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NONCLASSICAL RIEMANN SOLVERS

AND KINETIC RELATIONS III: A NONCONVEX

HYPERBOLIC MODEL FOR VAN DER WAALS FLUIDS

Philippe G. LeFloch & Mai Duc Thanh

Abstract. This paper deals with the so-called p-system describing the dynamics

of isothermal and compressible fluids. The constitutive equation is assumed to have

the typical convexity/concavity properties of the van der Waals equation. We search

for discontinuous solutions constrained by the associated mathematical entropy in-

equality. First, following a strategy proposed by Abeyaratne and Knowles and by

Hayes and LeFloch, we describe here the whole family of nonclassical Riemann so-

lutions for this model. Second, we supplement the set of equations with a kinetic

relation for the propagation of nonclassical undercompressive shocks, and we arrive

at a uniquely defined solution of the Riemann problem. We also prove that the so-
lutions depend L1-continuously upon their data. The main novelty of the present

paper is the presence of two inflection points in the constitutive equation. The Rie-

mann solver constructed here is relevant for fluids in which viscosity and capillarity

effects are kept in balance.

1. Introduction

We consider the Riemann problem for a compressible and isothermal fluid de-
scribed by the following two conservation laws of mass and momentum:

∂tu+ ∂xp(v) = 0,

∂tv − ∂xu = 0.
(1.1)

Here v > 0 and u denote the specific volume and the velocity of the fluid, respec-
tively, while the pressure p = p(v) is a given smooth function depending on the
fluid under consideration. The initial datum has the form:

(u, v)(x, 0) =

{
(ul, vl) for x < 0,

(ur, vr) for x > 0,
(1.2)

where (ul, vl) and (ur, vr) are constants. In typical models of (liquid-vapor) phase
transformation, the pressure p admits two inflection points and tends to +∞ at
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v = 0. That is, for some constants a and b, we have

p′′(v) > 0 for v ∈ (0, a) ∪ (b,+∞),

p′′(v) < 0 for v ∈ (a, b),

p′(a) < 0,

lim
v→0

p(v) = +∞, lim
v→+∞

p(v) ≥ 0.

(1.3)

As a consequence, the first derivative p′ attains a maximum value at v = a and,
since p′(a) < 0,

p′(v) < 0 for v > 0.

Of course, the case where v is restricted to remain above some threshold v∗ is
covered also by the theory in this paper, provides one changes v into v − v∗.
The system (1.1) under consideration has the general form of a system of con-

servation laws,

∂tU + ∂xF (U) = 0, U := (u, v), F (U) =
(
p(v),−u

)
. (1.4)

Since p′ < 0, the matrix DF (U) admits two real and distinct eigenvalues, depending
only on v,

λ1(v) := −
√
−p′(v) < 0 <

√
−p′(v) := λ2(v).

Therefore, (1.1) is strictly hyperbolic. Setting c(v) :=
√
−p′(v), which is called the

sound speed, right-eigenvectors of DF (U) may be chosen to be r1(v) := (c(v), 1)
and r2(v) := (−c(v), 1) .
As is customarily, all of the weak solutions of the system (1.1) are required to

fullfil the following entropy inequality

∂tU(u, v) + ∂xF(u, v) ≤ 0,

U(u, v) :=
u2

2
+ Σ(v), F(u, v) = u p(v),

Σ(v) := −

∫ v
0

p(w) dw,

(1.5)

where (U,F ) is a mathematical entropy-entropy flux pair for the system of conser-
vation laws (1.1) (Lax [11]). Under the assumption (1.3), the entropy U is strictly
convex in the conservative variables (u, v).
The present paper is based on recent work by Abeyaratne and Knowles [1, 2],

LeFloch et al. [8–10, 12–14], and Shearer et al. [18, 19] on nonclassical undercom-
pressive shock waves of hyperbolic and hyperbolic-elliptic systems of conservation
laws. We also rely on earlier contributions on propagating phase boundaries in van
der Waals fluids, especially the pioneering work by Slemrod [20–22] and the papers
[3–7].
First of all, in Section 2, we provide a precise description of the set of all Rie-

mann solutions consistent with the two conservation laws (1.1) and the entropy
inequality (1.5). In Section 3, we recall that the Riemann problem admits a unique
(classical) solution characterized by the so-called Liu entropy criterion [17]. This is
the solution usually described in the engineering literature. However the solutions
generated by zero viscosity-capillarity limits associated with the system (1.1) do
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not coincide with the (classical) Riemann solution. Therefore, in Section 4, we
construct solutions that only satisfy the entropy ionequality (1.5). For the sake of
uniqueness, it is known that the so-called kinetic relation should be added. Our
main result (Theorem 4.3) establishes the existence and uniqueness of the weak
solution of the Riemann problem (1.1)-(1.2)-(1.5) satisfying a prescribed kinetic
relation. This represents an extension of previous results by the authors [15-16] on
nonclassical Riemann solvers and kinetic relation. Comparing with our earlier study
[15] of a nonconvex hyperbolic model of elastodynamics, the major novelty is the
existence of two inflexion points in the equation of state (1.3), which significantly
complicates the analysis of the Riemann problem.

2. Entropy Dissipation Function

We are going to investigate the properties of the entropy dissipation function
associated with the entropy inequality (1.5). First, we need to point out basic
properties of the pressure function and introduce some useful notation. Virtually
all of the properties stated in this section can be checked geometrically from the
graph of the function p. In the following we consider points on this graph and refer
to them simply by their v-coordinate.
We rely here on the assumptions (1.3) made on the pressure function. In the

interval (a, b), the function p is concave, and thus remains above its tangent at
the inflection point b. This tangent intersects the graph of p at some other point,
outside the interval (a, b), whose coordinate will be denoted by b−\ < a. Similarly
the tangent to the curve at the other inflection point a also intersects the graph
of p at some point a−\ > b. (This notation will become clear as we will introduce
shortly some functions ϕ−\ and ψ−\.)
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Figure 2.1: Pressure function.

Geometrically on the graph of p, we see that for any v ∈ (b−\, a−\) there exists
exactly two lines which are passing through the point with the coordinate v and
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are also tangent to the graph. Call these two points ψ\(v) and ϕ\(v) with the
convention that ϕ\(v) < ψ\(v). In other words we have

p′
(
ϕ\(v)

)
=
p(v)− p

(
ϕ\(v)

)
v − ϕ\(v)

,

p′
(
ψ\(v)

)
=
p(v)− p

(
ψ\(v)

)
v − ψ\(v)

.

(2.1)

The definition extends to the end points of the interval under consideration by
setting

ϕ\(b−\) = ψ\(b−\) = b and ϕ\(a−\) = ψ\(a−\) = a.

No tangent can be draw from a point outside the interval [b−\, a−\] as the function
p “resembles” a convex function in that region. The two tangent functions ϕ\ and
ψ\ : [b−\, a−\]→ R are going to play a central role in the forthcoming constructions
in Sections 3 and 4.
The following properties are elementary:

Proposition 2.1.

(i) The values v and ψ\(v) always lie on different sides with respect to b, and
the values v and ϕ\(v) always lie on different sides with respect to a, in the
sense that:

(ϕ\(v)− a)(v − a) < 0 for v 6= a, ϕ\(a) = a,

(ψ\(v) − b)(v − b) < 0 for v 6= b, ψ\(b) = b.

(ii) Considering the convex hull of the epigraph of p, we see that there exist two
points c and d such that (Figure 2.1)

b−\ < c < a < b < d < a−\

and

ψ\(c) = d and ϕ\(d) = c.

(iii) The function ψ\ is increasing for v ∈ [b−\, c] and decreasing for v ∈ [c, a−\].
The function ϕ\ is decreasing for v ∈ [b−\, d] and increasing for v ∈ [d, a−\].
Moreover ϕ\ maps [b−\, a−\] onto [c, b], while ψ\ maps [b−\, a−\] onto [a, d].

Consider next the graph of p from a somewhat different perspective. We are in-
terested in the intersection points of any tangent line with the graph itself. Observe
first that the convex hull of the epigraph of p coincides with the epigraph except in
the interval [c, d], defined in Proposition 2.1. Equivalently, the points c and d can
be characterized by the conditions c < a < d < d and

p′(c) =
p(d)− p(c)

d− c
= p′(d).

We observe that the tangent at any point v /∈ [c, d] remains globally below the
graph of p. So we focus on values v ∈ [c, d].
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For all v ∈ (c, d), the tangent at the point with coordinate v intersects the graph
of p at exactly two distinct points, say denoted by ϕ−\(v) and ψ−\(v) with the
convention

ϕ−\(v) < ψ−\(v).

The functions ϕ−\ and ψ−\ are not one-to-one, however one can check geometrically
that, by restricting attention to the interval [a, b], their inverses coincide with the
functions ϕ\ and ψ\ defined above:

ϕ\ ◦ ϕ−\ = ψ\ ◦ ψ−\ = id on the interval [a, b].

We are now ready to investigate the sign of the entropy dissipation function
associated with shock waves. Consider a shock wave solution of the hyperbolic
system (1.1), connecting a left-hand state (u0, v0) to a right-hand state (u1, v1) and
propagating with the speed s ∈ R. For this shock wave to be a weak solution, the
Rankine-Hugoniot relations must hold:

s (u1 − u0)− p(v1)− p(v0) = 0, s (v1 − v0) + u1 − u0 = 0, (2.2)

which yield

s =
p(v1)− p(v0)

u1 − u0
= −

u1 − u0
v1 − v0

.

Therefore, whenever (p(v1)− p(v0))/(v1 − v0) ≤ 0, the shock speed

s = ∓c(v0, v1) := ∓

√
−
p(v1)− p(v0)

v1 − v0
(2.3)

is well-defined and independent of u0 and u1, so we simply set s = s(v0, v1). In
(2.3), the 1– and 2–shocks correspond to the ∓ signs, respectively.
Similarly, the entropy inequality (1.5) holds for the shock wave provided the

corresponding entropy dissipation function is negative:

E(u0, v0;u1, v1) := −s(v0, v1)
(u21 − u20

2
+ Σ(v1)− Σ(v0)

)
+ u1 p(v1)− u0 p(v0)

≤ 0.
(2.4)

An easy calculation based on the Rankine-Hugoniot relations leads to the simpler
expression

E(v0, v1) = −s(v0, v1)
(
Σ(v1)− Σ(v0) +

p(v1) + p(v0)

2
(v1 − v0)

)
. (2.5)

In particular, E = E(v0, v1) is independent of u0 and u1.
It is not difficult to determine the sign of the function E geometrically. Given

some values v0 and v1, the straightline connecting the two corresponding points on
the graph of p may cut the graph at four points at most, and thus may determine at
most three signed areas comprised between the line and the graph, say A1(v0, v1),
A2(v0, v1), and A3(v0, v1). By convention, an area is positive when the graph
is above the straightline and negative otherwise. The notation can be trivially
extended to the situations where only one or two areas are determined by the given



6 Philippe G. LeFloch & Mai Duc Thanh EJDE–2000/72

line. In view of (2.5) we find that the entropy dissipation is essentially the sum of
these three areas:

E(v0, v1) = −s(v0, v1)
(
A1(v0, v1) +A2(v0, v1) +A3(v0, v1)

)
.

In the following we will state various monotonicity properties for the functions
associated with zeros of E. Those porperties can be checked immediately from this
geometrical interpretation of the entropy dissipation.
For definiteness, from now on, we restrict attention to waves propagating with

negative speed. A tedious calculation yields

∂E(v0, v1)

∂v1
=
1

2

√
−

v1 − v0
p(v1)− p(v0)

1

(w − v0)2
M(v0, v1)N(v0, v1), (2.6)

where

M(v0, v1) := −p(v1) + p(v0) + p
′(v1) (v1 − v0)

and

N(v0, v1) := 2
(
Σ(v0)− Σ(v1)

)
− (3 p(v1)− p(v0)) (v1 − v0).

Therefore, the sign of E is given by the signs ofM and N , which we now investigate.
The following properties of the function M are immediately obtained geometri-

cally:

(1) If v0 ∈ (0, b−\) ∪ (a−\,+∞), then

M(v0, v1) > 0 for all v1 6= v0. (2.7a)

(2) If v0 ∈ [b−\, a−\], then

M(v0, v1) < 0 if v1 ∈
(
ϕ\(v0), ψ

\(v0)
)
,

M(v0, v1) = 0 if v1 = v0, ϕ
\(v0) or ψ

\(v0),

M(v0, v1) > 0 otherwise.

(2.7b)

On the other hand, the function Σ being convex, N is bounded away from zero.
Namely we have

N(v0, v1) ≥ 2p(v1)(v1 − v0)− (3p(v1)− p(v0))(v1 − v0)

= −(p(v1)− p(v0))(v1 − v0) > 0, for all v1 6= v0.
(2.8)

We conclude that the functions E and M have the same sign.
If v0 ∈ (0, b−\) ∪

(
a−\,+∞

)
, then, by (2.7a), the entropy dissipation function

E(v0, .) is globally monotone increasing in v1 > 0. If v0 ∈ [b−\, a−\], then, by
(2.7b), it is monotone increasing in

(
0, ϕ\(v0)

]
and in

[
ψ\(v0),+∞

)
, but is monotone

decreasing in
[
ϕ\(v0), ψ

\(v0)
]
. Therefore, in this latter case, the entropy dissipation

attains a maximal value F (v0) := E(v0, ϕ
\(v0)) at v1 = ϕ

\(v0) and a minimal value
G(v0) := E(v0, ψ

\(v0)) at v1 = ψ
\(v0). To determine the sign of E, one must know

the sign of F (v0) and G(v0).
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Regarding F and G as functions of v ∈
[
b−\, a−\

]
, we obtain

dF

dv
(v) = −(p(ϕ\(v)) − v)(ϕ\(v)− v) < 0 iff v ∈ (c, d),

dG

dv
(v) = −(p(ψ\(v)) − v)(ψ\(v)− v) < 0 iff v ∈ (c, d).

Thus, both functions F and G are decreasing in each of the intervals (b−\, c) and
(d, a−\), and are increasing in the interval (c, d). Moreover we have

F (a) = G(b) = 0,

which indecate that F and G are both negative at v = c and positive at v = d.
Also it is not difficult to check that F and G are both positive at v = b−\ and both
negative at v = a−\. Geometrically, in the interval (b−\, b), the graph of p remains
below its tangent at v = b. In the interval (a, a−\), the graph remains below its
tangent at v = a.
For each of the functions F and G, there exist two values denoted by e < f and

e′ < f ′, respectively, which satisfy

e, e′ ∈ (b−\, c), f, f ′ ∈ (d, a−\)

and
F (v) < 0 iff v ∈ (e′, a) ∪ (f, a−\),

F (e′) = F (a) = F (f) = 0,

F (v) > 0 otherwise,

(2.9)

and
G(v) < 0 iff v ∈ (e, b) ∪ (f ′, a−\),

G(e) = G(b) = G(f ′) = 0,

G(v) > 0 otherwise.

(2.10)

In view of (2.7a)–(2.10), we arrive to the following conclusions:

Theorem 2.2. (Fundamental properties of the entropy dissipation)
For each v0 ∈ (0, b−\)∪ (a−\,+∞), the entropy dissipation E(v0, v1) is a globally

monotone decreasing function of v1 > 0. For each v0 ∈ [b−\, a−\], the function v1 7→
E(v0, v1) is monotone increasing in the intervals

(
0, ϕ\(v0)

]
and
[
ψ\(v0),+∞

)
, but

is monotone decreasing in the interval
[
ϕ\(v0), ψ

\(v0)
]
.

More precisely, the entropy inequality (2.4) select the following admissible shock
waves:

(i) If v0 ∈ (0, e] ∪ [f,+∞), then the constraint (2.4) is equivalent to

v1 ≤ v0.

(ii) If v0 ∈ (e, a], then we have E(v0, ψ\(v0)) = G(v0) < 0 and the entropy
dissipation admits three roots. Hence, there exist two values, distinct from
v0 and denoted by ϕ

[
∞(v0) and ψ

[
∞(v0), such that

v0 ≤ a ≤ ϕ
\(v0) ≤ ϕ

[
∞(v0) < ψ\(v0) < ψ[∞(v0)
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and
E(v0, ϕ

[
∞(v0)) = E(v0, ψ

[
∞(v0)) = E(v0, v0) = 0.

The inequality (2.4) is equivalent to

v1 ∈ (0, v0] ∪ [ϕ
[
∞(v0), ψ

[
∞(v0)].

(iii) If v0 ∈ (a, b), there exist two values, distinct from v0 and denoted by ϕ
[
∞(v0)

and ψ[∞(v0), such that

ϕ[∞(v0) < ϕ\(v0) < a < v0 < b < ψ\(v0) < ψ[∞(v0)

and
E(v0, ϕ

[
∞(v0)) = E(v0, ψ

[
∞(v0)) = E(v0, v0) = 0.

The inequality (2.4) is equivalent to

v1 ∈ (0, ϕ
[
∞(v0)] ∪ [v0, ψ

[
∞(v0)].

(iv) If v0 ∈ [b, f), then we have E(v0, ϕ\(v0)) = F (v0) > 0. There exist two
values, distinct from v0 and denoted by ϕ

[
∞(v0) and ψ

[
∞(v0), such that

ϕ[∞(v0) < ϕ\(v0)) < ψ[∞(v0) ≤ ψ
\(v0) ≤ b ≤ v0

and
E(v0, ϕ

[
∞(v0)) = E(v0, ψ

[
∞(v0)) = E(v0, v0) = 0.

The inequality (2.4) is equivalent to

v1 ∈ (0, ϕ
[
∞(v0)] ∪ [ψ

[
∞(v0), v0].

The two functions ϕ[∞ and ψ
[
∞ : [e, f ] → R introduced in Theorem 2.2 play a

central role in the construction of the Riemann solutions. Indeed they determine
some important boundaries of the set of right-hand states that can be reached by an
(admissible) shock wave satisfying the entropy inequality (1.5). Their monotonicity
properties are summarized in the following proposition:

Corollary 2.3. The function ϕ[∞ is monotone decreasing in the interval [e, ψ
\(e)]

with
ϕ[∞(ϕ

[
∞(v)) = v, v ∈ [e, ψ\(e)], (2.12a)

and is monotone increasing in the interval [ψ\(e), f ] with

ψ[∞(ϕ
[
∞(v)) = v, v ∈ [ψ\(e), f ]. (2.12b)

The function ψ[∞ is monotone decreasing in the interval [ϕ
\(f), f ] with

ψ[∞(ψ
[
∞(v)) = v, v ∈ [ϕ\(f), f ], (2.13a)

and is monotone increasing in the interval [e, ϕ\(f)] with

ϕ[∞(ψ
[
∞(v)) = v, v ∈ [e, ϕ\(f)]. (2.13b)
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Moreover,

ϕ[∞(e) = ψ
[
∞(e) = ψ

\(e), ϕ[∞(f) = ψ
[
∞(f) = ϕ

\(f),

and
ϕ[∞(a) = a, ψ[∞(b) = b.

Proof. The last conclusion is an immediate consequence of the values e, f in (2.9)
and (2.10). First of all, we claim that

ϕ[∞(v) ≤ ψ
\(e), v ∈ [e, f ]. (2.14)

Actually, the values v ≥ a satisfy

ϕ[∞(v) ≤ ϕ
\(v) ≤ a ≤ a < b < ψ\(e).

We are left to considering values v ∈ (e, a). The line between e and ψ\(e) crosses
the graph of p at a middle point e∗. Since ψ\(e) lies on the convex part of p, the
line connecting any v ∈ (e∗, ψ\(ψ\(e))), ψ\(ψ\(e)) > a and ψ\(e) cut the graph of p
at some middle point v1 such that

p′(v1) <
p(v)− p(ψ\(e))

v − ψ\(e)
< p′(ψ\(e)).

By a continuity argument, we deduce that there exists a (unique) point v∗ ∈
(v1, ψ

\(e)) such that
p(v)− p(v∗)

v − v∗
= p′(v∗),

i.e.,
ψ\(e) > v∗ = ψ\(v) > ϕ[∞(v),

satisfying (2.14). If v ∈ (e, e∗), it is easy to see that the line connecting v and ψ\(e)
lies below the line connecting e and ψ\(e). The convexity and concavity properties
of the pressure function then guarantees that

E(v, ψ\(e)) < 0.

In view of the item (ii) of Lemma 2.2, we deduce (2.14). Besides, it is not difficult
to check that

ψ−\(v) > ψ\(v), for all v ∈ (b, d). (2.15)

Now, let v ∈ [e, a), so that ϕ[∞(v) > a. If ϕ[∞(v) ∈ (a, b], then

ψ[∞(ϕ
[
∞(v)) > b > v,

which, by the skew-symmetry property of E, yields (2.12a). Assume that ϕ[∞(v) ∈
(b, ψ\(e)]. We have, since v ∈ (a, b)

v1 := ϕ
[
∞(v) < ϕ−\(v) := v2 ∈ (b, d).
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In view of (2.15) and the monotonicity of the function ψ−\ on the interval (a, d), it
holds that

ψ[∞(ϕ
[
∞(v)) = ψ

[
∞(v1) > ψ−\(v1) > ψ−\(v2) > ϕ\(v2) = v.

The last inequality and the skew-symmetry of E, yields (2.12a) as well. Let v ∈
(a, b), then ϕ[∞(v) < a. The inequalities (ii) of Lemma 2.2 yield

ψ[∞(ϕ
[
∞(v)) > ψ\(ϕ[∞(v)) ≥ b > v,

which again yields (2.12a). Let v ∈ (b, ψ\(e)), then ϕ[∞(v) < ϕ\(v) < a < ψ[∞(v).
Therefore,

E(v′, ψ\(e)) = −E(ψ\(e), v′) < 0, for all v′ ∈ (e, a) ⊂ (e, ψ[∞(ψ
\(e))),

which, in particular for v′ = ϕ[∞(v), leads us to

ψ[∞(v
′) > ψ\(e).

Hence, (2.12a) is again a consequence of the skew-symmetry of E and the last
inequality. Finally (2.14) yields (2.12b).
The proof of (2.13) is entrirely similar. The monotonicity properties are conse-

quences of (2.12a)-(2.13b). The proof of Corollary 2.3 is complete. �
Recall finally that an arbitrary solution of the Riemann problem (1.1)-(1.2) may

also contain rarefaction waves. Given a left-hand state (u0, v0), the integral curve
associated with the vector field r1(v) is:

O1(u0, v0) :=
{
(u, v)/u − u0 =

∫ v
v0

c(w) dw
}
. (2.16)

Based on the property that the characteristic speed be increasing in a rarefaction
fan, we find easily:

Lemma 2.4. (1–Rarefaction waves)
Given some left-hand state (u0, v0), the set of all right-hand states (u1, v1) at-

tainable through a 1-rarefaction wave is the portion of the integral curve O1(w0)
determined by the following constrains:

(i) If v0 ∈ (0, a], then v1 ∈ [v0, a].
(ii) If v0 ∈ (a, b), then v1 ∈ [a, v0].
(iii) If v0 ∈ [b,+∞), then v1 ∈ [v0,+∞).

3. Classical Riemann Solver

To begin with the construction of Riemann solutions, in this section we restrict
attention to shock waves satisfying the so-called Liu entropy condition, which is
much stronger than our condition (1.5). The solutions constructed now are re-
ferred to as the classical Riemann solutions. Recall that a 1–shock wave connecting
(u0, v0) to (u1, v1) satisfies the Liu entropy condition (see (2.3)) iff

−c(v0, v) ≥ −c(v0, v1) for all v between v0 and v1. (3.1)
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Note that the condition (3.1) implies the Lax shock inequalities

λ1(v0) = −c(v0) ≥ −c̄(v0, v1) ≥ −c(v1) = λ1(v1). (3.2)

The Liu condition can be interpreted geometrically, since it is equivalent to

p(v)− p(v0)

v − v0
≥
p(v1)− p(v0)

v1 − v0
for all v between v0 and v1.

In other words, for all v between v0 and v1, the graph of p is below (respectively
above) the line connecting v0 to v1 when v1 < v0 (resp. v1 > v0).
Given some left-hand state (u0, v0), we now determine the 1–wave curve made of

all right-hand states that can be arrived at by combining one or several elementary
waves. That is, we try to combine together rarefaction fans and shocks satisfying
the Hugoniot relations and the Liu condition. Observe that, in view of (2.2)-(2.3),
the Hugoniot curve for the first wave family is given by

H1(u0, v0) :=
{
(u, v) /u − u0 = c(v0, v) (v − v0)

}
. (3.3)

The following lemma singles out those shock waves that are admissible for the
Liu criterion.

Lemma 3.1. (Liu admissible shock waves)
Given a left-hand state (u0, v0), the set of right-hand states (u1, v1) attainable by

a 1-shock satisfying the Liu entropy condition (3.1) is characterized as follows:

(i) If v0 ∈ (0, c) ∪ (a−\,+∞), then v1 ∈ (0, v0].
(ii) If v0 ∈ [c, a], then v1 ∈ (0, v0] ∪ [ϕ−\(v0), ψ\(v0)].
(iii) If v0 ∈ (a, b), then v1 ∈ (0, ϕ−\(v0)] ∪ [v0, ψ\(v0)].
(iv) If v0 ∈ [b, a−\], then v1 ∈ (0, ϕ−\(ψ\(v0))] ∪ [ψ\(v0), v0].

We are ready to construct the classical 1–wave curve Wc1(ul, vl) consisting of
all right-hand states (um, vm) that can be arrived at by a combination of of Liu
admissible shocks and rarefactions. We rely here on Lemma 3.1 for the shocks and
Lemma 2.4 for the rarefactions. The solution is actually directly determined from
the convex hull and the concave hull of the graph of the function p.
First, assume that vl ∈ (0, c). According to Lemma 3.1, all the states (vm, um)

having vm ∈ (0, vl) can be arrived at by a single Liu admissible 1–shock. By
Lemma 2.4, all of the points (vm, um) with vm ∈ (vl, a] can be arrived at by a
single 1-rarefaction. If now vm ∈ [a, d], we have ϕ\(vm) ∈ [c, a]. In that case,
the solution is thus a rarefaction wave from vl to ϕ

\(vm) followed by a shock from
ϕ\(vm) to vm. Finally, if vm > d, the solution is made of three elementary waves:
a rarefaction wave from vl to c, followed by a shock from c to d, and followed by a
rarefaction wave from d to vm.
Second, assume that vl ∈ [c, a]. If vm ∈ (0, vl), the Riemann solution is a single

Liu-admissible 1–shock. The states (vm, um) with vm ∈ (vl, a] can be arrived at by
a single 1-rarefaction. If vm ∈ [a, ϕ−\(vl)], then ϕ\(vm) ∈ [vl, a] and the Riemann
solution is a rarefaction wave from vl to ϕ

\(vm) followed by a shock from ϕ\(vm) to
vm. If vm ∈ (ϕ−\(vl), ψ\(vl], the solution is a single shock. Finally, if vm > ψ\(vl),
the solution is a shock from vl to ψ

\(vl) followed with a rarefaction wave connecting
ψ\(vl) to vm.
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Third, assume that vl ∈ (a, b). The points (vm, um) with vm ∈ (0, ϕ−\(vl)] ∪
[vl, ψ

\(vl)] can be arrived at by a single shock. The points wm with vm ∈ [a, vl] can
be arrived at by a single rarefaction wave. If vm ∈ (ϕ−\(vl), a), then there exists
a unique value v∗ ∈ (a, vl) such that ϕ−\(v∗) = vm. That is v

∗ = ϕ\(vm). In that
case the Riemann solution is a rarefaction wave connecting vl to v

∗ followed by a
shock connecting v∗ to vm. Finally, if vm > ψ\(vl), the Riemann solution is a shock
connecting vl to ψ

\(vl) followed with a rarefaction wave from ψ\(vl) to vm.
Fourth, assume that vl ∈ [b, a−\]. The states wm with vm ∈ (0, ϕ−\(ψ\(vl))] ∪

[ψ\(vl), vl] can be arrived at by a single shock. The states wm with vm ∈ [vl,+∞)
can be reached by a single rarefaction wave. If vm ∈ [a, ψ\(vl)), the Riemann
solution is a shock from vl to ψ

\(vl) followed by a rarefaction from ψ\(vl) to vm.
If vm ∈ (ϕ−\(ψ\(vl)), a), the solution contained three waves: a shock from vl to
ψ\(vl), followed by a rarefaction from ψ\(vl) to ϕ

\(vm), and followed by a shock
connecting ϕ\(vm) to vm.
Finally, assume that vl ∈ (a−\,+∞). In that case the Riemann solution is simply

a shock if vm < vl and a rarefaction wave otherwise.
¿From now on, in addition to (1.3) we also assume that∫ ∞

b

√
−p′(v)dv = +∞. (3.4)

It is not difficult to check that the wave curve described above is smooth and
monotone increasing and covers the whole range of values u ∈ (−∞,+∞). A
similar construction can be given for the 2–wave curve Wc2(ur, vr) made of all
left-hand states attainable through a combination of 2–rarefaction fans or Liu-
admissible 2-shocks, starting from the right-hand state (ur, vr). Additionally, it
can be seen from the explicit formulas of the Hugoniot and rarefaction curves that
the two wave curves are globally transverse and intersect at a single point.
We arrive at the following main result in this section.

Theorem 3.2. (Classical Riemann solver)
Under the assumption (1.3), the Riemann problem (1.1)-(1.2) admits a unique

classical solution in the class of piecewise smooth self-similar functions made of
rarefaction fans and shock waves satisfying the Liu entropy criterion.

4. Nonclassical Riemann Solvers

We return to the general conditions in Theorem 2.2. A shock wave is said to be
nonclassical if the entropy condition (1.5) holds but the Liu entropy condition (3.1)
does not. Determining the set of all right-hand states (u1, v1) attainable through
nonclassical shocks from a given left-hand state (u0, v0) is immediate from Theorem
2.2 and Lemma 3.1.

Corollary 4.1. Given a left-hand state (u0, v0), the set of all right-hand states
(u1, v1) that can be connected to w0 by a nonclassical shock wave is determined as
follows:

(i) If v0 ∈ (e, c], then v1 ∈ [ϕ[∞(v0), ψ
[
∞(v0)].

(ii) If v0 ∈ (c, a], then v1 ∈ [ϕ[∞(v0), ϕ
−\(v0)) ∪ (ψ\(v0), ψ[∞(v0)].

(iii) If v0 ∈ (a, b), then v1 ∈ (ϕ−\(v0), ϕ[∞(v0)] ∪ (ψ
\(v0), ψ

[
∞(v0)].

(iv) If v0 ∈ [b, f), then v1 ∈ (ϕ−\(ψ\(v0)), ϕ[∞(v0)] ∪ [ψ
[
∞(v0), ψ

\(v0)).
(v) If v0 ∈ [f, a−\), then v1 ∈ (ϕ−\(ψ\(v0)), ψ\(v0)).
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When v0 ∈ (0, e) ∪ (a−\,∞), no such shock exists.

Denote by N (v0) the closure of the set of all values attainable by nonclassical
shocks, as described in Corollary 4.1. The kinetic function ϕ[ is defined to be a
decreasing function defined in the interval [e, b] and such that

ϕ[(v) ∈ N (v0), v ∈ [e, b]. (4.1a)

We also impose the condition
ϕ[(b) = b−\ (4.1b)

which, as we will see, guarantees the continuity of the Riemann solution with respect
to its end states.
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Figure 4.1: Kinetic function.

The graph of the kinetic function then intersects the one of the function ψ\ at
a unique point, denoted by g ∈ [e, c]. The straightline connecting v and ϕ[(v)
intersects the graph of p at three points when v ∈ [g, b], limiting two finite areas,
and four points when v ∈ [e, g), limiting three finite areas. Motivated by the
derivation of the model made in phase transition dynamics (only the first inflection
point is actually physically meaningful), we propose to restrict attention to the
interval [g, b], as far as nonclassical shocks are concerned. The kinetic relation is
the requirement that, for any nonclassical shock connecting some left-hand state
(u0, v0) to a right-hand state (u1, v1), we have

v1 = ϕ
[(v0). (4.2)

By the results in Section 3, the Riemann problem (1.1)-(1.2) always admits a
solution satisfying the Liu entropy criterion (3.1). Since classical shocks are still
admissible in the nonclassical construction to be discussed in the present section,
the classical solution is in principle admissible. We are going to allow nonclassical
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shocks as well and, therefore, to ensure uniqueness, it is clear that one must exclude
the classical solution. We postulate here that

Nonclassical shock waves are prefered, whenever available. (P)

We now proceed with the construction of the 1-wave curve W1(ul, vl).
Suppose first that vl ∈ (0, g). Any point vm ∈ (0, vl) can be achieved by a single

classical shock. Any point vm ∈ (vl, a] is attainable by a single rarefaction wave.
If vm ∈ (a, ϕ[(g)], there exists a unique point v∗ ∈ [g, a) such that vm = ϕ[(v∗).
The solution is then the composite of a rarefaction wave from vl to v∗ followed by
a nonclassical shock from v∗ to vm. If vm ∈ (ϕ[(g),+∞), the solution consists of
three parts: A rarefaction wave from vl to g followed by a nonclassical shock from
g to ϕ[(g), followed by a rarefaction wave from ϕ[(g) to vm.
Second, suppose that vl ∈ [g, a). A point vm ∈ (0, vl) can be attained by a single

classical shock. A point vm ∈ (vl, a] is attainable by a single rarefaction wave. If
vm ∈ (a, ϕ[(vl)], there exists a unique point v∗ ∈ [vl, a) such that vm = ϕ[(v∗). The
solution is then the composite of the rarefaction wave from vl to v∗ followed by a
nonclassical shock from v∗ to vm. If vm ∈ (ϕ[(vl), ϕ[(g)], there exists a unique point
v∗ ∈ [g, vl) such that vm = ϕ[(v∗). For this construction to make sense, one must
here check whether the classical shock from vl to v

∗ is slower than the nonclassical
shock from v∗ to vm. So, consider the function

p̃(v) :=

{
p(v) if v ∈ (0, vl],

p(vl) + p
′(vl)(v − vl) if v ∈ (vl,+∞).

(4.3)

If vm ∈ (ϕ[(vl), h), where

h := min{ϕ[(g), ϕ−\(vl)},

the function p̃ is convex on (0,+∞) and the points v∗ and vm belong to its epigraph.
Therefore, the straightline connecting v∗ and vm should lie above the graph of p̃ in
the interval (v∗, vm) 3 vl. This is to say

p̃(vl)− p̃(v∗)

vl − v∗
<
p(vm)− p(v∗)

vm − v∗
,

i.e.,
s(vl, v

∗) < s(v∗, vm). (4.4)

The latter inequality means that the classical shock from vl to v
∗ can be followed by

the nonclassical shock from v∗ to vm. In the latter construction, if vl ∈ [g, ϕ\(ϕ[(g)),
then

h = ϕ[(g),

and we have completed the argument when vm ∈ (ϕ[(vl), ϕ[(g)).
For vm ∈ (ϕ[(g),+∞), the Riemann solution consists of three parts: A classical

shock from vl to g followed by a nonclassical shock from g to ϕ[(g), followed by a
rarefaction wave from ϕ[(g) to vm.
Suppose next that vl ∈ [ϕ\(ϕ[(g)), a), then

h = ϕ−\(vl).
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If vm ∈ [ϕ−\(vl), ψ\(vl)], the solution can be a classical shock connecting vl to v∗

followed by a nonclassical shock from v∗ to vm provided (4.4) holds, or else a single
classical shock. For vm ∈ (ψ\(vl),+∞), the solution consists of a classical shock
from vl to ψ

\(vl), followed by a rarefaction wave from ψ\(vl) to vm.
Third, suppose that vl ∈ [a, b). The points vm ∈ [a,+∞) are reached by the

classical construction described in Section 3. If vm ∈ [ϕ[(vl), a], there exists a
unique point v∗ ∈ [a, vl] such that vm = ϕ[(v∗). The solution then consists of a
rarefaction wave connecting vl to v

∗ followed by a nonclassical shock from v∗ to
vm. If vm ∈ [ϕ−\(vl), ϕ[(vl)), then there exists a unique point v∗ ∈ [vl, b) such that
vm = ϕ

[(v∗). Since both vl and v∗ belong to [a, b] and the function p is concave in
this interval, we have

p(vl)− p(v∗)

vl − v∗
<
p(ϕ[(vl))− p(v∗)

ϕ[(vl)− v∗
<
p(vm)− p(v∗)

vm − v∗
.

This means the shock speed s(vl, v∗) is less than the shock speed s(v∗, vm). There-
fore the Riemann solution can be a classical shock from vl to v∗ followed by a
nonclassical shock from v∗ to vm. If vm ∈ [ϕ−\(vl), b−\), there exists a unique point
v∗ ∈ [vl, b) such that vm = ϕ[(v∗). The solution then consists of a classical shock
from vl to v

∗ followed by a nonclassical shock from v∗ to vm provided

−c̄(vl, v
∗) < −c̄(v∗, vm), (4.5)

or else a single classical shock. The states vm ∈ (0, b−\] are reached by single
classical shocks.
Finally, when vl ∈ [b,+∞), we also use the classical construction described in

Section 3.
Denote by ϕ−[ : [b−\, ϕ[(g)] → [g, b], the inverse of the kinetic function ϕ[,

which is also a monotone decreasing mapping. The arguments presented above are
summarized as follows:

Theorem 4.2. (Construction of the 1-wave curve)
Fix some left-hand state (ul, vl). Under the assumptions (1.3) and (3.4), we

have the following description of the 1-wave curve W1(ul, vl) consisting of all of the
right-hand states (um, vm) that can be reached by a combination of rarefaction fans
and shock waves, satisfying the entropy inequality (1.5), the kinetic relation (4.2)
(for nonclassical shocks), and the condition (P ):

Case 1: vl ∈ (0, g).

(1) If vm ∈ (0, vl), the solution is a single classical shock.
(2) If vm ∈ (vl, a], the solution is a single rarefaction wave.
(3) If vm ∈ (a, ϕ[(g)], the solution is the composite of a rarefaction wave con-
necting vl to v∗ := ϕ−[(vm) followed by a nonclassical shock from v∗ to
vm.

(4) If vm ∈ (ϕ[(g),+∞), the solution consists of three parts: A rarefaction wave
from vl to g followed by a nonclassical shock from g to ϕ[(g), followed by a
rarefaction wave from ϕ[(g) to vm.

Case 2: vl ∈ [g, a).

(1) If vm ∈ (0, vl), the solution is a single classical shock.
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(2) If vm ∈ (vl, a], the solution is a single rarefaction wave.
(3) If vm ∈ (a, ϕ[(vl)], the solution is the composite of a rarefaction wave from

vl to v∗ := ϕ−[(vm) followed by a nonclassical shock from v∗ to vm.
(4) If vl ∈ [g, ϕ\(ϕ[(g))) and vm ∈ (ϕ[(vl), ϕ[(g)), then the solution consists of
a classical shock from vl to v

∗ := ϕ−[(vm) followed by a nonclassical shock
from v∗ to vm.

(5) If vl ∈ [g, ϕ\(ϕ[(g))) and vm ∈ (ϕ[(g),+∞), the solution consists of three
waves: A classical shock from vl to g followed by a nonclassical shock from
g to ϕ[(g), followed by a rarefaction wave from ϕ[(g) to vm.

(6) If vl ∈ [ϕ\(ϕ[(g)), a) and vm ∈ (ϕ[(vl), ϕ−\(vl)), the solution consists of the
classical shock from vl to v

∗ := ϕ−[(vm) followed by a nonclassical shock
from v∗ to vm.

(7) If vl ∈ [ϕ\(ϕ[(g)), a) and vm ∈ [ϕ−\(vl), ψ\(vl)], the solution is a classical
shock from vl to v

∗ followed by a nonclassical shock from v∗ to vm if (4.3)
holds, or else a single classical shock.

(8) If vl ∈ [ϕ\(ϕ[(g)), a) and vm ∈ (ψ\(vl),+∞), the solution consists of a
classical shock from vl to ψ

\(vl) followed by a rarefaction wave from ψ\(vl)
to vm.

Case 3: vl ∈ [a, b).

(1) If vm ∈ [a,+∞), the solution is classical (Section 3).
(2) If vm ∈ [ϕ[(vl), a], the solution consists of the rarefaction wave from vl to

v∗ := ϕ−[(vm) followed by a nonclassical shock from v∗ to vm.
(3) If vm ∈ [ϕ−\(vl), ϕ[(vl)), the solution consists of a classical shock from vl
to v∗ := ϕ

−[(vm) followed by a nonclassical shock from v∗ to vm.
(4) If vm ∈ [ϕ−\(vl), b−\), the solution consists of the classical shock wave from

vl to v
∗ := ϕ[(vm) followed by a nonclassical shock from v∗ to vm provided

(4.3) holds, or else a single classical shock.
(5) The states vm ∈ (0, b−\] are reached by a single classical shock.

Case 4: vl ∈ [b,+∞).
The construction is classical (Section 3).

A similar result holds for the 2-wave curve. We are now in the position to state
the main result of this paper.

Theorem 4.3. Under the assumptions (1.3) and (3.4), the Riemann problem (1.1)-
(1.2) admits a unique piecewise smooth, self-similar solution made of rarefaction
fans and shock waves, satisfying the entropy inequality (1.5), the kinetic relation
(4.2), and the condition (P ). Moreover, the Riemann solution depends L1loc contin-
uously upon its data.

Proof. We only need to check that the 1-wave curve W1(ul, vl) constructed ear-
lier is continuous, monotone increasing and extends from (um, vm) = (−∞, 0) to
(um, vm) = (+∞,+∞). To begin with, the continuity is easy checked from our
construction. For large values of vm, any right-hand wave in the 1-wave fan con-
necting vl and vm should be a rarefaction wave. The formulation (2.16) and the
assumption (3.4) yield

um → +∞ as vm → +∞.
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Any 1-wave pattern connecting vl to vm with vm < b−\ must be a single classical
shock, by construction. The hypotheses (1.3) and the formulation (3.3) then yield

um → −∞ as vm → 0.

Finally, since the shock speed −c̄(vl, vm) is a continuous function in both variables
vm and vl, we conclude that the Riemann solution depends L

1
loc-continuously on

the data.
It remains only to check the monotonicity of the wave curve. The classical parts

are easily seen to be monotone increasing, so we omit the details. We observe that,
in the construction of Theorem 4.2, besides the classical ones, four distinct wave
patterns can be distinguished:

(i) A rarefaction wave followed by a nonclassical shock. This happens for in-
stance when vl ∈ (0, g) and vm ∈ (a, ϕ[(g)).

(ii) A classical shock followed by a nonclassical one, say vl ∈ (g, ϕ\(ϕ[(g))) and
vm ∈ (ϕ[(vl), ϕ[(g)).

(iii) In for instance the interval vl ∈ [a, b) and vm ∈ [ϕ−\(vl), b−\), a classical
shock followed by a nonclassical one if (4.3) holds true, or a single classical
shock elsewhere.

Consider first the case (iii). For any fixed vl ∈ [a, b), the set of vm ∈ [ϕ−\(vl), b−\)
satisfying the condition (4.5) is open, and therefore is a countable union of intervals.
In each subinterval, we are back to the case (ii) or to the classical construction.
Thus, we only need to treat Cases (i) and (ii). In the rest of the proof, we consider
a specific situation arising in these cases, as other possibilities are similar. Recall
that

c(v) :=
√
−p′(v)

and

c(v0, v1) :=

√
−
p(v1)− p(v0)

v1 − v0
.

Consider the pattern (i). The solution is made of a rarefaction wave followed by
a nonclassical shock. In other words, with the notation introduced earlier,

um(vm)− um(ϕ
−[(vm)) = c(ϕ

−[(vm), vm) (vm − ϕ
−[(vm)),

um(ϕ
−[(vm))− ul =

∫ ϕ−[(vm)
vl

c(z) dz.
(4.6)

For vm in the interval (a, ϕ
[(g)), we deduce from (4.6) that

dum
dvm

=−
dϕ−[(vm)

2dvm

θ

c(ϕ−[(vm), vm)

(
c(ϕ−[(vm))− c(ϕ

−[(vm), vm)
)2

+ c2(vm) + c
2(ϕ−[(vm), vm) > 0,

which yields the desired monotone property of the wave curve.
Consider next the pattern (ii). The solution is a composite of a classical shock

connecting vl to ϕ
−[(vm) followed by a nonclassical shock connecting ϕ

−[(vm) with
vm. ¿From (2.16) and (3.3) we deduce that

um(vm)− um(ϕ
−[(vm)) = c(ϕ

−[(vm), vm)(vm − ϕ
−[(vm)),

um(ϕ
−[(vm))− ul = c(vl, ϕ

−[(vm))(ϕ
−[(vm)− vl).

(4.7)
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This yields

dum
dvm

=−
dϕ−[(vm)

2dvm

(
c(ϕ−[(vm), vl)− c(ϕ

−[(vm), vm)
)

×
( c2(ϕ−[(vm)

c(ϕ−[(vm), vl) c(ϕ−[(vm), vm)
− 1
)
+

c2(vm) + 1

2c(ϕ−[(vm), vm)
.

(4.8)

Since the function p is convex in the interval (0, a) 3 vl, ϕ−[(vm) and since vl >
ϕ−[(vm), we have

p(ϕ−[(vm))− p(vl)

ϕ−[(vm)− vl
> p′(ϕ−[(vm)).

Hence we obtain

c(ϕ−[(vm)) > c(ϕ−[(vm), vl) > c(ϕ−[(vm)vm), (4.9)

where the last inequality follows from the fact that the shock speed is increasing
and the classical shock is followed by the nonclassical one. The inequalities (4.9)
used in (4.8) yield

dum
dvm

> 0,

which implies the monotonicity of the wave curve. The proof of Theorem 4.3 is
complete. �
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