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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF A CLASS

OF SECOND ORDER DIFFERENTIAL SYSTEMS

SVETOSLAV IVANOV NENOV

Abstract. In the present paper it is proved that for any solution x1(t) of the
system Mẍ + ẋ = f(t, x), for which lim

t→∞
‖ẋ1(t)‖ = 0, there exists a solution

x2(t) of the system ẋ = f(t, x) such that lim
t→∞

‖x1(t) − x2(t)‖ = 0. Some

generalizations of this result are also presented. The case f(t, x) = −∇U(x)
has been investigated explicitly.

1. Statements and main results

We consider the following two n-dimensional systems

Mẍ+ ẋ = f(t, x) (1)

and

ẋ = f(t, x), (2)

where M ≥ 0 is a constant; “·” denotes differentiation with respect to t; f :
R+ × Ω → R

n; R+ ≡ [0,∞); Ω is a domain in Rn; Rn is the n-dimensional
Euclidean space with Euclidean scalar product 〈·, ·〉 and corresponding norm ‖ · ‖.
Let (x11, x12) ∈ Ω × Rn and x2 ∈ Ω be fixed initial points and t0 ∈ R+ be a

fixed initial moment; x1(t; t0, x11, x12) and x2(t; t0, x2) denote the solutions of the
systems (1) and (2) with initial conditions

x1(t0; t0, x11, x12) = x11, ẋ1(t0; t0, x11, x12) = x12 (3)

and

x2(t0; t0, x2) = x2, (4)

respectively.
We introduce the following hypotheses (H1):

(H1.1) Ω is a bounded domain in Rn; f ∈ C(R+ × Ω,Rn).
(H1.2) The function f is Lipschitz with respect to the second argument with Lipschitz

constant L ≥ 0.
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(H1.3) For arbitrary initial conditions (t0, x11, x12) ∈ R+×Ω×Rn, (t0, x2) ∈ R+×Ω,
the Cauchy problems (1), (3) and (2), (4) have unique solutions x1(t; t0, x11, x12)
and x2(t; t0, x2), respectively, defined on t-interval R+. Moreover

{x1(t; t0, x11, x12) : t ∈ R+} ⊂ Ω, {x2(t; t0, x2) : t ∈ R+} ⊂ Ω.

In this article, the following theorem contains one of the basic results.

Theorem 1. Assume the following conditions hold:

1. The hypothesis (H1) holds.
2. (t0, x11, x12) ∈ R+ × Ω× Rn is the fixed initial condition for (1), (3).
3.

lim
t→∞

‖ẋ1(t; t0, x11, x12)‖ = 0 . (5)

Then there exists at least one initial condition x2 ∈ Ω for the system (2) such
that

lim
t→∞

‖x1(t; t0, x11, x12)− x2(t; t0, x2)‖ = 0. (6)

Theorem 1 is proved in subsection 4.1.

Example 1. Let us consider the differential equations:

ẍ+ ẋ = t, (7)

and

ẋ = t. (8)

An immediate integration of these equations yields:

x1(t; 0, x11, x12) = 1 + x12 + x11 − t+
t2

2
− e−t(1 + x12)

and

x2(t; 0, x2) = x2 +
t2

2
.

It is not difficult to check that for any three points x11, x12, x2 ∈ R we have

lim
t→∞

|x1(t; 0, x11, x12)− x2(t; 0, x2)| 6= 0.

Moreover, in this example, for any initial conditions x11, x12 ∈ R of the problem
(7), (3) we have

lim
t→∞

|ẋ1(t; 0, x11, x12)| = lim
t→∞

| − 1 + t+ e−t(1 + x12)| =∞.

From the above equality it follows that (5) is not true and, as we have shown,
equality (6) is not valid. Thus (5) is an essential condition.

The following result is derived similarly to the proof of Theorem 1 (see subsection
4.2).

Theorem 2. Assume the following conditions are fulfilled:

1. The hypothesis (H1) holds.
2. (t0, x11, x12) ∈ R+ × Ω× Rn is a fixed initial condition for (1), (3).
3.

lim
t→∞

‖ẍ1(t; t0, x11, x12)‖ = 0. (9)

Then there exists at least one initial condition x2 ∈ Ω of system (2) such that the
equality (6) is valid.
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2. An application: Second order gradient systems

In the present section we shall discuss some asymptotic properties of the solutions
of the following system

Mẍ+ ẋ = −∇U(x), (10)

where M ≥ 0 is a constant; U ∈ C1(Ω,R); Ω is a domain in Rn such that any
solution of (10) starting in Ω remains in Ω.
First, let us write (10) as a first order system in R2n:

ẋ = y, ẏ =M−1 (−y −∇U(x)) . (11)

Setting

L(x, y) =
M

2
y2 + U(x),

it is not difficult to see that

L′(x, y) =Myẏ +∇U(x)y = (Mẏ +∇U(x))y = −y2 ≤ 0, (12)

for any (x, y) ∈ Ω× Rn. Therefore, if U(x) ≥ 0, x ∈ Ω then L(x, y) is a Liapunov
function (i.e. a continuous non-negative function which satisfies locally a Lipschitz
condition) for (11).
Let M = {(x, y) : L′(x, y) = 0} = {(x, 0) : x ∈ Ω} and letM1 be the union of

all points (x0, y0) of all orbits (x(t;x0, y0), y(t;x0, y0)) such that

{(x(t;x0, y0), y(t;x0, y0)) : t ∈ R} ⊂ M.

Theorem 3. Suppose that U(x) ≥ 0 for all x ∈ Ω, and lim
‖x‖→∞

U(x) =∞.

Then:

1. All solutions of (11) are bounded.
2. Every solution of (11) approaches M1 as t → ∞, i.e. for any (x0, y0) ∈
Ω× Rn we have

(x(t;x0, y0), y(t;x0, y0))→M1, as t→∞.

3. For any (x0, y0) ∈ Ω× Rn,

lim
t→∞

ẋ(t;x0, y0) = lim
t→∞

y(t;x0, y0) = 0 .

Proof. Obviously, lim‖x‖2+‖y‖2→∞ L(x, y) =∞. Then the first statement of Theo-
rem 3 follows from [4, Theorem 10.1].
The second statement follows immediately from results in [2], see also [4, Theo-

rem 14.4, Theorem 14.7].
The third statement follows from second one and implication M1 ⊂ M =

{(x, 0) : x ∈ Ω}.

The following result follows immediately from Theorem 1 and Theorem 3.

Theorem 4. Let the following conditions hold true:

1. Ω is a domain in Rn; U ∈ C1(Ω,Rn); the hypothesis (H 1.3) is valid, where
f(t, x) = −∇U(x).

2. (t0, x11, x12) ∈ R+ × Ω × Rn is a fixed initial condition for the initial-value
problem (10), (3).
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Then there exists at least one initial condition x2 ∈ Ω for the system ẋ = −∇U(x)
such that

lim
t→∞

‖x1(t; t0, x11, x12)− x2(t; t0, x2)‖ = 0. (13)

It is not difficult to derive some properties of the solutions of systems (10) or
(11): the ω-limit set of a solution of system (11) consists of critical points only; if
there are two critical points in the ω-limit set then there are infinitely many critical
points in the same ω-limit set; there is no non-trivial periodic solutions of (11), etc.
The proofs of these facts follow from Theorem 4 and results in [3, Chapter 1, §1].

3. A Topological Principle

In the present Section we shall deduce the Topological Principle in the theory
of autonomous dynamical systems or the so-called T. Wazewski’s Theorem. The
Topological Principle is related to the initial value-problem

ẋ = f(t, x), x(t0) = x0, (14)

where f ∈ C(E , Rn); E is an open (t, x)-set in R × Rn; (t0, x0) ∈ E . Let E0 be a
non-empty open subset in E .
We recall the following definitions.

Definition 1. The point (t0, x0) ∈ E ∩ ∂E0 is said to be:

1. an egress point of E0 with respect to the system (14) if, for every solution
x(t; t0, x0) of (14) there exists θ > 0 such that {(t, x(t; t0, x0)) : t ∈ [t0 −
θ, t0)} ⊂ E0.

2. an strict egress point of E0 with respect to the system (14) if, (t0, x0) is an
egress point of E0 and {(t, x(t; t0, x0)) : t ∈ [t0, t0+θ]} ⊂ E \E0 for sufficiently
small θ > 0. See Figure 1.

In the following, Ee0 (E
se
0 ) denotes the set of all egress (strict egress) points of E0.

It is clear that Ese0 ⊂ E
e
0 .

Definition 2. The open subset E0 in E is said to be an open [U, V ]-subset in E with
respect to the system (14) if:

1. There exist integers p, q ≥ 1 and continuous functions Uj : E → R, j =
1, . . . , p and Vk : E → R, k = 1, . . . , q such that

E0 = {(t, x) : Uj(t, x) < 0 and Vk(t, x) < 0, 1 ≤ j ≤ p, 1 ≤ k ≤ q} .

2. If for any two indexes α = 1, . . . , p and β = 1, . . . , q we denote

Uα =
{
(t, x) : Uα(t, x) = 0, Uj(t, x) ≤ 0 and Vk(t, x) < 0,

1 ≤ j ≤ p, j 6= α, 1 ≤ k ≤ q
}
,

Vβ =
{
(t, x) : Uj(t, x) < 0, Vβ(t, x) = 0 and Vk(t, x) ≤ 0,

1 ≤ j ≤ p, 1 ≤ k ≤ q, k 6= β
}
,

then the trajectory derivatives

U ′α(t0, x0) =
dUα(t, x(t; t0, x0))

dt
|t=t0 ,

V ′β(t0, x0) =
dVβ(t, x(t; t0, x0))

dt
|t=t0
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Figure 1. Egress points and strict egress points

exist, satisfying the inequalities

U ′α(t0, x0) > 0, for any point (t0, x0) ∈ Uα,

V ′β(t0, x0) < 0, for any point (t0, x0) ∈ Vβ ,

along all solutions of (14) through (t0, x0).

The theorem (T. Wazewski’s Theorem) is known also as the Topological Principle
in the theory of autonomous dynamical systems.

Theorem 5. Assume the following conditions:

1. E is an open (t, x)-set in R× Rn; f ∈ C(E , Rn).
2. The initial-value problem (14) has a unique solution through every point of E,
and these solutions depend continuously on initial values.

3. E0 is an open subset in E.
4. All egress points of the set E0 are strict egress points, i.e. Ee0 = E

se
0 .

5. W is a non-empty subset in E0 ∪ Ee0 such that W ∩ E
e
0 is a retract of E

e
0 , but

is not a retract of W.

Then there exists at least one point (t0, x0) ∈ W ∩ E0 such that x(t; t0, x0) ∈ E0 for
any t in the right-maximal interval of existence of x(t; t0, x0).

An useful tool for checking the validity of condition 4 of Theorem 5 is the fol-
lowing lemma.

Lemma 1. Assume the following conditions:

1. The conditions 1 and 2 of Theorem 5 hold.
2. E0 is an open [U, V ]-subset of E with respect to the system (14).

Then

Ee0 = E
se
0 =

p⋃
α=1

Uα \
q⋃
β=1

Vβ ,

where Uα and Vβ are the sets introduced in Definition 2.

One may find the circumstantial explanation and proofs of all results in this
Section in [1, Chapter X, §3].
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4. Proofs

4.1. Proof of Theorem 1. Let (x11, x12) ∈ Ω×Rn be a fixed initial condition for
the system (1). For simplification of notations we suppose that t0 = 0. Further, we
shall use the notation x1(t) = x1(t; 0, x11, x12).
We set

g : R+ × R+ → R, g(t, u) = −
6

5
Lu2 −

6

5
LM 3
√
u‖ẋ1(t)‖.

For any initial condition u0 ∈ R+, the differential inequality

2uu̇ < g(t, u) (15)

has a solution u(t;u0) for which:

u(0;u0) = u0, (16)

and

lim
t→∞

u(t;u0) = 0. (17)

To prove these facts, it is sufficient to see that the initial-value problem

2uu̇ = −2Lu2 −
6

5
LM 3
√
u‖ẋ1(t)‖, u(0;u0) = u0 (18)

has solution for which (16) and (17) hold true. The mentioned solution is

u(t, u0) = e
−Lt


u 530 − LM

t∫
0

e
5Ls
3 ‖ẋ1(s)‖ ds



3
5

.

Below, we shall use the notation u(t) = u(t;u0).
We set:

U : R+ × Ω→ R, U(t, x) = ‖Mẋ1(t) + x1(t)− x‖
6
5 − u2(t);

V : R+ → R− ≡ (−∞, 0], V (t) = −t;

U = {(t, x) ∈ R+ × Ω : U(t, x) = 0 and V (t) < 0} ;

V = {(t, x) ∈ R+ × Ω : U(t, x) < 0 and V (t) = 0} ;

E0 = {(t, x) ∈ R+ × Ω : U(t, x) < 0 and V (t) < 0} ; E = R+ × Ω.

Our goal is to show that there exists at least one initial condition ξ2 ∈ Ω and
initial moment τ > 0 for the problem (2), (4) such that

{(t, x2(t; τ, ξ2)) : t > τ} ⊂ E0. (19)

First, we shall prove if

(t∗, x∗) ∈ U , then U
′(t∗, x∗) > 0, (20)

where ′ denotes the derivative of function U(t, x) along the trajectories of system
(2), i.e. U ′(t∗, x∗) =

d
dt
U(t, x2(t; t∗, x∗))|t=t∗ .

Let (t∗, x∗) ∈ U be a fixed point. We set

m : R+ → R+, m(t) = ‖Mẋ1(t) + x1(t)− x2(t; t∗, x∗)‖
2.

The definition of the set U implies

0 = U(t∗, x∗) = ‖Mẋ1(t∗) + x1(t∗)− x∗‖
6
5 − u2(t∗)

= ‖Mẋ1(t∗) + x1(t∗)− x2(t∗; t∗, x∗)‖
6
5 − u2(t∗)

= m
3
5 (t∗)− u

2(t∗)
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or m
3
5 (t∗) = u

2(t∗). On the other hand, if h0 > 0 is sufficiently small and if
h ∈ (−h0, h0) then

m(t∗ + h) = m(t∗) + 2h
〈
Mẋ1(t∗) + x1(t∗)− x2(t∗; t∗, x∗),

Mẍ1(t∗) + ẋ1(t∗)− ẋ2(t∗; t∗, x∗)
〉
+ ε1(h),

where ε1 : (−h0, h0)→ R and

lim
h→0

ε1(h)

h
= 0. (21)

The equalities Mẍ1(t) + ẋ1(t) = f(t, x1(t)) and ẋ2(t; t∗, x∗) = f(t, x2(t; t∗, x∗))
imply

‖Mẍ1(t) + ẋ1(t)− ẋ2(t; t∗, x∗)‖ = ‖f(t, x1(t))− f(t, x2(t; t∗, x∗))‖ ≤

≤ L‖x1(t)− x2(t; t∗, x∗)‖ = L‖Mẋ1(t) + x1(t)− x2(t; t∗, x∗)−Mẋ1(t)‖ ≤

≤ L
√
m(t) + LM‖ẋ1(t)‖. (22)

From (21) and (22) at t = t∗ we obtain

m(t∗ + h) ≤ m(t∗) + 2|h|
(
Lm(t∗) + LM

√
m(t∗)‖ẋ1(t∗)‖

)
+ ε1(h). (23)

The formula (23) yields

m(t∗+h)−m(t∗)
h

≤ 2Lm(t∗) + 2LM
√
m(t∗)‖ẋ1(t∗)‖+

ε1(h)
h
, for h > 0,

m(t∗+h)−m(t∗)
h

≥ −2Lm(t∗)− 2LM
√
m(t∗)‖ẋ1(t∗)‖+

ε1(h)
h
, for h < 0.

(24)

From the definition of the function m(t) it follows that m(t) is C1-smooth.
Letting h → ±0 in the inequalities (24) and using (21) we obtain the following
estimates for the derivative of function m(t) at t = t∗

−2Lm(t∗)− 2LM
√
m(t∗)‖ẋ1(t∗)‖ ≤ ṁ(t∗) ≤ 2Lm(t∗) + 2LM

√
m(t∗)‖ẋ1(t∗)‖.

(25)

Therefore, from definitions of functions U(t, x), u(t), (21) and left hand-side of
(25) it follows that

U ′(t∗, x∗) =
d
dt

(
m

3
5 (t∗)− u2(t∗)

)
= 3
5m
− 25 (t∗)ṁ(t∗)− 2uu̇(t∗)

≥ 3
5m
− 25 (t∗)

(
−2Lm(t∗)− 2LM

√
m(t∗)‖ẋ1(t∗)‖

)
− 2u(t∗)u̇(t∗)

= − 65Lm
3
5 (t∗)−

6
5LMm

1
10 (t∗)− 2u(t∗)u̇(t∗)

= − 65Lu
2(t∗)−

6
5LMu

1
3 (t∗)− 2u(t∗)u̇(t∗)

= g(t∗, u(t∗)) − 2u(t∗)u̇(t∗) > 0.

The last inequality prove the implication (20). Immediately, the definition of func-
tion V (t) yields

if (t∗, x∗) ∈ V , then V
′(t∗, x∗) = −1 < 0. (26)

From (20) and (26) it follows, E0 is an open [U, V ]-subset in E with respect to
the system (2). Therefore, using Lemma 1 we conclude

Ee0 = E
se
0 = U \ V = U . (27)
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Now, from the definitions of the sets U , V and equality (27) it is not difficult to
conclude (see. Figure 4.1)

Ee0 = {(t, x) ∈ R× Ω : t > 0 and ‖φ(t)− x‖ = u(t)} , (28)

where φ(t) =Mẋ1(t) + x1(t).
Let τ > 0 be a fixed number. Setting

W = {(t, x) ∈ R+ × Ω : t = τ and ‖φ(τ) − x‖ ≤ u(τ)} ⊂ E0 ∪ E
e
0 .

we obtain that W is a ball in Rn, and

W ∩ Ee0 = {(t, x) ∈ R+ × Ω : t = τ and ‖φ(τ)− x‖ = u(τ)} . (29)

Obviously, the boundary ∂W of the set W is not a retract of W , i.e. the set
W ∩ Ee0 is not a retract of W . We shall show that W ∩ E

e
0 is a retract of E

e
0 . For

this purpose we introduce the map

π : Ee0 → R
1+n, π(t, x) = (τ, π2(t, x)),

where

π2(t, x) = φ(τ) + (x− φ(t))
u(τ)

u(t)
.

Obviously π is a continuous map. Moreover, if (t̃, x̃) ∈ Ee0 , then

‖φ(t̃)− x̃‖ = u(t̃).

That is why

‖φ(τ) − π2(t̃, x̃)‖ = ‖φ(t̃)− x̃‖
u(τ)

u(t̃)
= u(τ),

or π : Ee0 →W ∩ E
e
0 . For (τ, x̃) ∈ W ∩ E

e
0 , we have

π(τ, x̃) = (τ, π2(τ, x̃)) = (τ, φ(τ) + (x̃− φ(τ))) = (τ, x̃).

Therefore, π is a retraction.
From the Wazewski’s Theorem (see Theorem 5) it follows that there exists at

least one point (τ, ξ2) ∈ W ∩ Ee0 , such that (19) holds true.
The definition of set E0 yields

‖Mẋ1(t) + x1(t)− x2(t; τ, ξ2)‖ < u
5
3 (t) for t > τ. (30)

From (30) and (17) we conclude that

lim
t→∞

‖Mẋ1(t) + x1(t)− x2(t; τ, ξ2)‖ ≤ lim
t→∞

u
5
3 (t) = 0. (31)
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Therefore, (31) and (5) imply

lim
t→∞

‖x1(t)− x2(t; τ, ξ2)‖ = lim
t→∞

‖Mẋ1(t) + x1(t)− x2(t; τ, ξ2)−Mẋ1(t)‖ ≤

≤ lim
t→∞

‖Mẋ1(t) + x1(t)− x2(t; τ, ξ2)‖+M lim
t→∞

‖ẋ1(t)‖ = 0.

To complete the proof of Theorem 1 it is enough to set x2 = x2(0; τ, ξ2).

4.2. Proof of Theorem 2. The proof of the Theorem 2 is analogous to the proof
of Theorem 1. We shall present only the appropriate settings:

g : R+ × R→ R, g(t, u) = −
6

5
Lu2 −

6

5
LMu

1
3 ‖ẍ1(t)‖

and
U : R+ × Ω→ R, U(t, x) = ‖x1(t)− x‖

6
5 − u2(t).
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