overline{w(b)}(-\beta)w(b)-\overline{w(a)}(-\alpha)w(a)=\\ &=\left(\beta\frac{\alpha^{2}-1}{-\beta^{2}+1} +\alpha\right)\abs{w(a)}^{2} . \end{split} \end{equation*} The last expression is $0$ if and only if the following quadratic equation is fulfilled: \begin{equation*} \beta(\alpha^{2}-1)=\alpha(\beta^{2}-1). \end{equation*} (if $\abs{v(a)}^{2}=0$ we get, by \lemref{erhaltung}, that $v=0$ which is not an eigensolution.) \end{proof} \begin{rem} It can also be shown that this result remains true, when the interval $I$ is unbounded, e.g. $I=(0,\infty)$, and $p=q=1$ (see \cite{Bol}). \end{rem} \section{Outlook}\label{sec5} Beginning with the result presented here there a some further questions to solve. First there is the question, when do we have equipartition in the strong sense, i.e. when do the components converge pointwise to the ratio $\frac{1}{n}$ of the total energy, not only in the Cesaro mean. Here in analogy to \thmref{satz3:2:1} the behaviour of $\Lim{t}S_{u_{0}}(t)$ has to be examined. Here we expect, that we must state another condition like the {\em Riemann-Lebesgue-Condition} or the absolute continuity of the spectrum in the decoupled case. It could be, that the absolute continuity of the spectral measure implies also the absolute continuity of the measure $\nu_{u_{0}}$ of \thmref{prodsatz} on the subsets $D_{1}:=\{(\lambda,\mu)\in\mathbb{R}^{2}\vert\lambda<\mu\}$ and $D_{2}:=\{(\lambda,\mu)\in\mathbb{R}^{2}\vert\lambda>\mu\}$, resp. So for absolute continuous spectrum we would have the same condition as in the Cesaro case. Further we could extend the considerations to bigger systems than $n=2$. Now it can easily be seen that you can extend the condition of \thmref{satz3:2:2} for $n>2$ to \begin{equation} \int_{\left\{-K<\lambda=\mu\leq K\right\}} {d^{2}\nu_{u_{0},k}(\lambda,\mu)}=0 \text{ for all $u_{0}\in \H$ and for every $k=1,\dots,n$.,} \end{equation} where the measures $\nu_{u_{0},k}$ are constructed like the measure $\nu_{u_{0}}$ with the operators $T_{k}=(\delta_{i,j}-n\delta_{i,j}\delta_{k,i})_{i,j}$ ($k=1,\dots,n$). Last you could omit the restriction to selfadjoint operators and examine equations as Goldstein et al. did for instance in \cite{Go86}, \cite{GS87}, or \cite{GLS93} where they considered the ratio of the components of the total energy, which is asymptotically constant in certain cases. \smallskip \noindent \textbf{Acknowledgment.} The author thanks professor R. Picard for supporting this diploma thesis by discussing and useful hints. Also he wishes to thank professors Voigt and Timmermann, and the referee for his/her comments on the first version of this paper. \bibliographystyle{plain} \begin{thebibliography}{10} \bibitem{Bol} St. Boller. \newblock Asymptotische Energiegleichverteilung bei Evolutionsgleichungen zu selbstadjungierten Systemen partieller Differentialgleichungen mit gekoppelter Randbedingung ({\em german}). \newblock Diploma thesis, Dresden, 1998. \bibitem{Br67} A.~R.~Brodsky. \newblock On the asymptotic behavior of solutions of the wave equation. \newblock {\em Proc. Amer. Math. Soc.}, 18:207--208, 1967. \bibitem{Ch87a} S.~Chirita. \newblock Asymptotic partition of energy in linear generalized thermoelasticity. \newblock {\em J. Appl. Math. Phys. (ZAMP)}, 38:703--716, 1987. \bibitem{Ch87} S.~Chirita. \newblock On the asymptotic partition of energy in linear thermoelasticity. \newblock {\em Quart. Appl. Math.}, XLV(2):327--340, 1987. \bibitem{DG86} G.~Dassios and M.~Grillakis. \newblock Asymptotic equipartition rate for wave motion in an even number of space dimensions. \newblock {\em J. Math. Anal. Appl.}, 120:44--52, 1986. \bibitem{Du70} R.~J.~Duffin. \newblock Equipartition of energy in wave motion. \newblock {\em J. Math. Anal. Appl.}, 32:386--391, 1970. \bibitem{Go69} J.~A. Goldstein. \newblock An asymptotic property of solutions of wave equations. \newblock {\em Proc. Amer. Math. Soc.}, 23:359--363, 1969. \bibitem{Go70} J.~A. Goldstein. \newblock An asymptotic property of solutions of wave equations II. \newblock {\em J. Math. Anal. Appl.}, 32:392--399, 1970. \bibitem{Go86} J.~A. Goldstein. \newblock Asymptotics for bounded semigroups on Hilbert space. \newblock In Rainer Nagel, editor, {\em Aspects of Positivity in Functional Analysis}, pages 49--62, T\"ubingen, 1986. \bibitem{GC77} D.~Goldstein~Costa. \newblock On partition of energy for uniformly propagative systems. \newblock {\em J. Math. Anal. Appl.}, 58:56--62, 1977. \bibitem{GS79} J.~A.~Goldstein and J.~T.~Sandefur. \newblock Abstract equipartition of energy theorem. \newblock {\em J. Math. Anal. Appl.}, 67:58--74, 1979. \bibitem{GS87} J.~A.~Goldstein and J.~T.~Sandefur. \newblock An abstract d'Alembert formula. \newblock {\em SIAM J. Math Anal.}, 18:842--856, 1987. \bibitem{GLS93} J.~A.~Goldstein, R.~de~Laubenfels, and J.~T.~Sandefur. \newblock Regularized Semigroups, Iterated Cauchy Problems and Equipartition of Energy. \newblock {\em Mh. Math.}, 115:47--66, 1993. \bibitem{LaxPhi67} P.~D.~Lax and R.~S.~Phillips. \newblock {\em Scattering Theory}. \newblock Academic Press, New York, 1967. \bibitem{Le86} R.~Leis. \newblock {\em Initial Boundary Value Problems in Mathematical Physics}. \newblock Teubner\&Wiley, 1986. \bibitem{Le77} H.~A. Levine. \newblock An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space: The Lagrange identity method. \newblock {\em J. Differential Equations}, 24:197--210, 1977. \bibitem{Pi86} R.~Picard. \newblock On a class of operator matrices permitting equipartition of energy. \newblock {\em Comm. Partial Differential Equations}, 11:1083--1109, 1986. \bibitem{Pi91} R.~Picard. \newblock Asymptotic partition of energy. \newblock {\em J. Differential Equations}, 89(1):110--120, 1991. \bibitem{PiSe87} R.~Picard and S.~Seidler. \newblock On asymptotic equipartition of energy. \newblock {\em J. Differential Equations}, 68(2):198--209, 1987. \bibitem{Wi66} C.~H.~Wilcox. \newblock Wave operators and asymptotic solutions of wave propagation problems of classical physics. \newblock {\em Arch. Rational Mech. Anal.}, 22:37--78, 1966. \end{thebibliography} \noindent{\sc Stefan Boller}\\ Graduiertenkolleg Quantenfeldtheorie\\ Universit\"at Leipzig, Augustusplatz 10/11\\ 04109 Leipzig, Germany\\ e-mail: Stefan.Boller@itp.uni-leipzig.de \end{document}