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Nonclassical Sturm-Liouville problems and

Schrödinger operators on radial trees ∗

Robert Carlson

Abstract

Schrödinger operators on graphs with weighted edges may be defined
using possibly infinite systems of ordinary differential operators. This
work mainly considers radial trees, whose branching and edge lengths de-
pend only on the distance from the root vertex. The analysis of operators
with radial coefficients on radial trees is reduced, by a method analogous
to separation of variables, to nonclassical boundary-value problems on the
line with interior point conditions. This reduction is used to study self
adjoint problems requiring boundary conditions ‘at infinity’.

1 Introduction

The consideration of differential operators on graphs has old roots in physics
and physical chemistry [11, 21, 22, 26, 34]. More recently there have been
mathematical studies, some concerned with the interpretation of differential
operators on graphs as limits of partial differential operators on thin domains
[10, 12, 18, 33, 35], while others focus on novel problems of spectral or scattering
theory [4, 5, 6, 14, 23]. Additional mathematical work includes applications
to nerve impluse transmission [24], and the study of evolution equations on
networks [2, 19]. There is also a large literature where discrete problems in
probability, combinatorics, and group theory lead to difference operators on
graphs [7, 17, 25, 31].
Given a formally self adjoint differential operator on a graph G, one of the

first problems is to describe the domains for which the operator is self adjoint
on L2(G). As in the study of classical ordinary differential operators, the do-
main description will typically involve boundary conditions. When the graph
has a finite set of edges the problem of characterizing self adjoint domains for
Schrödinger differential operators may be interpreted as a classical boundary-
value problem. The domain description is also fairly straightforward if the graph
has infinitely many edges, but the set of edge lengths has a positive lower bound
[6].
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2 Nonclassical Sturm-Liouville problems EJDE–2000/71

There is an added complication when more general infinite graphs are consid-
ered. The completion of the graph as a metric space may introduce additional
points whose neighborhoods contain infinitely many vertices. In some cases
boundary conditions at these new points are needed.
A simple example constructed using the interval (0, 1) will illustrate the

problem. Suppose the vertices of the graph are xj = 1− 2−j for j = 0, 1, 2, . . . ,
while the edges are (xj , xj+1). At 0 impose the boundary condition f(0) = 0.
At other vertices impose the conditions

f(x+j ) = f(x
−
j ), f

′(x+j ) = f
′(x−j ), j = 1, 2, 3, . . . .

By classical theory the operator −D2 is symmetric, but not essentially self
adjoint, with the domain consisting of compactly supported smooth functions
satisfying these boundary and interior point conditions. The self adjoint exten-
sions are determined by an additional boundary condition of the form c1f(1) +
c2f

′(1) = 0.
To shed light on the problem of domain description and other problems of

operator theory, this work provides a detailed analysis of Schrödinger operators
−D2 + q and the associated eigenvalue equation

−y′′ + qy = λy (1)

for certain highly symmetric trees which we call radial trees (see Figure 1). A
radial tree will be a tree whose vertex degrees and edge lengths are functions of
the distance in the graph from the root vertex. In addition the coefficient q will
be assumed to be radial.

Figure 1: A radial tree

Since the radial trees are highly symmetric, one expects some corresponding
simplification in the description of the invariant subspaces of radial operators
L = −D2+q. Roughly speaking, this simplification comes through a ‘separation
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of variables’, which provides an orthogonal sum decomposition of L2 for the tree
into invariant subspaces Uv,k for the Schrödinger operator. For each subspace
Uv,k there is an interval In ⊂ R and an isometry taking Uv,k onto a weighted
Hilbert space L2(In, wn) which carries the restriction of L to a self adjoint
operator Ln which is given by −D2+ q on its domain. Functions in the domain
of Ln satisfy a sequence of jump conditions at interior points of the interval.
Having reduced the study of radial Schrödinger operators on the radial tree

to a sequence of nonclassical boundary-value problems on intervals, these in-
terval problems are then analyzed. This analysis is most detailed for trees of
finite volume, where separated boundary conditions at the interval endpoints
determine the domains of self adjoint operators, much as in the classical Sturm-
Liouville problems. These operators have discrete spectrum. The eigenvalues
may be identified with the roots of an entire function. Growth estimates for the
entire function provide information about the distribution of eigenvalues.
The next section of the paper provides an overview of differential operators

on graphs. Some results are established in a general setting for a graph G whose
metric space completion is compact, or has finite volume. The third section
uses subspaces of radial functions with support on subtrees of the initial radial
tree T , together with discrete Fourier transforms, to carry out the separation
of variables reduction of the Schrödinger operators.
The fourth section uses product formulas to analyze solutions of (1) on inter-

vals In ⊂ R, subject to jump conditions coming from the graph vertices. When
the radial tree T has finite volume the asymptotic behaviour of the solutions as
x increases has a fairly simple description. In particular one finds generalized
boundary values at the right endpoint of the interval. Finally, in the fifth section
the boundary behaviour of solutions to (1) is used to describe Sturm-Liouville
type boundary-value problems giving rise to self adjoint operators.
The author gratefully acknowledges some improvements to the paper which

were made by an anonymous referee.

2 Differential operators on graphs

In this work a graph G will have a countable vertex set and a countable edge set.
Unless otherwise stated, graphs are assumed to be connected, and each vertex
appears in only finitely many edges. Each edge has a positive weight (length)
lj.
A topological graph G may be constructed from this data [20, p. 190]. For

each edge ej let [aj , bj ] be a real interval of length lj . Identify interval endpoints
if the corresponding edge endpoints are the same vertex v. The Euclidean
length on the intervals may be extended to paths consisting of finitely many
nonoverlapping intervals by addition, and a metric d(p1, p2) on G is defined as
the infimum of the lengths of paths joining p1 and p2.
Several results from the theory of metric spaces will be used; [32, pp.139–

170] may be consulted for the proofs. As a metric space G has a completion
G. Recall that a metric space X is totally bounded if for every ε > 0 there is
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a finite set x1, . . . , xn ∈ X such that
⋃
kB(xk, ε) covers X . A metric space is

compact if and only if it is complete and totally bounded. This gives a picture
of graphs with compact completion.

Proposition 2.1. A graph G has compact completion G if and only if for every
ε > 0 there is a finite set of edges ek, k = 1, . . . , n such that for every y ∈ G
there is a edge ek and a point xk ∈ ek such that d(xk, y) < ε.

The identification of edges ej with intervals facilitates the discussion of
function spaces and differential operators. Let L2(G) denote the Hilbert space
⊕jL2(ej) with the inner product

〈f, g〉 =

∫
G
fg =

∑
j

∫ bj
aj

fj(x)gj(x) dx, f = (f1, f2, . . . ).

A formal differential operator L = −D2 + q acts componentwise on functions
f ∈ L2(G) in its domain. In our initial discussion the functions q are assumed
to be real valued, measurable, and bounded. The boundedness requirement will
be relaxed when radial operators are discussed.
In this paper the differential operators on G will have a common dense do-

main D0. To describe D0 we first distinguish interior vertices, which have more
than one incident edge, from boundary vertices which have a single incident
edge. Edges ek incident on a vertex v are denoted ek ∼ v. The functions
f ∈ D0 are C∞ on each (closed) edge, vanish except on finitely many edges,
vanish in a neighborhood of each boundary vertex, and satisfy the continuity
and derivative conditions

fj(v) = fk(v), ej , ek ∼ v, (2)

∑
ek∼v

f ′k(v) = 0.

The derivatives here are computed in local coordinates where v corresponds to
the left endpoint of each edge interval.
The operator L0 = −D2 + q with domain D0 is symmetric on L2(G). By

essentially classical calculations [6] one may show that the adjoint operator L∗0 is
−D2+q acting on a domain D1. The domain D1 consists of those functions f ∈

L2(G) for which the components fn and f
(1)
n are continuous, f

(1)
n is absolutely

continuous on [an, bn], Lf ∈ L2(G), and the vertex conditions (2) are satisfied
at interior vertices.
Since multiplication by q is a bounded self adjoint operator on L2(G), the

operator −D2+ q will be self adjoint on a domain D ⊃ D0 if and only if −D2 is
self adjoint on D [29, p. 162]. For now we restrict our attention to the operator
−D2. Integration by parts shows that −D2 on the domain D0 has the associated
positive quadratic form

Q(f, g) =

∫
G
f ′g′.
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Symmetric operators with positive forms always have self adjoint extensions
(the Friedrich’s extension).
It will be convenient to have criteria which insure that various self adjoint

extensions of L0 have compact resolvent, so that the spectrum will consist of a
discrete set of eigenvalues of finite multiplicity. Some results in this direction
may be achieved by employing the form Q. We start with a compactness result
in the space C(G) of continuous functions on the metric completion of G with
the sup norm.

Theorem 2.2. Suppose that G is a connected graph which has a compact metric
completion G. Let B denote the set of continuous functions on G which are
absolutely continuous on each edge, and satisfy∫

G
|f |2 + |f ′|2 ≤ 1.

Then each function f ∈ B has a unique continuous extension to G, and the
(extended) set B has compact closure in C(G).

Proof. Since G has a compact metric completion, it has a finite diameter L.
There is a simple path γ ⊂ G of length at least L/2. For any function f ∈ B
the Cauchy-Schwarz inequality gives the integral bound∫

γ

|f | ≤ (

∫
G
|f |2)1/2(L/2)1/2 ≤ (L/2)1/2.

Thus there is a point x0 ∈ G such that |f(x0)| ≤ (L/2)−1/2 .
Pick any other point x ∈ G and connect x0 and x by a simple path of

length at most L. Integrate along the path (using the continuity of f across the
vertices) to get

|f(x)− f(x0)|
2 = |

∫ x
x0

f ′(t) dt|2 ≤ d(x, x0)

∫ x
x0

|f ′(t)|2 dt.

This gives a uniform bound for each f ∈ B. Replacing x0 above by another
point y ∈ G shows that the functions in B are uniformly equicontinuous.
By [32, p. 149] the functions in B extend by continuity to a uniformly

equicontinuous family on the completion of G. The Arzela-Ascoli theorem [32,
p. 169] then gives the result.

If G has finite volume then a uniformly convergent sequence also converges
in L2. Moreover the compactness of the set B will imply compactness of the
resolvent for self adjoint extensions of L0 whose associated quadratic form is Q
[30, p. 245].

Corollary 2.3. If G has finite volume then B has compact closure in L2. If L
is a self adjoint extension of L0 whose associated quadratic form is

〈Lf, g〉 =

∫
G
f ′g′,

then L has a compact resolvent.
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When G has finite volume, explicit lower bounds on (nonconstant) eigenval-
ues may be obtained via the next lemma.

Proposition 2.4. Suppose that f is real valued,∫
G
f2 = 1

and f(x) = 0 for some x ∈ G. Then
∫
G
(f ′)2 ≥ vol(G)−2.

Proof. There is some point y ∈ G such that f2(y) ≥ vol(G)−1. Connect y to x
by a simple path γ. By the Cauchy-Schwarz inequality

vol(G)−1 ≤ f(y)2 = [f(y)− f(x)]2 = [

∫
γ

f ′(t) dt]2 ≤ vol(G)

∫
G
|f ′|2 dV.

One may consider whether the finite volume hypothesis in Corollary 2.3 may
be relaxed to the assumption that the diameter of G is finite, or that the comple-
tion of G is compact. We will sketch the construction of a counterexample. Start
with the half open interval (0, 1], and place vertices at the points 1/n, n ≥ 2.
At each of these vertices attach Kn loops of length rn, with limn→∞ rn = 0.
The resulting graph has finite diameter and compact completion. Next, con-
struct smooth functions which have a constant value cn > 0 on the loops at
1/n, and which vanish at x if the distance from x to the set of loops at 1/n
exceeds σn > 0. By a suitable selection of the constants Kn, rn, cn and σn, one
finds symmetric operators L0 which are bounded by any positive number ε on a
subspace of infinite dimension. In particular no self adjoint extension can have
compact resolvent.

3 Decomposing L2(T ) of a radial tree

A graph is a tree if it is connected and simply connected. A weighted tree is a
radial tree if there is a vertexR, the root, such that the degree of vertices and the
lengths of edges are functions of the distance from R. A (formal) Schrödinger
operator −D2 + q on a radial tree T will be called formally radial if q is a
function of the distance from R.
Since the formally radial operator L0 = −D2 + q with the domain D0 is

symmetric and bounded below, it has self adjoint extensions. Such a self adjoint
Schrödinger operator on a radial tree will be called radial if the domain is
invariant under the automorphisms of the tree which fix R. One of the main
goals of this work is to describe in detail some radial Schrödinger operators.
In pursuit of this goal, the symmetries of the tree will be used to decompose
L2(T ). Similar decompositions appear in [23] and [31].
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Radial trees are closely associated to a class of abelian groups. Given a
finite or infinite sequence of positive integers δ(0), δ(1), . . . , let Zδ(i) denote the
additive group of integers modulo δ(j). The group Z = ⊕iZδ(i) will be the
complete direct sum of the groups Zδ(i), whose elements are sequences with i-th
component from Zδ(i). Addition is performed componentwise in Zδ(i) .

It will help to establish some notation for the tree (see Figure 2). If u,w ∈ T ,
say that w is below u if the simple path from w to R contains u. Points w ∈ T
have a metric depth, which is the distance from the root. The vertices v have a
combinatorial depth j, which is the number of edges separating v from the root
R. Below each vertex with combinatorial depth j will be δ(j) incident edges.
The classical degree of the root is thus δ(0), while the degree of vertices with
combinatorial depth j > 0 is δ(j)+1. The vertices at combinatorial depth j > 0
may be identified with the elements of the group Zj = ⊕

j−1
i=0Zδ(i). Similarly,

edges may be indexed by their vertex of greatest depth. The number of edges
extending from depth j − 1 to j is Nj =

∏j−1
i=0 δ(i). The full group Z may be

identified with the set of all simple paths of maximal length starting at the root.

Figure 2: A radial tree with δ(0) = 3, δ(1) = 2

With this identification the group Z acts on the tree by permuting vertices
and edges. In particular the components (0, . . . , 0,Zδ(i), 0, . . . ) rotate subtrees.
Using this group action the space L2(T ) will be decomposed into a countable
orthogonal sum of invariant subspaces for the radial Schrödinger operators, with
certain symmetries [31]. The reduced Schrödinger operators may then be inter-
preted as differential operators defined on intervals of R.

Two types of subtrees will be associated with vertices v having incident
edges below them. Tv will denote the subtree rooted at v and consisting of all
vertices and edges below v. For l ∈ Zδ(j), let Sv,l denote the tree rooted at v,
but containing only the one edge (v, l) immediately below v and all vertices and
edges below that edge.
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Next we introduce a collection of subspaces Uv,k of L
2(T ), defined for k =

0, . . . , δ(0)− 1 if v = R, and defined for k = 1, . . . , δ(j)− 1 if v has depth j > 0.
To construct these subspaces, begin with the functions f which are radial on
the tree Sv,0, and which vanish on the complement of Tv. For k = 1, . . . , δ(j)−1
the subspace Uv,k is the set of functions satisfying

f(tl) = e
2πikl/δ(j)f(t0), tl ∈ Sv,l, (3)

l = 0, . . . , δ(j)− 1, k = 1, . . . , δ(j)− 1,

where the points tl ∈ Sv,l have the same metric depth as t0. In case v = R, the
subspace UR,0 consists of all radial functions on T .

Theorem 3.1. The distinct subspaces Uv,k are orthogonal, and their linear
span is dense in L2(T ).

Proof. For two distinct vertices v, w, the trees Tv and Tw are either disjoint,
in which case the subspaces Uv,k and Uw,m are obviously orthogonal, or after
a possible relabeling, v lies above w. Notice that each element f of Uv,k is
radial when restricted to Tw. If w has combinatorial depth j and g ∈ Uw,m the
calculation

∫
Tw

f ḡ =

δ(j)−1∑
l=0

∫
Sw,l

f(xl)ḡ(xl)

=

δ(j)−1∑
l=0

∫
Sw,0

f(x0)ḡ(x0)e
−2πilm/δ(j) = 0, m = 1, . . . , δ(j)− 1,

shows that Uw,m is orthogonal to functions f which are radial on Tw.
If k 6= m the orthogonality of functions f ∈ Uv,k and g ∈ Uv,m is established

with a similar computation,

∫
Tv

f ḡ =

δ(j)−1∑
l=0

∫
Sv,0

f(x0)e
2πilk/δ(j) ḡ(x0)e

−2πilm/δ(j)

=

∫
Sv,0

f(x0)ḡ(x0)

δ(j)−1∑
l=0

e2πil(k−m)/δ(j) = 0, k −m 6= 0 mod δ(j).

Turning to the denseness of the linear span of the spaces Uv,k, define

Vj = ⊕v,kUv,k, depth(v) ≤ j.

The main idea is to show that for each nonnegative integer j the subspace Vj
includes all functions vanishing below the vertices with combinatorial depth j+1



EJDE–2000/71 Robert Carlson 9

and all functions which are radial on each Sv,l if the combinatorial depth of v
is j. The proof is by induction.
For j = 0 we want to show that any function f supported on an edge (R,m)

incident on R may be written as a linear combination of functions fk ∈ UR,k,
k = 0, . . . δ(0)−1. For t0 in edge (R, 0) and tm in edge (R,m) at the same depth,
define fk by fk(t0) = f(tm). Another discrete Fourier transform calculation
gives

1

δ(0)

δ(0)−1∑
k=0

e−2πikm/δ(0)fk(tl) (4)

=
1

δ(0)

δ(0)−1∑
k=0

e−2πikm/δ(0)e2πikl/δ(0)fk(t0) =
{
f(tm) l = m
0 l 6= m

}
.

Similarly, the linear combinations of functions fk ∈ UR,k includes all func-
tions which are radial on each SR,l.
To complete the argument suppose the induction hypothesis is true for i < j.

For a vertex v with combinatorial depth j the radial functions on Tv are in
Vj−1 by the induction hypothesis. With the addition of the subspaces Uv,k for
k = 1, . . . , δ(j)−1 the argument used for the root R may be adopted with trivial
modifications to handle the general case.

Consider next how the subspaces Uv,k may be used to reduce certain differ-
ential operators on the tree T to a sequence of differential operators with interior
point conditions on intervals In. Take a vertex v with combinatorial depth n
and metric depth xn. Let lj+1 be the length of the edges joining vertices at
combinatorial depth j to vertices at combinatorial depth j+1. For j ≥ n define
a sequence of real numbers xj by xj+1 = xj + lj+1, and take In = ∪j [xj , xj+1].
For x ∈ In, the mapping which sends f ∈ Uv,k to its value f(t) at a point

t ∈ Sv,0 with metric depth x in T is an isometric bijection from Uv,k to a
weighted space L2(In, wn). The weight function wn(x) is equal to N−1n Nj+1
on the interval [xj , xj+1) where as before Nj =

∏j−1
k=0 δ(k). The weighted inner

product is

〈f, g〉 =
∑
j≥n

∫ xj+1
xj

wn(x)f(x)ḡ(x) dx.

Self adjoint operators L = −D2 + q on L2(T ) may be constructed in the
following manner. For the given radial potential q, find self adjoint operators
Ln = −D2 + q on L2(In, wn). Use the identification of L2(In, wn) with the
spaces Uv,k to map f in the domain of Ln into L2(T ), and similarly identify
Lnf with Lf . To satisfy the vertex conditions (2) the functions in the domain
of Ln must satisfy the jump conditions

f(x−j ) = f(x
+
j ), f

′(x−j ) = δ(j)f
′(x+j ), j > n.
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In addition there are vertex conditions at v which must be satisfied. For
vertices v other than the root, functions in Uv,k vanish in the complement of
Tv, so we must have the boundary condition f(xn) = 0. The required vanishing
of the sum of the derivatives at v is always satisfied in Uv,k since

δ(n)−1∑
l=0

e2πikl/δ(n) = 0, k = 1, . . . , δ(n)− 1.

The same considerations apply at the root for the spaces UR,k if k 6= 0.
When k = 0 there are two cases to consider. If δ(0) = 1 then any of the
classical Sturm-Liouville conditions a1f(x0) + b1f(x0) = 0 with a1, b1 ∈ R may
be imposed. If δ(0) > 1 the interior vertex conditions (2) must be satisfied at
the root. This can be achieved for the subspace UR,0 by imposing the condition
f ′(x0) = 0.

4 Solving −y′′ + qy = λy with jump conditions

The symmetries of a radial tree have provided a decomposition of L2(T ) into
orthogonal subspaces Uv,k which may be identified with a weighted Hilbert space
L2(In, wn) on a real interval In. By means of this identification, certain self
adjoint operators Ln = −D2 + q on L2(In, wn) may be used to construct self
adjoint operators L = −D2 + q on L2(T ). Functions in the domain of Ln are
required to satisfy the interior point jump conditions

f(x−j ) = f(x
+
j ), f

′(x−j ) = δ(j)f
′(x+j ), j > n. (5)

In addition, one of the left endpoint boundary conditions a1f(xn)+b1f(xn) = 0
is imposed.
This section will provide an analysis of solutions to (1) satisfying (5). It

is convenient to define x∞ = limj xj ; the value will be +∞ when
∑
j lj = ∞.

The behaviour of solutions to (1) as x → x∞ has implications for the explicit
description of domains for the operators Ln in terms of generalized boundary
conditions at x∞. The growth of solutions as |λ| → ∞ will be used to analyze
the distribution of eigenvalues. In the discussion of operators Ln = −D2+ q on
L2(In, wn) the functions q are still assumed to be real valued and measurable,
but the previous boundedness requirement will be relaxed.
For notational convenience the sequence xn, xn+1, . . . in In will be reindexed

as x0, x1, . . . . The same reindexing will apply to interval lengths lj = xj−xj−1,
the branching numbers δ(j), and the edge counts Nj . The weight wn will simply
be denoted w(x).
A piecewise linear rescaling of variables converts the operator −D2 + q(x)

subject to the jump conditions (5) into a more conventional form. Define

ξ =
x

Nj+1
+

j∑
k=1

xk

Nk
, xj ≤ x < xj+1, Nj =

j−1∏
i=0

δ(i). (6)
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Let ξj = ξ(xj) and observe that ξj+1 − ξj = (xj+1 − xj)/Nj+1. If f satisfies the
jump conditions (5) then F (ξ) = f(x) is continuous with a continuous derivative
on [ξ0, ξ∞).
Similarly, if Y (ξ) = y(x), Q(ξ) = q(x) and

W (ξ) = Nj+1, ξj ≤ x < ξj+1,

then the equation
−y′′ + q(x)y = λy

becomes

−Y ′′ +W (ξ)2Q(ξ)Y = λW (ξ)2Y. (7)

The usual reduction to an integral equation and the method of successive ap-
proximations may be applied to the equation in this form. If z1 = Y , z2 = Y

′

then the integral equation is
(
z1(ξ)
z2(ξ)

)
=

(
z1(ξ0)
z2(ξ0)

)
+

∫ ξ
ξ0

(
0 1

W (s)2[Q(s)− λ] 0

)(
z1(s)
z2(s)

)
ds.

Notice in particular that

∫ ξj
ξ0

W (s)2 ds =

j−1∑
i=0

N2i+1(ξi+1 − ξi) =
j−1∑
i=0

Ni+1(xi+1 − xi) =
j−1∑
i=0

Ni+1li+1,

so that the function W 2 will be integrable on [ξ0, ξ∞) if the graph has finite
volume. If in addition W (ξ)2Q(ξ) is integrable on [ξ0, ξ∞) the usual Picard
iteration method yields a sequence of successive approximations which converge
uniformly to the desired solution on [ξ0, ξ∞). [8, p. 97–98]

4.1 Basic description of solutions to (1)

The jump conditions (5) determine the initial data y(x+j ), y
′(x+j ) from the data

y(x−j ), y
′(x−j ), so solutions on one subinterval [xj , xj+1] have a unique contin-

uation to In. In particular this shows that the space of solutions to (1) on In
satisfying (5) has dimension 2 as a complex vector space.
On each interval [xj , xj+1] the space of solutions of (1) has a basis c(x, xj , λ),

s(x, xj , λ) satisfying

c(xj , xj , λ) = 1, s(xj , xj , λ) = 0,
c′(xj , xj , λ) = 0, s

′(xj , xj , λ) = 1.
(8)

In addition a basis c(x, λ), s(x, λ) may be obtained by continuation of the basis
c(x, x0, λ), s(x, x0, λ) to the entire interval In.
The continuation of solutions of (1) from [x0, x1] to subsequent intervals

[xj , xj+1] may be described using a sequence of transition matrices

τj =

(
1 0
0 δ−1(j)

)
.
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At x−1 the values and derivatives for the functions c and s are the columns of
the 2× 2 matrix (

c(x1, x0, λ) s(x1, x0, λ)
c′(x1, x0, λ) s

′(x1, x0, λ)

)
.

The matrix τ1 takes the vector of initial data at x
−
1 to that at x

+
1 so that the

jump conditions (5) are satisfied:(
y(x+1 )
y′(x+1 )

)
= τ1

(
y(x−1 )
y′(x−1 )

)
.

The solutions c(x, λ) and s(x, λ) on the interval x1 ≤ x < x2 are given by

(c(x, x1, λ), s(x, x1, λ))τ1

(
c(x1, x0, λ) s(x1, x0, λ)
c′(x1, x0, λ) s

′(x1, x0, λ)

)
.

By induction the next result is established.

Lemma 4.1. On the interval xj ≤ x < xj+1 the solution matrix (c, s) for (1)
has the form

(c(x, λ), s(x, λ))

= (c(x, xj , λ), s(x, xj , λ))

j∏
i=1

τi

(
c(xi, xi−1, λ) s(xi, xi−1, λ)
c′(xi, xi−1, λ) s

′(xii, xi−1, λ)

)
.

Consistent with the usage in this lemma, matrix products are assumed to
have factors whose indices decrease from left to right.
The solutions c(x, xj , λ), s(x, xj , λ) may be compared in a standard way ([13],

[27, p. 13]) to the elementary functions cos(ω[x−xj ]), ω−1 sin(ω[x−xj ]), where
ω =

√
λ. Let =(ω) denote the imaginary part of ω. Usually these estimates

emphasize the λ dependence, but we will also need to make the x dependence
explicit. For this reason a sketch of the proof is provided.

Lemma 4.2. Define

Cq(x) = exp(

∫ x
xj

|q(t)| dt)− 1, xj ≤ x ≤ xj+1.

If |x− xj | ≤ 1 the solutions c(x, xj , λ), s(x, xj , λ) of (1) satisfy

|c(x, xj , λ)− cos(ω[x− xj ])| ≤ |ω
−1|e|=ω|[x−xj]Cq(x),

|c′(x, xj , λ) + ω sin(ω[x− xj ])| ≤ e
|=ω|[x−xj]Cq(x),

|s(x, xj , λ)− ω
−1 sin(ω[x− xj ])| ≤ |ω

−2|e|=ω|[x−xj]Cq(x),

|s′(x, xj , λ)− cos(ω[x− xj ])| ≤ |ω
−1|e|=ω|[x−xj]Cq(x).
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Proof. There is no loss of generality if we take xj = 0. By using the variation of
parameters formula, a solution of (1) satisfying y(0, λ) = α, y′(0, λ) = β, with
α, β ∈ C, may be written as a solution of the integral equation

y(x, λ) = cos(ωx)α +
sin(ωx)

ω
β +

∫ x
0

sin(ω[x− t])

ω
q(t)y(t, λ) dt. (9)

Differentiation with respect to x gives

y′(x, λ) = −ω sin(ωx)α+ cos(ωx)β +

∫ x
0

cos(ω[x− t])q(t)y(t, λ) dt. (10)

Start with the elementary estimates

| sin(ωx)|, | cos(ωx)| ≤ e|=ω|x, |ω−1 sin(ωx)| = |

∫ x
0

cos(ωt) dt| ≤ xe|=ω|x.

For c(x, 0, λ) the integral equation (9) and the assumption |x| ≤ 1 give

|e−|=ω|xc(x, 0, λ)| ≤ 1 +

∫ x
0

|q(t)|e−|=ω|t|c(t, 0, λ)| dt.

By Gronwall’s inequality [15, p. 24]

|e−|=ω|xc(x, 0, λ)| ≤ exp(

∫ x
0

|q(t)| dt).

Thus (9) implies that

|c(x, 0, λ) − cos(ωx)| ≤ |ω−1|e|=ω|x
∫ x
0

|q(t)| exp(

∫ t
0

|q(s)| ds) dt

= |ω−1|e|=ω|x[exp(

∫ x
0

|q(t)| dt)− 1].

There is a similar inequality for s(x, 0, λ) and (10) leads to the inequalities
for |y′|.

Elements of C2 are given the Euclidean norm, and 2×2 matrices A will have
the standard operator norm

‖A‖ = sup
‖z‖≤1

‖Az‖, z ∈ C2.

Introduce the matrix

Ω =

(
1 0
0 ω

)
.

If q is integrable and the interval In has finite length, then Lemma 4.2 implies

‖Ω−1
(
c(x, xj , λ) s(x, xj , λ)
c′(x, xj , λ) s

′(x, xj , λ)

)
Ω−

(
cos(ω[x− xj ]) sin(ω[x− xj ])
− sin(ω[x− xj ]) cos(ω[x− xj ])

)
‖

= O(ω−1
∫ xj+1
xj

|q(x)| dx), (11)

the estimates holding uniformly for λ bounded.
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4.2 Asymptotics for c(x, λ) and s(x, λ)

The products arising in Lemma 4.1 may be simplified. For brevity define

Ri(ω) = Ω
−1

(
c(xi, xi−1, λ) s(xi, xi−1, λ)
c′(xi, xi−1, λ) s

′(xi, xi−1, λ)

)
Ω.

Since the matrices τj and Ω commute, we find that

j∏
i=1

τi

(
c(xi, xi−1, λ) s(xi, xi−1, λ)
c′(xi, xi−1, λ) s

′(xi, xi−1, λ)

)
= Ω
[ j∏
i=1

τiRi(ω)
]
Ω−1.

It will help to see that the matrix products have a limit as j →∞. The first
result addresses the case when the tree T has finite metric depth.

Lemma 4.3. Suppose that q is integrable and
∑
j lj < ∞. As j → ∞ the

product
∏j
i=1 τiRi(ω) converges uniformly on compact subsets of C

∗ = C \ {0}
to a meromorphic matrix function M1(ω). If δ(j) > 1 for infinitely many j,
then for each ω we have det(M1(ω)) = 0.

Proof. Let K be a compact subset of C∗, and write Ri(ω) as a perturbation of
the identity, Ri(ω) = I + Ei(ω). Now consider a product

l∏
i=k

τiRi(ω) =

l∏
i=k

[τi + τiEi].

Expand the product as a sum, with each summand the product of l − k + 1
matrices τi or τiEii, and the first term being

∏l
i=k τi.

Using the fact that the matrix norm is subadditive and submultiplicative,
the norm

‖
l∏
i=k

[τi + τiEi]−
l∏
i=k

τi‖

is bounded by the sum of the product of norms of the factors in the terms of the
expanded sum. Noting that ‖τi‖ ≤ 1, these terms are individually no greater

than the corresponding terms in the expansion of
∏l
i=k(1 + ‖Ei‖) − 1. These

observations lead to the estimate

‖
l∏
i=k

[τi + τiEi]−
l∏
i=k

τi‖ ≤
l∏
i=k

(1 + ‖Ei‖)− 1, k ≤ l (12)

The estimate of (11) implies that

Ei = Ri − I = O(li) +O(

∫ xj
xj−1

|q|)
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for ω ∈ K. Since
∑
li < ∞ and q is integrable, the sum

∑
i ‖Ei(ω)‖ converges

uniformly for ω ∈ K. This implies [1, p. 190] convergence of the products

lim
l→∞

l∏
i=k

[1 + ‖Ei(ω)‖],

again uniformly for ω ∈ K.
Based on these observations, (12) shows that the products

∏l
i=k[τi + τiEi]

are bounded independent of l ≥ k, and moreover the difference

l∏
i=k

[τi + τiEi]−
l∏
i=k

τi (13)

goes to 0 as k → ∞ independent of l as long as l ≥ k. Notice that τi = I if
δ(i) = 1, while

lim
j→∞

j−1∏
i=1

τi =

(
1 0
0 0

)
, if δ(i) > 1 infinitely often.

The convergence argument is completed by considering

‖
l∏
i=1

[τi + τiEi]−
k∏
i=1

[τi + τiEi]‖

≤ ‖
l∏

i=dke/2+1

[τi + τiEi]−
k∏

i=dke/2+1

[τi + τiEi]‖ ‖

dke/2∏
i=1

[τi + τiEi]‖.

The factor ‖
∏dke/2
i=1 [τi+ τiEi]‖ is bounded independent of k, and the first factor

on the right of the inequality goes to 0 with k by (13). The products thus form
a Cauchy sequence of analytic functions uniformly for ω ∈ K.
Since the determinant is continuous from 2 × 2 matrices to C, the limit

matrix has determinant 0 if δ(i) > 1 infinitely often.

Notice that each of the matrix products Ω
[∏j

i=1 τiRi(ω)
]
Ω−1 arising in

Lemma 4.1 is an entire function of λ. It follows from Lemma 4.3 that these
products converge uniformly on any circle of positive radius centered at 0, so
by the maximum principle they converge uniformly on any compact set in C.
This establishes the next corollary.

Lemma 4.4. If q is integrable and
∑
j lj <∞, the products

j∏
i=1

τi

(
c(xi, xi−1, λ) s(xi, xi−1, λ)
c′(xi, xi−1, λ) s

′(xi, xi−1, λ)

)
= Ω
[ j∏
i=1

τiRi(ω)
]
Ω−1.

converge to an entire matrix function M(λ) as j →∞.
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Lemma 4.1 and Lemma 4.4 imply

lim
j→∞

(
c(x+j , λ) s(x+j , λ)

c′(x+j , λ) s
′(x+j , λ)

)
=M(λ). (14)

In case
∑∞
i=1 liNi < ∞ and W

2(ξ)Q(ξ) is integrable on [ξ0, ξ∞), we may take
advantage of the change of variables x → ξ discussed at the beginning of this
section. Let C(ξ, λ) and S(ξ, λ) be solutions of (7) satisfying

(
C(ξ0, λ) S(ξ0, λ)
C′(ξ0, λ) S

′(ξ0, λ)

)
= I.

Because (7) is essentially regular on a finite interval, the matrix

(
C(ξ∞, λ) S(ξ∞, λ)
C′(ξ∞, λ) S

′(ξ∞, λ)

)

will be nonsingular. Consequently, either limj→∞ c(xj , λ) or limj→∞ s(xj , λ)
will be nonzero, and M(λ) is not the zero function. If q = 0 and

∑∞
i=1 li < ∞

the same conclusion may be established by direct computation of M(0).

Theorem 4.5. Suppose that
∑
j lj < ∞ and q is integrable. Then every so-

lution of −y′′ + q(x)y = λy on [x0, x∞) satisfying the jump conditions (5) is
bounded. If in addition M(λ) is not the zero function, then except possibly for
a discrete set of λ ∈ C there are linearly independent solutions y1(x, λ), y2(x, λ)
satisfying

lim
x→x∞

y1(x, λ) = β 6= 0, lim
x→x∞

y2(x, λ) = 0.

If
∑
j lj <∞ and δ(j) > 1 infinitely often, then every solution satisfies

lim
j→∞

y′(x−j , λ) = lim
j→∞

y′(x+j , λ) = 0,

and

lim
x→x∞

y′(x, λ) = 0, x /∈ {xj}.

Proof. By virtue of (14), for every λ ∈ C the functions c(x, λ), s(x, λ), c′(x, λ),
and s′(x, λ) are bounded. Since limj→∞ lj = 0, we find that

lim
x→x∞

(c(x, λ), s(x, λ)) = lim
j→∞
(c(x+j , λ), s(x

+
j , λ)) = (M11(λ),M12(λ)).

Write

c′(x−j+1)− c
′(x+j ) =

∫ x−j+1
x+j

c′′(t)dt =

∫ x−j+1
x+j

[q(t)− λ]c(t)dt. (15)
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Since c(t, λ) is bounded and q(t) is integrable, the condition
∑
j lj <∞, implies

that

lim
j→∞

|c′(x−j+1)− c
′(x+j )| = 0.

The jump condition gives c′(x+j ) = c
′(x−j )/δ(j), or

lim
j→∞

c′(x−j )/δ(j) = lim
j→∞

c′(x+j ) = lim
j→∞

c′(x−j+1) = lim
j→∞

c′(x−j ),

which forces limj→∞ c
′(x−j ),= 0 if δ(j) > 1 infinitely often, and consequently

limx→x∞ c
′(x) = 0. The argument is the same for s(x, λ), and so

limx→x∞ y
′(x, λ) = 0 for any solution y.

Thus M21(λ) = 0 = M22(λ). By assumption M(λ) is not identically 0. If,
for instance, M11(0) 6= 0, the function c(x, λ) satisfies

lim
x→x∞

c(x, λ) =M11(λ) 6= 0,

except possibly for a discrete set of λ ∈ C. Thus we may take y1(x, λ) = c(x, λ),
and y2(x, λ) may be selected from the null space of the functional y(x∞).

An additional growth estimate will be useful when the distribution of eigen-
values is considered.

Theorem 4.6. Suppose that
∑
lj < ∞ and q is integrable. Then the matrix

function M(λ) is entire of order 1/2.

Proof. It will suffice to establish the desired estimate for the function M1(ω) =∏
τjRj(ω). Let

Fj =

(
cos(ωlj) sin(ωlj)
− sin(ωlj) cos(ωlj)

)
, lj = xj − xj−1,

and define Gj = Rj − Fj . Then we have

‖M1(ω)‖ ≤
∏
‖τjRj(ω)‖ ≤

∏
‖Rj(ω)‖ ≤

∏
[‖Fj‖+ ‖Gj‖].

Notice that the matrix Fj is normal, with orthonormal eigenvectors(
1/
√
2

i/
√
2

)
,

(
1/
√
2

−i/
√
2

)
,

and eigenvalues exp(±iωlj). Thus

‖Fj‖ = e
|=ωlj |,

while the estimates of Lemma 4.2 give

‖Gj‖ ≤ |ω|
−1[exp(

∫ xj
xj−1

|q|)− 1]e|=ωlj|.
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It follows that

∏
[‖Fj‖+ ‖Gj‖] ≤ e

|=ω
∑
j lj |
∏
[1 + |ω|−1(exp(

∫ xj
xj−1

|q|)− 1)],

and the product on the right is convergent uniformly for |ω| ≥ 1 since

| exp(

∫ xj
xj−1

|q|)− 1| = O(

∫ xj
xj−1

|q|),

which is summable. As desired, there is a constant C1 such that

‖M1(ω)‖ ≤ C1e
|=ω

∑
j lj |.

5 Operator Theory

5.1 Deficiency Indices

This section is concerned with the identification of self adjoint boundary-value
problems for −D2+q on the interval In. By means of the separation of variables
results this will also provide self adjoint operators on the tree. When the func-
tion q is bounded the theory of deficiency indices [9] is helpful. This approach
is used first. More singular cases are then treated for trees with finite volume.
In case q is bounded, consider the symmetric operator S = −D2 + q whose

domain consists of smooth functions on In satisfying the jump conditions (5),
having support in a finite set of intervals, and vanishing, along with their deriva-
tives, at x0 and x∞. Recall that the dimensions of the deficiency subspaces
N(S∗ − λI) are constant for λ with positive, respectively negative imaginary
part.
As one can see using the ideas in [6], elements of the deficiency subspaces

must be classical solutions of the differential equation −y′′ + qy = λy on each
subinterval [xk, xk+1] satisfying the jump conditions (5), hence the dimension
of each deficiency subspace is no bigger than 2. Since S is bounded below, the
deficiency indices are the same.
The operator S may be extended to a symmetric operator S1 by replacing the

requirement that functions and their derivatives vanish at x0 with the classical
boundary condition

af(0) + bf ′(0) = 0, a, b ∈ R, a2 + b2 > 0.

Since S1 is a proper symmetric extension of the closure of S, the deficiency
indices of S1 must be either (1, 1) or (0, 0). To determine whether the operator
is essentially self adjoint, or requires an additional boundary condition ‘at ∞’,
it is necessary to consider bounds on the solutions to (1).
The fact that solutions of the equation −y′′+qy = λy have limits as x→ x∞

allows us to determine the deficiency indices of S1. First of all, in the finite
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volume case
∑
Nj lj < ∞, all solutions of this equation are square integrable.

This means that the deficiency indices of S are (2, 2), and those of S1 are (1, 1).
Now consider the case

∑
lj < ∞,

∑
Nj lj = ∞. If q = 0 then M(λ) is not the

zero function, and Theorem 4.5 says that for all but a discrete set of λ ∈ C there
is a solution of (1) which has a nonzero limit at x∞. Such a solution cannot
be in L2(In, w), so the deficiency indices of S in this case must be either (0, 0)
or (1, 1). Since S1 is a proper symmetric extension of S, it must be essentially
self adjoint. The addition of the bounded operator multiplication by q does not
change the self adjointness. We summarize with the next result.

Theorem 5.1. Suppose that q is bounded, and the edge lengths lj satisfy
∑
lj <

∞. If
∑
Njlj < ∞ the deficiency indices of S are (2, 2). If

∑
Nj lj = ∞ the

deficiency indices of S are (1, 1). In case
∑
Njlj = ∞ the operator Ln =

−D2 + q whose domain is the set of functions in the domain of S∗ satisfying
the boundary conditions

af(x0) + bf
′(x0) = 0, a, b ∈ R, a

2 + b2 > 0,

is a self adjoint operator on L2(In, w).

5.2 Trees with finite volume

For trees with finite volume it is particularly convenient to use the change of
variables x→ ξ of (6). This change of variables provides a Hilbert space isom-
etry from L2(In, w) onto L

2([ξ0, ξ∞),W
2(ξ)) since

∫
In

f(x)g(x)w(x) dx =

∫ ξ∞
ξ0

F (ξ)G(ξ)W 2(ξ) dξ.

The quadratic form for the operator S becomes

∫
In

(|f ′|2 + q(x)|f |2)w(x) dx =

∫ ξ∞
ξ0

(W (ξ)−2|F ′(ξ)|2 +Q(ξ)|F (ξ)|2)W 2(ξ) dξ.

If q(x) is merely integrable rather than being bounded, the description of oper-
ator domains becomes more delicate. The quadratic form approach for singular
ordinary differential operators may be found in [16, p. 343].
For our purposes it will be convenient to directly construct the Green’s

function for the boundary-value problem

−Y ′′ +W (ξ)2[Q(ξ)− λ]Y =W (ξ)2F (ξ), (16)

a1Y (ξ0) + b1Y
′(ξ0) = 0, a2Y (ξ∞) + b2Y

′(ξ∞) = 0.

where ai, bi ∈ R and a2i + b
2
i > 0.

Let D denote the set of functions G ∈ L2([ξ0, ξ∞),W 2(ξ)) which are contin-
uous, with absolutely continuous derivative, and such that [W (ξ)−2D2+Q]G ∈
L2([ξ0, ξ∞),W

2(ξ)).
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Theorem 5.2. Assume that
∑
Nj lj <∞ and that W 2(ξ)Q(ξ) is integrable on

[ξ0, ξ∞). The functions in D which also satisfy a set of boundary conditions in
(16) is a domain on which the operator Ln =W (ξ)−2D2+Q is self adjoint with
compact resolvent on L2([ξ0, ξ∞),W

2(ξ)).

Proof. Since the argument is straightforward the proof is merely outlined. As
noted earlier, (7) may be treated as a regular problem on the finite interval
[ξ0, ξ∞). If U(ξ, λ) and V (ξ, λ) are nontrivial solutions of (7) satisfying the
boundary conditions at ξ0 and ξ∞ respectively, then the solution Y (ξ, λ) of (16)
may be written as [3, p.309]

Y (ξ, λ) =

∫ ξ∞
ξ0

G(ξ, η, λ)W 2(η)F (η) dη, (17)

with

G(ξ, η, λ) =
{
U(ξ)V (η)/σ, ξ0 ≤ ξ ≤ η,
U(η)V (ξ)/σ, η ≤ ξ ≤ ξ∞,

}
σ = V U ′ − UV ′.

As in the classical case eigenvalues of (16) must be real, and are the roots
of a nontrivial entire function. Except at the eigenvalues σ 6= 0, and the func-
tions U(ξ, λ) and V (ξ, λ) are bounded on [ξ0, ξ∞). The condition

∑
Nj lj <∞

implies that bounded measurable functions are in L2([ξ0, ξ∞),W
2(ξ)). If F ∈

L2([ξ0, ξ∞),W
2(ξ)) then Y (ξ) given by (17) is bounded by the Cauchy-Schwartz

inequality. That is, except at eigenvalues of (16) the integral operator G(λ) de-
fined by (17) is bounded on L2([ξ0, ξ∞),W

2(ξ)), and is self adjoint for λ ∈ R.
The range of G(λ) defines a domain on which W (ξ)−2D2+Q is self adjoint, and
G(λ) is its resolvent, which is compact since the spectrum is discrete.

Suppose the hypotheses of Theorem 5.2 hold. The explicit formula shows
that the resolvents for the boundary-value problems on [ξ0, ξ∞) are the strong
limits of the resolvents [28, pp. 284–290] obtained by imposing the right end-
point conditions at ξj , and taking the limit as j → ∞. This gives the sense in
which radial Schrödinger operators on infinite trees are the limits of finite tree
operators.
To characterize the distribution of eigenvalues, let n(r) be the number of

eigenvalues λm with |λm| ≤ r.

Theorem 5.3. The eigenvalues λm of an operator Ln as described in Theo-
rem 5.2, counted with multiplicity, satisfy

n(r) ≤ O(r1/2+ε)

for every ε > 0.

Proof. The function a2z(ξ∞, λ)+ b2z
′(ξ∞, λ) whose roots are the eigenvalues of

L, is entire of order 1/2 by Theorem 4.6. Since each eigenvalue has multiplicity
at most 2, the result follows from the analogous result for the roots of an entire
function of order 1/2, [36, p. 64].
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Eigenvalue distributions for a wide variety of weighted Laplacians on trees
are studied in [23].
Except for the implicit consequences of Proposition 2.4, we have not obtained

any description of the dependence of the eigenvalues of Ln on n. In some special
cases there is a simple spectral mapping relating the eigenvalues of Ln = −D2

and Ln+k = −D2. Suppose that for some k > 0 and 0 < r < 1 the branching
indices and lengths satisfy

δ(n+ k) = δ(n), ln+k = rln, n = 1, 2, . . . ,

and that
∑
ljNj < ∞. Assume that functions f in the domain of Ln satisfy

the left endpoint boundary condition f(xn) = 0. The conditions at x∞, chosen
independent of n, are either f(x∞) = 0 or limj→∞Njf

′(xj) = 0. The mapping

Y (x) = y(xn+k + r(x − xn))

takes functions y in the domain of Ln+k to Y in the domain of Ln. If y is an
eigenfunction for Ln = −D2 with eigenvalue λ, then Y is an eigenfunction for
Ln+k = −D2 with eigenvalue r2λ, and conversely. For these cases we obtain
the relation

spec(Ln) = r
2spec(Ln+k).

5.3 Mixed boundary conditions on the tree

In closing it is interesting to note that the techniques which have been developed
here to reduce radial operators L on L2(T ) may also be employed to consider
operators with mixed boundary conditions ‘at infinity’. As before the tree T
and the potential q are radial. Suppose that v(i), for i = 1, . . . , Nj , are the
distinct vertices with combinatorial depth j > 0. Assume that

∑
Nj lj < ∞,

and that for each i a boundary condition

aiF (ξ∞) + biF
′(ξ∞) = 0, ai, bi ∈ R

is given.
The determination of a domain for this operator begins with a change of

the interior vertex conditions at the vertices v(i). We impose the Dirichlet
conditions f(v(i)) = 0 rather than the conditions (2). This new set of conditions
decouples the tree into a finite collection of Nj + 1 subtrees, each of which is
a radial tree with roots v(i) or R. The operator −D2 + q is now radial on
each subtree, so the previous analysis can be employed to identify self adjoint
domains.
To recover the operator with mixed boundary conditions ‘at infinity’, first

take the orthogonal direct sum of self adjoint operators from the subtrees. Now
replace the Dirichlet boundary conditions at the vertices v(i) with the original
interior vertex conditions. The two operators are finite symmetric extensions of
a common operator, and the techniques of [16, p. 188] show that they are both
self adjoint.
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