ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2001**(2001), No. 06, pp. 1–15. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login: ftp)

Four-parameter bifurcation for a p-Laplacian system *

Jacqueline Fleckinger, Rosa Pardo, & François de Thélin

Abstract

We study a four-parameter bifurcation phenomenum arising in a system involving *p*-Laplacians:

$$\begin{split} -\Delta_p u &= a\phi_p(u) + b\phi_p(v) + f(a,\phi_p(u),\phi_p(v)), \\ -\Delta_p v &= c\phi_p(u) + d\phi_p(v)) + g(d,\phi_p(u),\phi_p(v)), \end{split}$$

with u = v = 0 on the boundary of a bounded and sufficiently smooth domain in \mathbb{R}^N ; here $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, with p > 1 and $p \neq 2$, is the *p*-Laplacian operator, and $\phi_p(s) = |s|^{p-2}s$ with p > 1. We assume that a, b, c, d are real parameters. Then we use a bifurcation method to exhibit some nontrivial solutions. The associated eigenvalue problem, with $f = g \equiv 0$, is also studied here.

1 Introduction and Hypotheses

We study some four-parameter bifurcation phenomena arising in the system

$$-\Delta_p u = a\phi_p(u) + b\phi_p(v) + f(a, \phi_p(u), \phi_p(v)),$$

$$-\Delta_p v = c\phi_p(u) + d\phi_p(v) + g(d, \phi_p(u), \phi_p(v)), \quad \text{in } \Omega$$

$$u = v = 0, \quad \text{on } \partial\Omega.$$
(1.1)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ for p > 1, $p \neq 2$, is the *p*-Laplacian operator, $\phi_p : \mathbb{R} \to \mathbb{R}$ is given by $\phi_p(s) = |s|^{p-2}s$, p > 1, $\Omega \subset \mathbb{R}^N$ is a sufficiently smooth bounded domain, and a, b, c, d are real parameters.

The operator $-\Delta_p$ occurs in problems arising in pure mathematics, such as the theory of quasiregular and quasiconformal mappings (see [24] and the references therein), and in a variety of applications, such as non-Newtonian fluids, reaction-diffusion problems, flow through porous media, nonlinear elasticity, glaciology, petroleum extraction, astronomy, etc (see [6, 7, 12, 5]). We also emphasize that systems such as (1.1) are not easy generalizations of equations

Key words: p-Laplacian, bifurcation.

©2001 Southwest Texas State University.

 $^{^{*}} Mathematics \ Subject \ Classifications: \ 35J45, \ 35J55, \ 35J60, \ 35J65, \ 35J30, \ 35P30$

Submitted June 29, 2000. Published January 9, 2001.

⁽R.P.) supported by grant PB96-0621 from the Spanish DGICYT

because the solutions cannot be obtained by variational methods. Here we use a bifurcation method to exhibit some nontrivial solutions. Another approach for non variational systems can be found in [8]. Moreover the problem considered here where $p \neq 2$ is not a straightforward extension of the case p = 2 due to the fact that the translations of the p-Laplacian are not always invertible neither commutative. In this paper we obtain bifurcation results for (1.1). The linear case (p = 2) is studied in [15]. The case where $g \equiv 0$ is considered in [14].

We assume through this article that the functions f and g satisfy the following Hypothesis:

A continuous function $f : \mathbb{R}^3 \to \mathbb{R}$ satisfies Hypothesis **(H)** if there exists ρ such that $1 \leq \rho < \frac{N+p'}{N-\min(p,p')}$ for $\min(p,p') < N$ and $1 \leq \rho$ for $\min(p,p') \geq N$, and such that

(H1)
$$\lim_{|(r,s)|\to 0} \frac{f(\lambda, r, s)}{|(r,s)|} = 0 \quad \text{uniformly with respect to } \lambda \text{ on bounded sets,}$$

(H2)
$$\lim_{|(r,s)|\to\infty} \frac{f(\lambda,r,s)}{|(r,s)|^{\rho}} = 0 \quad \text{uniformly with respect to } \lambda \text{ on bounded sets.}$$

where, as usual, for a given q > 1, q' is defined by:

$$\frac{1}{q} + \frac{1}{q'} = 1.$$

Definitions: By a solution of the system (1.1) we mean a pair $(A, (u, v)) \in \mathbb{R}^4 \times (W_0^{1,p}(\Omega))^2$, with $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, satisfying (1.1) in the weak sense, i.e., for all $w, z \in W_0^{1,p}(\Omega)$,

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla w = \int_{\Omega} a|u|^{p-2} uw + b|v|^{p-2} vw + f(a, \phi_p(u), \phi_p(v))w$$
$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla z = \int_{\Omega} c|u|^{p-2} uz + d|v|^{p-2} vz + g(d, \phi_p(u), \phi_p(v))z$$
(1.2)

The set of solutions will be denoted by S. Obviously (A, (0, 0)) is a solution of (1.1) for every $(a, b, c, d) \in \mathbb{R}^4$. The set of these pairs will be called the trivial solution set, and will be denoted by S_0 .

We say that $(A_0, (0, 0)) \in S_0$ is a *bifurcation point* of (1.1) with respect to the trivial solution set iff every neighborhood of $(A_0, (0, 0))$ contains solutions of (1.1) belonging to $S \setminus S_0$.

We will show that whenever (H) is satisfied, any matrix A_0 with a negative eigenvalue, the other being the principal eigenvalue of the *p*-Laplacian, is such that $(A_0, (0, 0)) \in S_0$ is a bifurcation point to positive solutions for (1.1).

To establish our results, we combine and adapt methods of [15] and [14]. Our paper is organized as follows: In Section 2, we recall some results concerning the *p*-Laplacian. We recall in particular several lemmas established in [14] concerning spaces that we will use. In Section 3, we show that if $(A_0, (0, 0)) \in S_0$ is a bifurcation point, then the homogeneous system: $-\Delta_p U = A_0 U$ has a non trivial solution. In Section 4 we obtain conditions on A_0 for this to happen. In Section 5 we compute the Leray-Schauder degree for the eigenvalue problem and in Section 6 we state and establish our result.

2 Notation and preliminaries

In this section, we recall briefly some notation and results concerning the p-Laplacian.

The *p*-Laplacian, $-\Delta_p$, defined on $W_0^{1,p}(\Omega)$ has a first eigenvalue $\lambda_1(p) := \lambda_1$ which is simple and isolated [3]; it is associated to a simple eigenfunction φ (normalized as $\|\varphi\|_{\infty} = 1$) which is positive. Moreover, λ_1 is characterized by

$$\lambda_1 = \inf_{u \in W_0^{1,p}; \int_{\Omega} |u|^p = 1} \int_{\Omega} |\nabla u|^p .$$
 (2.1)

The following results are known for the equation

$$-\Delta_p u = k|u|^{p-2}u + f \quad \text{in } \Omega \tag{2.2}$$

$$u = 0 \quad \text{on } \partial\Omega \,. \tag{2.3}$$

Lemma 2.1 ([25]) If $f \in L^{\infty}(\Omega)$, $f \ge 0$, $f \ne 0$, Equation (2.2-2.3) has at least one solution and satisfies the maximum principle (i.e. any solution u is non-negative) if and only if $k < \lambda_1$.

Lemma 2.2 ([13]) For $f \in L^{\infty}$, $f \geq 0$, $f \neq 0$, and for $k = \lambda_1$, Equation (2.2-2.3) has no solution in $W_0^{1,p}(\Omega)$.

The operator T_q . We introduce now some notation and results used in [14]. Let

$$\mathcal{A}(q) = \begin{cases} \frac{Nq'}{N - \min(q, q')} & \text{if } \min(q, q') < N \\ +\infty & \text{if } \min(q, q') \ge N \end{cases}$$
(2.4)

$$\mathcal{B}(q) = \begin{cases} \frac{Nq}{Nq - N + q} & \text{if } \min(q, q') < N \\ +1 & \text{if } \min(q, q') \ge N. \end{cases}$$
(2.5)

Then we introduce the operator $T_q := -\Delta_q \circ \phi_{q'}$ with domain

$$D(T_q) := \left\{ z \in L^{\alpha(q)}(\Omega) : \phi_{q'}(z) \in W_0^{1,p}(\Omega) \text{ and } -\Delta_q(\phi_{q'}(z)) \in L^{\beta(q)}(\Omega) \right\}$$

Then

$$\phi_q(W_0^{1,q}) \hookrightarrow L^{\alpha} \hookrightarrow L^{\beta} \hookrightarrow W^{-1,q'},$$

where $\alpha(q), \beta(q)$ are real numbers satisfying $\mathcal{B}(q) < \beta, \alpha < \mathcal{A}(q)$.

We notice that the operator T_q is homogeneous of degree 1. We also notice that the equation $T_q u = \lambda u$ has a solution $u \neq 0, u \in W_0^{1,q}(\Omega)$ if and only if $-\Delta_q u = \lambda \phi_q(u)$ has a nontrivial solution. Such a λ is an eigenvalue and we denote by $\sigma(-\Delta_p) = \sigma(T_p)$ these eigenvalues. If this solution is positive, then $\lambda = \lambda_1$ and $u = k\varphi$, k > 0.

We have the following embeddings.

Lemma 2.3 (Lemma 2.2 in [14]) If $\alpha < \mathcal{A}(q)$ the embedding $\phi_q(W^{1,q})$ into L^{α} is compact. If $\beta > \mathcal{B}(q)$, the embedding L^{β} into $W^{-1,q'}$ is compact.

Lemma 2.4 ([14]) For $\alpha < \mathcal{A}(q)$, $\beta > \mathcal{B}(q)$, and k < 0, the operators

 $T_q: D(T_q) \subset L^\alpha \longrightarrow L^\beta \quad and \quad (T_q-k)^{-1}: L^\beta \longrightarrow L^\alpha$

are well defined and $(T_q - k)^{-1} : L^{\beta} \longrightarrow L^{\alpha}$ is completely continuous.

Lemma 2.5 For $\alpha < \mathcal{A}(q)$, $\beta > \mathcal{B}(q)$, $k < \lambda_1$ and $f \in L^{\beta}$, f > 0, $(T_q - k)^{-1}f$ is well defined or equivalently (2.2) has a unique solution.

Remark 2.6 Obviously, $\Delta_q(-u) = -\Delta_q u$ and $\phi_q(-s) = -\phi_q(s)$, then it follows that $T_q(-u) = -T_q(u)$ and by the previous Lemma with $k < \lambda_1$ and $f \in L^{\beta}, f < 0, (T_q - k)^{-1} f$ is also well defined. When f changes sign several solutions may appear [21, 16].

We also introduce

$$a(q) = \begin{cases} \frac{Nq}{N-q} & \text{if } q < N \\ +\infty & \text{if } q \ge N. \end{cases}$$

From their definitions, it is easy to prove that, for any q > 1, we have

$$(a(q))' < q' < \mathcal{A}(q) \le a(q'),$$

and that the functions (a(q))', a(q') are decreasing in q.

Lemma 2.7 Assume that $F : \mathbb{R}^3 \to \mathbb{R}$ is continuous and satisfies (H). Choose $\alpha \in \mathbb{R}$ such that

$$(a(p))' < \frac{\alpha}{\rho} < p' < \alpha < \mathcal{A}(p).$$

Then for any $\lambda \in \mathbb{R}$ and for any $(w, z) \in L^{\alpha} \times L^{\alpha}$, we have $F(\lambda, w, z) \in L^{\beta}$, where $\beta = \frac{\alpha}{\rho}$. Moreover, for any sequence $\{w_n, z_n\} \in L^{\alpha} \times L^{\alpha}$, satisfying $(w_n, z_n) \neq (0, 0)$ and $\lim_{n \to \infty} ||(w_n, z_n)||_{L^{\alpha} \times L^{\alpha}} = 0$, we have that

$$\limsup_{n \to \infty} \left\| \frac{F(\lambda, w_n, z_n)}{\|(w_n, z_n)\|_{L^{\alpha} \times L^{\alpha}}} \right\|_{L^{\beta}} = 0$$

Proof. By (H) ρ satisfies $1 \leq \rho < \frac{N+q'}{N-\min(q,q')}$, if $\min(q,q') < N$ and $1 \leq \rho$ if $\min(q,q') \geq N$. It follows from Lemma 2.1 in [14] that we can choose α satisfying

$$(a(p))' < \frac{\alpha}{\rho} < p' < \alpha < \mathcal{A}(p).$$

4

Moreover, for any $\delta > 0$, there exists a constant C such that

$$|F(\lambda,r,s)| \le \delta + C|(r,s)|^{\rho}, \quad \forall (r,s) \in \mathbb{R} \times \mathbb{R} \, ;$$

hence the first assertion holds. Now, by Hölder s inequality,

$$\int_{\Omega} \left| \frac{F(\lambda, w_n, z_n)}{\|(w_n, z_n)\|_{L^{\alpha} \times L^{\alpha}}} \right|^{\beta} \\
\leq \left(\int_{\Omega} \left| \frac{F(\lambda, w_n, z_n)}{|(w_n, z_n)|} \right|^{\frac{\alpha}{\rho-1}} \right)^{1/\rho'} \left(\int_{\Omega} \left| \frac{|(w_n, z_n)|}{\|(w_n, z_n)\|_{L^{\alpha} \times L^{\alpha}}} \right|^{\alpha} \right)^{1/\rho} \\
\leq C_1 \left(\int_{\Omega} \left| \frac{F(\lambda, w_n, z_n)}{|(w_n, z_n)|} \right|^{\alpha/(\rho-1)} \right)^{1/\rho'}.$$
(2.6)

From (H) we deduce

$$\left|\frac{F(\lambda, w_n, z_n)}{|(w_n, z_n)|}\right|^{\frac{\alpha}{\rho-1}} \le \delta^{\frac{\alpha}{\rho-1}} + C_2 |(w_n, z_n)|^{\alpha}.$$

Since $\lim_{n \to \infty} \|(w_n, z_n)\|_{L^{\alpha} \times L^{\alpha}} = 0$, for every $\delta > 0$,

$$\limsup_{n \to \infty} \int_{\Omega} \left| \frac{F(\lambda, w_n, z_n)}{|(w_n, z_n)|} \right|^{\frac{\alpha}{\rho - 1}} \le \delta^{\frac{\alpha}{\rho - 1}} |\Omega| \,.$$

Taking into account (2.6) the results follows.

3 Preliminary results

In this section we show that if $(A_0, (0, 0))$ is a bifurcation point, then the eigenvalue problem

$$-\Delta_p u = a_0 \phi_p(u) + b_0 \phi_p(v),$$

$$-\Delta_p v = c_0 \phi_p(u) + d_0 \phi_p(v), \quad \text{in } \Omega$$

$$u = v = 0, \quad \text{on } \partial\Omega.$$
(3.1)

has a non-trivial solution. This is well-known in the case p = 2, (cf. [10]), but due to the nonlinearity of T_p , the proof is much more delicate.

Theorem 3.1 Let f, g satisfy (H1), and $(A_0, (0, 0))$ be a bifurcation point of (1.1) in $\mathbb{R}^4 \times (W_0^{1,p}(\Omega))^2$; then the eigenvalue problem (3.1) has a non-trivial solution.

Proof. If $(A_0, (0, 0))$ is a bifurcation point, then there exists a sequence $\{(A_n, (u_n, v_n))\}$ of nontrivial solutions of (1.1), with $A_n = (a_n, b_n, c_n, d_n) \in \mathbb{R}^4$ and $(u_n, v_n) \in (W_0^{1,p}(\Omega))^2$, such that

$$A_n \to A_0$$
 in \mathbb{R}^4 and $(u_n, v_n) \to (0, 0)$ in $(W_0^{1,p}(\Omega))^2$.

 \diamond

Define $w_n = \phi_p(u_n)$, $z_n = \phi_p(v_n)$. Due to Lemma 2.2 (cf. [14]; Lemma 2.2), $w_n, z_n \in L^{\alpha}$ whenever $\alpha < \mathcal{A}(p)$. Moreover, $(A_n, (w_n, z_n))$ is a nontrivial solution of the system

$$T_{p}w_{n} = a_{n}w_{n} + b_{n}z_{n} + f(a_{n}, w_{n}, z_{n}),$$

$$T_{p}z_{n} = c_{n}w_{n} + d_{n}z_{n} + g(d_{n}, w_{n}, z_{n}) \text{ in } \Omega.$$
(3.2)

Let $s_n = \max\{\|w_n\|_{L^{\alpha}}, \|z_n\|_{L^{\alpha}}\} > 0$. By Lemma 2.2 above it is obvious that $s_n \to 0$ as $n \to \infty$. We define

$$W_n = \frac{w_n}{s_n}, \quad Z_n = \frac{z_n}{s_n}, \quad n \in \mathbb{N}$$

Dividing each equation of System (3.2) by s_n we can write

$$W_n = T_p^{-1} \left(a_n W_n + b_n Z_n + \frac{1}{s_n} f(a_n, w_n, z_n) \right),$$

$$Z_n = T_p^{-1} \left(c_n W_n + d_n Z_n + \frac{1}{s_n} g(d_n, w_n, z_n) \right), \quad \text{in } \Omega.$$

From Lemma 2.7, $f(\mathbb{R}\times L^\alpha\times L^\alpha)\subset L^\beta$ for $\beta=\frac{\alpha}{\rho}$ and

$$\limsup_{n \to \infty} \left\| \frac{f(a_n, w_n, z_n)}{s_n} \right\|_{L^{\beta}} = 0.$$

Of course an analogous result holds for g. Therefore,

$$a_n W_n + b_n Z_n + \frac{1}{s_n} f(a_n, w_n, z_n)$$
 and $c_n W_n + d_n Z_n + \frac{1}{s_n} g(d_n, w_n, z_n)$

are bounded sequences in L^{β} with $\beta < \alpha$. It follows from the compactness $T_p^{-1}: L^{\beta} \to L^{\alpha}$ that there exists two convergent subsequences

$$T_p^{-1}\left(a_n W_n + b_n Z_n + \frac{1}{s_n} f(a_n, w_n, z_n)\right) \to W$$
$$T_p^{-1}\left(c_n W_n + d_n Z_n + \frac{1}{s_n} g(d_n, w_n, z_n)\right) \to Z$$

in L^{α} and $(W, Z) \neq (0, 0)$. Moreover $(W_n, Z_n) \rightarrow (W, Z)$ in L^{α} and

$$T_p W = a_0 W + b_0 Z,$$

$$T_p Z = c_0 W + d_0 Z, \quad \text{in } \Omega,$$

or equivalently, (W, Z) is a nontrivial solution of the eigenvalue problem (3.1).

4 An Eigenvalue problem

In this section we consider the eigenvalue problem (3.1) with $(a_0, b_0, c_0, d_0) = (a, b, c, d)$. We establish necessary and sufficient conditions so that System (3.1) has a nontrivial positive solution.

Definition. We say that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfies the *solvability condition*, and we write $A \in \mathcal{S}(T_p)$, if there exists a nontrivial solution of

$$T_p \left(\begin{array}{c} w\\ z \end{array}\right) = A \left(\begin{array}{c} w\\ z \end{array}\right), \qquad (4.1)$$

where $w := \phi_p(u), z = \phi_p(v), w, z \in D(T_p)$ with

$$D(T_p) := \{ z \in L^{\alpha(p)}(\Omega) : \phi_{p'}(z) \in W_0^{1,p}(\Omega), \ -\Delta_p(\phi_{p'}(z)) \in L^{\beta(p)}(\Omega) \},\$$

and $\alpha(p), \beta(p)$ satisfy

$$(\mathcal{B}(p))' < \beta(p) \le \alpha(p) < \mathcal{A}(p).$$
(4.2)

We remark that Problem (3.1) is equivalent to the operator equation (4.1).

Definition. Let $\sigma(A)$ denote the spectrum of the Matrix A. Let \mathcal{M}^- be the set of matrices that have a negative eigenvalue.

Remark 4.1 Since A has real coefficients the eigenvalues are complex conjugate; and if one is real, both eigenvalues are real. The eigenvalues, denoted by γ and δ , are the roots of the equation

$$X^{2} - (a+d)X + ad - bc = 0.$$
(4.3)

If the eigenvalues are not real, $\gamma = \xi + i\eta$ and $\delta = \xi - i\eta$; therefore, $\gamma \delta = \xi^2 + \eta^2 > 0$. since $\gamma \delta = ad - bc$, complex values occur only when ad - bc > 0.

When A in \mathcal{M}^- , we denote by γ the negative eigenvalue.

- **Proposition 4.2 (a)** If $\sigma(T_p) \cap \sigma(A)$ is not empty, then A is in $\mathcal{S}(T_p)$. More precisely, let λ be in $\sigma(T_p) \cap \sigma(A)$, let $D \in \mathbb{R}^2$ be its corresponding A-eigenvector, let $\phi \in D(T_p)$ be its corresponding T_p -eigenfunction, then $D\phi$ solves (4.1). Consequently, if $\lambda_1 \in \sigma(A)$, and either $b(\lambda_1 a) > 0$, (≥ 0) or $c(\lambda_1 d) > 0$, (≥ 0) the eigenvalue problem (4.1) has a positive (nonnegative) solution.
- (b) Conversely, if $A \in \mathcal{M}^- \cap \mathcal{S}(T_p)$, then $\sigma(T_p) \cap \sigma(A)$ is not empty. Moreover if $A \in \mathcal{M}^-$ and if the eigenvalue problem (4.1) has a positive solution, then $\sigma(T_p) \cap \sigma(A) = \{\lambda_1\}.$

This proposition can also be stated as follows:

(a) If one of the eigenvalues of A is in $\sigma(T_p)$ then there exists a nontrivial solution of (4.1).

(b) Conversely, if A has a negative eigenvalue, and if there exists a nontrivial solution of (4.1), then the other eigenvalue of A is in $\sigma(T_p)$.

Remark 4.3 In part (b) above, if $\sigma(A) := \{\gamma, \delta\}$ and if $\gamma < 0$, necessarily $\delta > 0$, and we have $\gamma \delta = ad - bc < 0$.

Proof of Proposition (4.2) (a) Assume that $\lambda \in \sigma(A) \cap \sigma(T_p)$. By definition of λ , there exists an eigenfunction $\varphi \in D(T_p)$, φ such that $T_p \varphi = \lambda \varphi$. Since $\lambda \in \sigma(A) \subset \mathbb{R}$, there exists an eigenvector $D = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \in \mathbb{R}^2$ such that $AD = \lambda D$. Define $(\eta, \zeta) := (d_1\varphi, d_2\varphi)$. Since T_p is homogeneous of order 1,

 $T_p \left(\begin{array}{c} \eta \\ \zeta \end{array} \right) = T_p D\varphi = DT_p \varphi = \lambda D\varphi = A D\varphi = A \left(\begin{array}{c} \eta \\ \zeta \end{array} \right)$

i.e. (η, ζ) is a nontrivial solution of (4.1), and $(d_1\phi_{p'}(\varphi), d_2\phi_{p'}(\varphi)) \neq (0,0)$ is a nontrivial solution of (3.1). Moreover, if $\lambda = \lambda_1$, we can take $\varphi > 0$, and either $(w, z) = (|b|, |\lambda_1 - a|)\phi$ or $(w, z) = (|c|, |\lambda_1 - d|)\phi$ is a positive (nonnegative) solution (or $b = c = 0, a = d = \lambda_1$ and $(1, 0)\phi$, $(0, 1)\phi$ are nonnegative solutions).

(b) Let $(w, z) \neq (0, 0)$ be a nontrivial solution of (4.1), i.e. (w, z) is a nontrivial solution of

$$T_p w = aw + bz$$

$$T_p z = cw + dz$$

$$w = z = 0 \quad \text{on } \partial\Omega.$$
(4.4)

We first consider some obvious cases.

If w = 0, then $z \neq 0$ satisfies $T_p z = dz$, therefore $d \in \sigma(T_p)$ and $(T_p - aI)w = bz$ implies b = 0; consequently $d \in \sigma(A)$ is an eigenvalue of A and of T_p . Likewise, z = 0 implies that $a \in \sigma(A)$ is an eigenvalue of A. Hence we assume now that $w \neq 0, z \neq 0$.

If b = 0, then $T_p w = aw$ with $w \neq 0$, implies that $a \in \sigma(A) \cap \sigma(T_p)$. On the same way, c = 0 implies that $d \in \sigma(A) \cap \sigma(T_p)$. Hence we assume now that $bc \neq 0$.

Now $bc \neq 0$, and assume that γ is a negative eigenvalue of A. Moreover let us assume that $w \neq 0$, $z \neq 0$ are solutions of (4.1).

System (4.1) can also be written as

$$(T_p - \gamma I) \begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} a - \gamma & b \\ c & d - \gamma \end{pmatrix} \begin{pmatrix} w \\ z \end{pmatrix}.$$
 (4.5)

Moreover, since $\gamma \in \sigma(A)$, it satisfies

$$(a - \gamma)(d - \gamma) = bc. \tag{4.6}$$

From the first equation in (4.4), we obtain $(T_p - aI)w = bz$ with $z \in D(T_p)$. Applying $(T_p - \gamma I)$ on both sides of this equation, and taking into account the second equation in (4.4) we obtain:

$$(T_p - \gamma I)(T_p - aI)w = (T_p - \gamma I)bz = bcw + b(d - \gamma)z.$$

Taking into account (4.6) and (4.5) we derive

$$(T_p - \gamma I)(T_p - aI)w = (d - \gamma)[(a - \gamma)w + bz] = (T_p - \gamma I)(d - \gamma)w.$$
(4.7)

We observe that, in order to obtain the previous relations, we use the homogeneity of T_p but we cannot commute $T_p - \gamma I$ and $T_p - aI$ because of the non linearity of T_p .

Since $\gamma < 0$, $(T_p - \gamma I)^{-1}$ is well defined, applying it into (4.7) we obtain: $(T_p - aI)w = (d - \gamma)w$, or equivalently

$$T_p w = (a + d - \gamma) w$$

so that $a + d - \gamma$ is an eigenvalue of T_p . Since the eigenvalues of A are real and equal to

$$(a+d)/2 \pm \sqrt{((a-d)/2)^2 + bc},$$
 (4.8)

if $\gamma < 0$ is an eigenvalue of A, the other is $\delta = a + d - \gamma$. Moreover, if w > 0, z > 0, $T_p w = \delta w$ implies $\delta = \lambda_1$.

5 The Leray-Schauder degree for the eigenvalue problem

In this section we study the Leray-Schauder degree in terms of the Jordan canonical form of matrices $A \in \mathcal{M}^-$. For this purpose we use the following property: If $A \in \mathcal{M}^-$ and $\sigma(A) \cap \sigma(T_p) = \emptyset$ then $A \notin \mathcal{S}(T_p)$. Therefore (4.1) has only the trivial solution, which comes from Proposition 4.2.(b).

We denote by $\sigma(A) = \{\gamma, \delta\}$ the spectrum of Matrix A, and $\sigma(-\Delta_p) = \sigma(T_p)$ the set of eigenvalues of the operator $-\Delta_p$ with Dirichlet boundary conditions.

Proposition 5.1 Let $\mathcal{U} \subset (L^{\beta(p)}(\Omega))^2$ be open bounded and $0 \in \mathcal{U}$. Let J be the Jordan canonical form of the matrix A. Assume that $A \in \mathcal{M}^-$ and $\sigma(A) \cap \sigma(-\Delta_p) = \emptyset$. Then

$$\deg_{LS}(I - T_p^{-1}A, \mathcal{U}, 0) = \deg_{LS}(I - T_p^{-1}J, \mathcal{U}, 0).$$

Moreover, one of the following two conditions is satisfied

1.
$$J = \begin{pmatrix} \gamma & 0 \\ 0 & \delta \end{pmatrix} and \deg_{LS}(I - T_p^{-1}J, \mathcal{U}, 0)$$

$$= \deg_{LS}(I - \gamma T_p^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0) \deg_{LS}(I - \delta T_p^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0)$$

2.
$$J = \begin{pmatrix} \gamma & 0 \\ 1 & \gamma \end{pmatrix} and$$

$$\deg_{LS}(I - T_p^{-1}J, \mathcal{U}, 0) = [\deg_{LS}(I - \gamma T_p^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0)]^2.$$

Remark 5.2 This result has been obtained for p = 2 in [15, Proposition 2.1]. In this case, the Leray-Schauder degree for compact linear operators applies [11, 20]).

For $p \neq 2$, the question of calculating $\deg_{LS}(I - \gamma T_p^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0)$ has been answered in the following cases

- When the spatial dimension N = 1 [19, 21].
- With radial symmetry [4, 22].
- Whenever $\gamma < \lambda_1$ or $\lambda_1 < \gamma < \lambda_2$ [3, 22]).

The other cases are still open problems. We consider here the case $\gamma < 0 < \lambda_1$.

Proof of Proposition 5.1 Let P be the invertible matrix such that $A = P^{-1}JP$. Let $M_{2\times 2}(\mathbb{R})$ be the space of 2×2 -matrix with real coefficients. Let us consider a continuous function $\mathcal{P} : [0,1] \to M_{2\times 2}(\mathbb{R})$ such that: 1) $\mathcal{P}(t)^{-1}$ exists for all $t \in [0,1], 2$) $\mathcal{P}(0) = I$, and 3) $\mathcal{P}(1) = P$.

Let us now define the homotopy $h: [0,1] \times (L^{\beta(p)}(\Omega))^2 \to (L^{\alpha(p)}(\Omega))^2$ by

$$h\left(t, \left(\begin{array}{c} w\\ z\end{array}\right)\right) = T_p^{-1}\left[\mathcal{P}(t)^{-1}J\mathcal{P}(t)\right] \left(\begin{array}{c} w\\ z\end{array}\right),$$

so that

$$h\left(0, \left(\begin{array}{c} w\\ z\end{array}\right)\right) = T_p^{-1}J\left(\begin{array}{c} w\\ z\end{array}\right), \quad h\left(1, \left(\begin{array}{c} w\\ z\end{array}\right)\right) = T_p^{-1}A\left(\begin{array}{c} w\\ z\end{array}\right)$$

If there exists some nontrivial solution of

$$h\left(t, \left(\begin{array}{c}w\\z\end{array}\right)\right) = \left(\begin{array}{c}w\\z,\end{array}\right)$$

then $\left[\mathcal{P}(t)^{-1}J\mathcal{P}(t)\right] \in \mathcal{S}(T_p)$ which is impossible by Proposition 4.2, since $\sigma\left[\mathcal{P}(t)^{-1}J\mathcal{P}(t)\right] = \sigma(J) = \sigma(A), \ A \in \mathcal{M}^- \text{ and } \sigma(T_p) \cap \sigma\left[\mathcal{P}(t)^{-1}J\mathcal{P}(t)\right] = \emptyset.$ So $h(t, \begin{pmatrix} w \\ z \end{pmatrix}) \neq \begin{pmatrix} w \\ z \end{pmatrix}$ for any $\begin{pmatrix} w \\ z \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

Now the invariance property for homotopies of the Leray-Schauder degree proves that

$$\deg_{LS}(I - T_p^{-1}A, \mathcal{U}, 0) = \deg_{LS}(I - T_p^{-1}J, \mathcal{U}, 0),$$

with $A = P^{-1}JP$.

We consider separately the following two cases:

Case (i): By the product formulae [11, Theorem 8.5], and since $\gamma, \delta \notin \sigma(-\Delta_p)$, we have

$$\deg_{LS}(I - T_p^{-1}J, \mathcal{U}, 0) = \deg_{LS}((I - \gamma T_p^{-1}, I), \mathcal{U}, 0) \deg_{LS}((I, I - \delta T_p^{-1}), K, 0)$$

where $(I - \gamma T_p^{-1}, I)(w, z) = ((I - \gamma T_p^{-1})w, z)$ and K is the connected component of $L^{\beta(p)}(\Omega)^2 \setminus (I - T_p^{-1}J)(\partial \mathcal{U})$ containing zero. The reduction property states that

$$\deg_{LS}((I - \gamma T_p^{-1}, I), \mathcal{U}, 0) = \deg_{LS}(I - \gamma T_p^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0)$$

Case (ii): $J = \begin{pmatrix} \gamma & 0 \\ 1 & \gamma \end{pmatrix}$. Here $\sigma(A) = \{\gamma, \gamma < 0\}$ and A is a non-diagonalizable matrix.

Let us define the homotopy $H: [0,1] \times (L^{\beta(p)}(\Omega))^2 \to (L^{\alpha(p)}(\Omega))^2$ by

$$H\left(t, \left(\begin{array}{c} w\\ z\end{array}\right)\right) = (T_p)^{-1} \left(\begin{array}{c} \gamma & 0\\ t & \gamma\end{array}\right) \left(\begin{array}{c} w\\ z\end{array}\right)$$

We have $\sigma \begin{pmatrix} \gamma & 0 \\ t & \gamma \end{pmatrix} = \sigma \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix} = \sigma(A)$. By Proposition 4.2, and due to

 $A \in \mathcal{M}^-$, if H(t, .) has a non-trivial solution then $\sigma \begin{pmatrix} \gamma & 0 \\ t & \gamma \end{pmatrix} \cap \sigma(-\Delta_p) \neq \emptyset$, which contradicts the hypothesis $\sigma(A) \cap \sigma(-\Delta_p) = \emptyset$. Therefore $\deg_{LS}(I - H(t, .), \mathcal{U}, 0)$ is well defined and independent of $t \in [0, 1]$. Moreover by using again the product formulae

$$deg_{LS}(I - (T_p)^{-1}J, \mathcal{U}, 0) = deg_{LS}(I - H(1, .), \mathcal{U}, 0) = deg_{LS}(I - H(0, .), \mathcal{U}, 0) = [deg_{LS}(I - \gamma(T_p)^{-1}, \mathcal{U} \cap L^{\beta(p)}(\Omega), 0)]^2.$$

6 Existence of Positive Bifurcated Solutions

In this section we study sufficient conditions for the existence of positive solutions bifurcating from $(A_0, (0, 0))$ where $A_0 = \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix}$. From Theorem 3.1 we will need that the eigenvalue problem has a (nontrivial) non negative solution, and therefore we will require, from Proposition 4.2, that $\lambda_1 \in \sigma(A_0)$ and therefore $\sigma(T_p) \cap \sigma(A_0) \neq \emptyset$. Another usual requirement is that there is a changement of topological degree (cf. [23],[11, Theorem 28.1], [1], ...). More explicitly, we have the following

Theorem 6.1 Assume that f, g satisfy (H), that $\lambda_1 \in \sigma(A_0)$ and that $A_0 \in \mathcal{M}$. Then $(A_0, (0, 0))$ is a bifurcation point to positive solutions of (1.1) in $\mathbb{R}^4 \times (W_0^{1,p}(\Omega))^2$.

Moreover, there is a connected component of topological dimension ≥ 4 of the set of nontrivial solutions of (1.1) in $\mathbb{R}^4 \times (W_0^{1,p}(\Omega))^2$ whose closure contains the point $(A_0, (0, 0))$.

Remark 6.2 Theorem above is a generalization for systems of the already known situation for one single equation [22, Proposition 2.2].

Proof. Hereafter we denote by $B_E(c, r)$ the ball in some space E with center $c \in E$ and radius r. Suppose that $(A_0, (0, 0))$ is not a bifurcation point of (1.1). Since λ_1 is isolated, there are $\epsilon_0 > 0$ and $r_0 > 0$ such that for every

 $A \in B_{\mathbb{R}^4}(A_0, \epsilon_0) \subset \mathbb{R}^4$, if $(w, z) \in B_{(W_0^{1,p})^2}((0,0), r_0) \subset (W_0^{1,p})^2$ satisfies (1.1), then (w, z) = (0, 0).

Since for any $A \in B_{\mathbb{R}^4}(A_0, \epsilon_0)$ the functions

 $f(a,.,.), \ g(d,.,.): (L^{\alpha})^2 \to L^{\beta}$

map bounded sets into bounded sets, the function $F: B_{\mathbb{R}^4}(A_0, \epsilon_0) \times (L^{\alpha})^2 \to (L^{\alpha})^2$ given by

$$F\left(A, \left(\begin{array}{c} w\\ z\end{array}\right)\right) = T_p^{-1}\left[\left(\begin{array}{c} a & b\\ c & d\end{array}\right) \left(\begin{array}{c} w\\ z\end{array}\right) + \left(\begin{array}{c} f(a, w, z)\\ g(d, w, z)\end{array}\right)\right]$$

is completely continuous, consequently $\deg_{LS}(I - F(A, .), B_{(L^{\alpha})^2}((0, 0), r_0), 0)$ is well defined and independent of $A \in B_{\mathbb{R}^4}(A_0, \epsilon_0)$. For $A_0 = \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix}$, denote by J_0 its Jordan canonical form. By hypothesis we can always choose two matrices, $A_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$, i = 1, 2, such that

- (a) $\sigma(A_i) \cap \sigma(-\Delta_p) = \emptyset$,
- (b) $A_i \in \mathcal{M}$
- (c) $A_i \in B_{\mathbb{R}^4}(A_0, \epsilon_0)$ and

(d)
$$\deg_{LS}(I - T_p^{-1}A_1, \mathcal{U}, 0) \neq \deg_{LS}(I - T_p^{-1}A_2, \mathcal{U}, 0).$$

Let us now define the homotopies

$$H_i\left(t, \left(\begin{array}{c}w\\z\end{array}\right)\right) = T_p^{-1}\left[A_i\left(\begin{array}{c}w\\z\end{array}\right) + t\left(\begin{array}{c}f(a, w, z)\\g(d, w, z)\end{array}\right)\right],$$

Next, we show by contradiction that there exists a real number sufficiently small again denoted by r_0 such that

$$H_i\left(t, \left(\begin{array}{c} w\\ z\end{array}\right)\right) \neq \left(\begin{array}{c} w\\ z\end{array}\right) \quad \text{in} \quad \partial B_{(L^{\alpha})^2}((0,0), r_0) \subset (L^{\alpha})^2$$

for any $t\in[0,1].$ Assume that for any $n\in\mathbb{N}$ large enough, there exists a sequence

$$\left\{ \left(t_n, \left(\begin{array}{c} w_n \\ z_n \end{array} \right) \right) \right\} \in [0,1] \times (L^{\beta})^2, \quad \left\| \left(\begin{array}{c} w_n \\ z_n \end{array} \right) \right\|_{(L^{\beta})^2} = 1/n,$$

and

$$T_p \begin{pmatrix} w_n \\ z_n \end{pmatrix} = A_i \begin{pmatrix} w_n \\ z_n \end{pmatrix} + t_n \begin{pmatrix} f(a, w_n, z_n) \\ g(d, w_n, z_n) \end{pmatrix}, \quad \text{in } \Omega,$$
$$w_n = z_n = 0, \quad \text{on } \partial\Omega.$$

12

Arguing as in the proof of Theorem (3.1), the associated eigenvalue problem has a non-trivial solution which is positive. Hence, by Proposition (4.2),

$$\lambda_1 \in \sigma(A_i) \cap \sigma(-\Delta_p)$$

which contradicts (a). Then $H_i(t, (w, z)) \neq (w, z)$ in $\partial B_{(L^{\alpha})^2}((0, 0), r_0)$, therefore $\deg_{LS}(I - H_i(t, .), B_{(L^{\alpha})^2}((0, 0), r_0), 0)$ is well defined and independent of t, consequently

$$\begin{aligned} \deg_{LS}(I - F(A_i, .), B_{(L^{\alpha})^2}((0, 0), r_0), 0) \\ &= \deg_{LS}(I - H_i(1, .), B_{(L^{\alpha})^2}((0, 0), r_0), 0) \\ &= \deg_{LS}(I - H_i(0, .), B_{(L^{\alpha})}((0, 0), r_0), 0) \\ &= \deg_{LS}(I - T_p^{-1}A_i, B_{(L^{\alpha})^2}((0, 0), r_0), 0) \end{aligned}$$

which, jointly with (c) and (d), contradicts the assertion that $\deg_{LS}(I - F(A_i, .), B_{(L^{\alpha})^2}((0, 0), r_0), 0)$ is constant for $A \in B_{\mathbb{R}^4}(A_0, \epsilon_0)$.

Now, we built the nonnegative the matrices A_1, A_2 . From the definition of the Jordan's canonical form, there exists an invertible matrix P such that $A_0 = P^{-1}J_0P$. Denote now by $\gamma < 0$ and δ the eigenvalues of A. Assume that $\delta = \lambda_1$. Let us define

$$A_1 := P^{-1} \begin{pmatrix} \delta + \epsilon & 0 \\ 0 & \gamma \end{pmatrix} P, \quad A_2 := P^{-1} \begin{pmatrix} \delta - \epsilon & 0 \\ 0 & \gamma \end{pmatrix} P.$$

Now, the fact that $T_p^{-1}: (L^{\beta})^2 \to (W_0^{1,p})^2$ is continuous ensures that $(A_0, (0, 0))$ is a bifurcation point of (1.1). The change of the degree and the Theorem of Alexander and Antman [1] complete the present proof.

References

- J.C. Alexander, S.S. Antmann, Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Vol. 76, N. 4, 339-354, (1981).
- [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, Vol. 18, N. 4, 620-709, (1976).
- [3] A. Anane, Simplicité et isolation de la premiére valeur propre du p-laplacian avec poids, C.R.A.S. Paris, Vol. 305, 725-728, (1987).
- [4] A. Anane, Thèse de doctorat, Université Libre de Bruxelles, (1988).
- [5] D. Arcoya and J.I. Diaz, S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology, J. Diff. Eqns 150, 215-225, (1998).
- [6] C. Atkinson and K. El Kalli, Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41, 339-363, (1992).

- [7] C. Atkinson and C.R. Champion, On some boundary value problems for the equation $\nabla (F(|\nabla w|)\nabla w) = 0$, Proc. R. Soc. London A448, 269-279, (1995).
- [8] P. Clément, J. Fleckinger, E. Mitidieri and F. de Thélin Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Diff. Eqns 166, 455-477, (2000).
- D.G. Costa, C.A. Magalhaes, A variational approach to subquadratic pertubations of elliptic systems, J. Diff. Eqns 111, 103-122 (1994).
- M.G. Crandall and P.H. Rabinowitz, *Bifurcation from simple eigenvalues*, J. Functional Anal., Vol. 8, 321-340 (1971).
- [11] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin (1985).
- [12] J.I. Diaz, Nonlinear partial differential equations and free boundaries, Pitmann Publ. Program 1985.
- [13] J. Fleckinger, J.P. Gossez, P.Takáč, F. de Thélin, Existence, nonexistence et principe de l'antimaximum pour le p-Laplacien, Comptes Rendus Acad. Sc., Paris, t.321, série 1 p. 731-734, (1995).
- [14] J. Fleckinger, R. F. Manásevich, F. de Thélin, Global Bifurcation from the first eigenvalue for a system of p-laplacians, Math. Nachrichten, N.182, p.217-241, (1997).
- [15] J. Fleckinger, R. Pardo, Bifurcation for an elliptic system coupled in the linear part, Nonl. Anal. T.M.A, Vol. 37, No. 1, 13-30 (1999).
- [16] J. Fleckinger, J. Hernández, P.Takáč, F.de Thélin, Uniqueness and Positivity for Solutions of Equations with the p-Laplacian, Reaction Diffusion Systems, Lect.Notes P.Appl.Math., v.134, (Caristi, Mitidieri Eds), p.141-156, (1997).
- [17] J. Fleckinger, P.Takáč, Uniqueness of positive solutions for nonlinear cooperative systems with the p-Laplacian, Indiana Jal Math, V.43, N.4, p.1227-1253, (1994).
- [18] J. García Azorero and I. Peral Alonso, Comportement asymptotique des valeurs propres du p-laplacien, C. R. Acad. Sci. Paris, Vol. 307, 75-78, (1988).
- [19] M. Guedda and L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc., Vol. 310, 419-431, (1988).
- [20] J. Leray, J. Schauder, Topologie et équations fonctionelles, Ann. Sci. Ecole Norm. Sup., Vol. 51, 45-78, (1934).

- [21] M.A. del Pino, M. Elgueta, R. F. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')' + f(t,u) = 0, u(0) = u(T) = 0, p > 1, J.$ of Diff. Eq., Vol. 80, 1-13, (1989).
- [22] M.A. del Pino, R. F. Manásevich, Global Bifurcation from the eigenvalues of the p-laplacian, J. of Diff. Eq., Vol. 92, 226-251, (1991).
- [23] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 487-513 (1971).
- [24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equ., 51 (1984), 126-150.
- [25] J.L. Vázquez: A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 191-202, (1984).

JACQUELINE FLECKINGER CEREMATH & UMR MIP, Université Toulouse 1 pl. A. France 31042 Toulouse Cedex, France e-mail: jfleck@univ-tlse1.fr ROSA PARDO Departamento de Matemática Aplicada Universidad Complutense de Madrid Madrid 28040, Spain e-mail: rpardo@sunma4.mat.ucm.es FRANÇOIS DE THÉLIN UMR MIP, Université Toulouse 3 118 route de Narbonne 31062 Toulouse Cedex 04, France e-mail: dethelin@mip.ups-tlse.fr