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Dynamics of polynomial systems at infinity ∗

Efthimios Kappos

Abstract

The behaviour of dynamics ‘at infinity’ has not received much at-
tention, even though it was central to Poincaré’s analysis of qualitative
dynamics. Poincaré’s ‘sphere’ is actually a projective plane and our treat-
ment of dynamics at infinity in more than two dimensions requires the
use of RPn. In control theory, ‘strange’ transients have been reported
by Kokotović and Sussmann, where they go by the name of ‘peaking be-
haviour’. These have a simple explanation when we consider the dynamics
on the Poincaré compactification of state space. In this work, we propose
to give an analysis of the issues arising in trying to examine the dynamics
at infinite radius for dynamical systems in arbitrary dimension. Use is
made of the Newton polytope and of recent results on principal parts of
vector fields.

1 Introduction

The ‘behaviour at infinity’ of a dynamical system is crucial to an understand-
ing of its global dynamics. Before the development of the theory of dynamical
systems, the qualitative approach of its main pioneer, Henri Poincaré, involved
defining dynamics on a compact state space that is in fact the projective plane,
see [13]. For a variety of reasons, the subsequent development of dynamical sys-
tems paid little attention to the question of interesting, or pathological dynamics
‘far away’ (exceptions are references [3, 10, 16] and a few others.) Perhaps be-
cause many practical systems are ‘dissipative,’ attention has focussed on ‘local’
problems where the theory of normal forms plays a major role. Still, the subject
is treated in a limited way in some of the main references, such as the book [1]
of the Andronov school, and in Lefschetz [11]. Modern texts completely ignore
this aspect, an exception being Perko [12].

Recently, in the context of nonlinear control systems having a certain diago-
nal structure, the phenomenon of peaking was observed which involves a family
of trajectories originating arbitrarily close to one of the invariant manifolds of
a stable equilibrium point that have arbitrarily large transients (see Section 4.)
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It therefore seems appropriate to re-examine techniques for systematically ana-
lyzing trajectories far away and to re-visit the classical subject of the Poincaré
and Bendixson spheres.

In this paper we set up a general method for obtaining dynamics on compact
manifolds whose trajectories are almost everywhere in one-to-one correspon-
dence with the trajectories of a flow in Euclidean space. We make an effort to
update the classical treatments in [11] and [1] and to go beyond them in several
respects.

We mainly consider dynamical systems arising from a vector field defined in
euclidean n-dimensional space Rn:

ẋ = F (x), (1)

where x = (x1, . . . , xn)T and F = (F1, . . . , Fn)T . We do not assume that the
vector field is complete. The main class of vector fields we shall consider is the
finitely generated module of polynomial vector fields over R[x1, . . . , xn], the
ring of polynomials in n variables. We denote by degFi the total degree of Fi
and use the multi-index notation

xα = xα1
1 · · ·xαnn , so that deg xα = |α| =

∑
i

αi.

The standard basis in TxR
n will be denoted by ei, i = 1, . . . , n (rather than

∂
∂xi

.) We then use the notation

xα+aei = xα1
1 · · ·x

αi+a
i · · ·xαnn .

The notation (x1, . . . , x̂i, . . . , xn) will denote the (n − 1)-dimensional array
with the ith element xi omitted.

2 Bendixson one-point compactification

The obvious way to attempt to define dynamics on a compact state space is to
use stereographic projection to define a vector field on the one-point compacti-
fication of Rn, namely the sphere Sn.

Let us assume that the two n-dimensional manifolds Rn and Sn are embed-
ded in Rn+1 in such a way as to have Rn be the tangent plane to the sphere Sn

at the ‘north pole’ {Z = 1}; the case n = 2 helps in the visualization, see Fig-
ure 1. We use the coordinates X1, . . . , Xn, Z in Rn+1 and hence for the sphere
Sn = {

∑
X2
i + Z2 = 1}. Stereographic projection from the south pole sends

points at infinity to the south pole. Now if we give the tangent plane {Z = −1}
the coordinates ξ1, . . . , ξn, ζ and use projection from the north pole, we get the
change of coordinates

ξi =
4xi∑n
j=1 x

2
j

and conversely xi =
4ξi∑n
j=1 ξ

2
j

(2)
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Figure 1: The Bendixson sphere compactification.

The elementary proof of this is given in the Appendix.
Taking the derivative with respect to time of equation 2 gives

ξ̇i =
1
4

(
∑
j 6=i

ξ2
j − ξ2

i )Fi −
1
2
ξi
∑
j 6=i

ξjFj (3)

where
Fi = Fi(

4ξ∑
k ξ

2
k

).

This gives a vector field away from the point ξ = 0; we shall denote it by G.
We then have that the above transformation gives a one-to-one map be-

tween trajectories of the system 1 and the trajectories of the vector field in the
complement of the origin in both spaces.

In order to obtain a well-defined system on the sphere, we need to scale the
vector field in eq. 3 so that is is defined at the origin ξ = 0.

Definition 2.1. The class N ⊂ X (Rn) of normalizable dynamics is the subset
of the set of vector fields F in Rn for which a function ρ : Rn → R exists such
that, for the transformed vector field G, the limit

lim
ξ→0

ρ(ξ)G(ξ)

is defined and the direction fields of ρG and G coincide, where G is defined.

The class of polynomial vector fields is normalizable. The normalizing func-
tion can be taken to be ρ(ξ) = R2N , where R is the norm of the vector ξ,
R2 =

∑
k ξ

2
k and for some positive N , possibly smaller than M , where

M = max
i
{degFi}.
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Since the two coordinate patches U1 = {Z > −1} and U2 = {Z < 1} cover
the sphere, we have shown that

Proposition 1. For any normalizable vector field F in Rn, there is defined
a direction field in the sphere Sn topologically orbitally equivalent to F on the
open subset {Z > −1} of Sn.

Example 1. An elementary example is the non-complete vector field

ẋ = x2

in R1 with a degenerate equilibrium at the origin.
The dynamics on U2 are given by

ξ̇ = −ξ2(
16
ξ2

) = −16

which means a vector field on the sphere S1 with a single equilibrium point.

Dissipativeness and Lyapunov functions

The main class of dynamics in Rn of practical interest is the class of dissipative
dynamics, i.e. those with a globally asymptotically stable compact attracting
set.

Proposition 2. The system (1) is dissipative iff the point at infinity on the
sphere Sn is a repeller.

It is sometimes (but certainly not always) easier to check the local stability
of an equilibrium point rather than to come up with a global Lyapunov function.
Thus, the above Proposition can be of practical use. Quite often, though, the
point at infinity is a highly degenerate equilibrium, whose stability is hard to
establish.

Dissipativeness can be defined by the existence of a global, compact attractor
A or by the existence of a proper Lyapunov function strictly decreasing towards
the value at the compact set. The quotient flow obtained by collapsing the
attractor A to a point is a gradient-like flow with a single attracting equilibrium;
the repeller at infinity is the complementary repeller of A in the terminology of
the Conley index (see [8].)

Proof. By basic Conley index theory, the complementary attractor of a repelling
equilibrium at the North pole on the sphere is a compact set. Thus the ‘if ’
direction follows.

Next note that, in the complement of the two poles, the change of coordinates
of equation (2) is a diffeomorphism. Thus, the derivative of a Lyapunov function
V along the trajectory is the result of evaluating an exact one-form along a
vector field, dV

dt = dV (F (x)), which is clearly independent of the coordinates
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chosen. (Note that we are considering the unscaled version of the vector field in
the patch U2.) Since away from the compact attractor, we have

dV

dt
< 0

and since V is proper, we get that the south pole is a repeller.

Let us look at a familiar example.

Example 2 (The Lorenz dynamics).

ẋ = σ(y − x)
ẏ = ρx− y − xz
ż = −βz + xy

(4)

where the parameters σ, ρ, β. Since the divergence divF = −σ − 1− β < 0, the
attracting set cannot be of dimension three.

Proposition 3. There is an increasing sequence of compact sets Ki (so Ki+1 ⊃
Ki) such that limKi = R

n and each Ki is positively invariant for the flow of
the Lorenz system.

Proof. Lorenz, see [17], Appendix C, uses the function

V (x, y, z) =
1
2

(ρx2 + σy2 + σ(z − 2ρ)2)

which gives

dV

dt
= σ(−ρx2 − y2 − βz2 + 2ρβz)

= σ(−ρx2 − y2 − β(z − ρ)2 + βρ2)

which is negative as soon as the sum of squares dominates the constant term.
The function V is thus a Lyapunov function outside a compact set and its sub-
level sets {V (x) ≤ ki} supply the desired compact sets, for appropriate ki.

The Lorenz equations are thus dissipative for all (positive) parameter values
and thus can be defined as dynamics on the sphere S3. Also note that the levels
of V are clearly spheres far away.

State spaces other than euclidean ones

The natural state space of a dynamical systems is often a manifold. In cases
where this manifold is a product of some euclidean space with a compact man-
ifold, the compactification procedure still works, by only compactifying the eu-
clidean summand. The simple pendulum equations,

ẋ = y
ẏ = −γy − sinx, (5)

for example, live in the space R×S1. Here, the one-point compactification gives
a two-sphere, S2. Care must be exercised to take a Lyapunov function that is
also x-periodic.
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3 Poincaré compactification

The key to the Poincaré compactification is to consider the state space Rn as
the affine plane {Z = 1} in Rn+1 and to extend the vector field on Rn to a
direction field in RPn (see Figure 2.) Since a whole (n−1)-dimensional space

�

�

�

Figure 2: The Poincaré compactification.

of infinities is used, the dynamics at infinity tend to be considerably simpler
that for the Bendixson one-point compactification.

Compactifying Dynamics to the Projective space

The affine space Rn gives a coordinate patch

{Z = 1}

of the projective space RPn, whose homogeneous coordinates will be written

[X1; . . . ;Xn;Z].

The space
{Z = 0}

provides a collection of ‘lines at infinity’ equivalent to RPn−1.
The other n coordinate patches correspond to {Xi 6= 0}. Let us present the

case of the ith coordinate patch, {Xi = 1}. From the equality of homogeneous
coordinates in the overlap,

[x1; . . . ;xn; 1] = [X1; . . . ;Xi−1;Z;Xi+1; . . . ;Xn]
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we obtain by differentiation the vector field

Ẋ1 = Z(F1 −X1Fi)
· · · · · ·
Ẋi−1 = Z(Fi−1 −Xi−1Fi)
Ż = −Z2Fi
Ẋi+1 = Z(Fi+1 −Xi+1Fi)
· · · · · ·
Ẋn = Z(Fn −XnFi)

(6)

where each vector field component is expressed in the new coordinates

F̃i(X1, . . . , Z, . . .Xn) = Fi(
X1

Z
, . . . ,

Xi−1

Z
,

1
Z
,
Xi+1

Z
, . . .

Xn

Z
)

and is hence a Laurent polynomial. The above equations establish the equiv-
alence of the dynamical systems on the overlap {Xi 6= 0, Z 6= 0} of the two
coordinate patches in RPn. As it stands, the dynamical system above is not
defined for Z = 0. The next step is thus to obtain if possible a well-defined
vector field in RPn from F by some kind of scaling or normalization. In the
case of polynomial vector fields, the obvious (and familiar) solution is to multi-
ply the right-hand sides of equation 6 by an appropriate power of Z to obtain a
polynomial vector field, call it Gi (see, for example, [12] or [1].) If we scale by
an even power, Z2k, we say that the scaling is even and we can define a vector
field in RPn by patching the vector fields defined in the (n + 1) patches along
small neighbourhoods of the codimension-two sets {xi = 1, Z = 1}, where the
vector fields coincide.

Let us examine the process of transforming the vector field in more detail,
with the aim of obtaining information about the global dynamics on RPn and
to point out an important modelling issue motivated by the notion of genericity
in dynamical systems.

Newton Polytopes and Normalization

We assume Fi ∈ R[x1, . . . , xn], 1 ≤ i ≤ n. We work in the ith coordinate patch
{Xi = 1}.

Let us define the following map for monomials:

cαx
α 7→ (α, cα) ∈ Zn × Rn. (7)

We shall think of the image as a point α on the integer lattice of the first
quadrant of Rn, with the coefficient cα as a label affixed at the point. The map
cαx

α 7→ α ∈ Zn is the exponent map.
Now the change of coordinates between the different affine charts gives an

involution (a linear transformation A such that A2 = I) in the exponent map
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domain, given by the matrices

Ai =


1 0 · · · · · · 0
0 1 0 · · · 0
· · · · · ·

−1 −1 −1 −1 −1
· · · · · ·

0 · · · · · · 0 1

 , (8)

where x = (x1, . . . , xi−1, xi, xi+1, . . . xn) is meant to transform to

X = (X1, . . . , Xi−1, Z,Xi+1 . . . , Xn).

Thus the monomial cαxα is mapped to cαX
Aα. For example, 3x2

1x
4
2x3 maps,

in the {X2 = 1} patch, to 3X2
1Z
−7X3. It is clear that only Z appears with a

non-positive exponent, namely −|α|.
Applying the exponent map to each of the monomials of

x1 · · · x̂j · · ·xnFj(x1, . . . , xn)

(Fj polynomial) we get the support of Fj , suppFj , of the non-zero alphas. The
Newton polytope Γ of the polynomial vector field F is the convex hull
of ∪j suppFj . Clearly, Γ is a compact convex subset of the first quadrant {xi ≥
0 ; ∀i}. The shifting involved in this definition (see [4]) is special to vector fields;
for a polynomial, one uses the exponent map directly; Koushnirenko [9] has given
definitions of Newton polytopes for power series and for Laurent polynomials
as well; these are not needed here. Even though it clearly depends on the
chosen coordinates, the Newton polytope of a polynomial p contains a surprising
amount of information about the singularities of p (see Arnol’d et.al. [2].)

A support hyperplane of Γ is a hyperplane maximizing the value of some
one-form β on Γ.

The facets γ of the boundary of the Newton polytope of a vector field F
are intersections of Γ with a supporting hyperplane; they are compact, con-
vex polytopes of dimension at most n − 1. The union of the facets whose
support hyperplane co-vectors have negative entries form the Newton dia-
gram N of the vector field F . The restrictions Fγ =

∑
α∈γ cαx

α are called
the quasi-homogeneous components of F . Lastly, we use the fact that a
linear transformation A of vectors gives a transformation by the inverse A−1 for
co-vectors and the fact that the matrices A above are involutions to obtain the
transformation βA for the co-vectors of the supporting hyperplanes.

Proposition 4. Let Γ be the Newton polytope of the vector field F .
In the ith patch, the Newton polytope of the transformed vector field of equa-

tion 6 is exactly equal to the affine transformation of Γ by Ai, followed by a shift
in the ith direction (found from the maximal degree of the monomials in F .)

Hence, the Newton diagram of the transformed vector field is the trans-
form of the union of facets of F with support covectors β such that βAi < 0.
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Note the convenience of the above Proposition in being able to check the
single Newton polytope of F , instead of computing all the transformed ones.

The notion of a principal part of a vector field at an equilibrium (the terms
of the vector field mapping to the Newton diagram) is crucial to the general-
ization of the classical Grobman-Hartman Theorem by Brunella and Miari [4].
Vector fields with the same principal parts have locally equivalent dynamics.
A condition that makes the principal part concept useful is the absence of dy-
namics of the centre-focus type (roughly, in the plane, we need a trajectory
tending to the equilibrium at a well-defined angle.) We are interested in finding
the principal parts at infinity of the vector field F . We assume the origin is an
equilibrium of the transformed vector field.

Corollary 1. In dimension two, assume that, in the ith patch, the origin is a
nondegenerate equilibrium, in the sense of [4]. Then the vector field Gi is topo-
logically equivalent to its Ai-transformed (and appropriately shifted) principal
part modulo centre-focus.

Remark 1. Computing convex hulls is a classical problem in Computational
Geometry ([14], [6].) In dimension two, it is even implemented in software
such as maple and matlab.

Proof. Let 1 be a vector of ones and use (α, k) for the exponent of the monomial
xαek in the kth component of a vector field. Let MNP stand for the modified
Newton polytope map which, using this notation, is defined by

xαek 7→ xα+1−ekek

or
(α, k) 7→ (α+ 1− ek, k).

Now the vector field in the ith patch defined in equation 6 maps (α, k) to
(Aα, k); to get the MNP, we distinguish the two cases: k = i and k 6= i. Since
we shall later normalize by a power of Z, we ignore the factor Z common to all
components.

In the former case, we get

(α, k) 7→ (Aα+ 1− ek, k).

For k = i, we get the monomial (α, i) contributing to both the ith and the kth
component of the vector field, in the first case giving

(α, i) 7→ (Aα+ 1− ei + ei, i) = (Aα+ 1, i)

(because we multiply by Z) and, in the second case

(α, i) 7→ (Aα+ 1− ek + ek, k) = (Aα+ 1, k)

(because of the Xk multiplying Fi in equation 6.)
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It is easy to check that A1 = 1 − (n + 1)ei, Aek = ek − ei for k 6= i and
Aei = −ei. We now have that

A(α+ 1− ek) = Aα+ 1− ek − nei, k

and
A(α+ 1) = Aα+ 1− nei

and hence the involution A maps the MNP of F to the MNP of the transformed
vector field, except for the shift by nei, which is immaterial, since we are going
to scale anyway by a power of Z.

The proposition now follows from the transformation rule for covectors, un-
der the stated conditions.

The Corollary is immediate from the results of Brunella and Miari.
Just as it has now become common to expect local dynamics to be of low

codimension, we can require the dynamics at infinity to be of low codimension
as well. The results of Brunella et.al. can be combined with the above setting
to examine when the principal parts of vector fields at infinity are generic. The
details are left to an extended version of this work.

4 Examples

Gradient dynamics with two finite minima

The examination of relations between properties of a polynomial, such as its
degree, and the number and nature of its critical points is an interesting and
non-trivial problem. It turns out that to do the counting properly, one needs a
definition of critical points at infinity for functions f : Rn → R ([7].) Durfee
gives five different definitions, which he then shows to be equivalent.

Through our dynamical viewpoint, we approach this question via the gradi-
ent vector field obtained from the given function.

Let us take a concrete example (adapted from [5].) It is the polynomial

f(x, y) = (x2y − x− 1)
2

+ (x2 − 1)
2

which is easily seen to have just two (local) minima, at (−1, 0) and (1, 2), and
no other (finite) critical points! In terms of the gradient flow

−∇f(x, y),

the gradient dynamics has two attractors and no other equilibria. We shall
examine the global phase portrait of this system obtained from the Poincaré
compactification we have described. Clearly, on the compact state space RP 2,
we must have more equilibrium points, by basic Morse theory.

The phase portrait of the system dynamics ẋ = −∇f(x) is shown in Figure 3.
The Newton polytope of the gradient vector field is shown in Figure 4.
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Figure 3: Phase portrait of the two-minimum system.
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Figure 4: Newton polygon of the two-minimum example.

In the y-patch, (x, y) 7→ (XZ ,
1
Z ), we find that we have three additional equi-

libria, at (±
√

2, 0) and (0, 0). The pair of equilibria at (±
√

2, 0) are repellers,
while the one at the origin is degenerate (so that the Corollary is not applicable
to it.) The instability can be checked by effecting the shift (X,Z) 7→ (X ± 1, Z)
on the Newton polygon, obtaining the polygon shown in Figure 5, and check-
ing that the equilibrium is nondegenerate with unstable linear principal part.
The three ‘asymptotic’ curves visible in the phase portrait of Figure 3 become
unstable (for the two outer curves) and stable (for the middle one) manifolds
of the degenerate equilibrium (on the positive-Z side.) On the other side (as
y → −∞) there is a single unstable curve. It appears from the simulations that
there is then a connecting orbit (homoclinic in projective space) from the origin
to itself (in the {y = 1}-patch.) Its existence has not been shown here, however.

The X-axis is invariant, with dynamics

Ẋ = X2(X2 − 1).

Notice that the two systems can be ‘sewn together’ along the line {y = 1} =
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Figure 5: Transformed Newton polygon centred at X = 1.

{Z = 1}. The scaling we use is even, so the phase portrait at the y-infinity is
patched to the finite phase portrait without a sign change.

In the x-patch, (x, y) 7→ ( 1
Z ,

Y
Z ), there are three additional equilibrium

points, one at the origin and two at (0,± 1√
2
).

Peaking behaviour

The following example demonstrates peaking behaviour in a so-called upper
triangular system, where the diagonal systems are both linear and asymptoti-
cally stable.

ẋ = −x+ x2y
ẏ = −ky, k > 1 (9)

The origin is linearly stable and hence locally stable. The problem is that
the quadratic term x2y prevents some trajectories from converging to zero fast
enough. In fact, for any bound K, there is a trajectory whose ω-limit set is 0
and whose distance from the y axis tends to zero as t→ −∞, but such that its
x coordinate exceeds K for some intermediate time.

Now the dynamics on the {X = 1} plane, after scaling by Z3, are given by

Ż = Z(Z2 − Y )
Ẏ = −Y ((k − 1)Z2 + Y ),

(10)

giving a degenerate equilibrium at zero. It is easily checked that the Z-axis
is invariant and unstable and that the Y -axis is also invariant, with dynamics
Ẏ = −Y 2.

In fact, the parabola
Y = (k + 1)Z2

is also invariant and stable and thus the equilibrium point exhibits a mixed
saddle-stable-unstable dynamical behaviour. This parabola is of course the
image of an invariant hyperbola in the original plane {Z = 1}, see Figure 6.
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Y=Z2

Z

Y

Figure 6: Phase portrait in the {x = 1} plane

The saddle-like ‘sector’ is thus responsible for the peaking behaviour. The
full details of the phase portrait on RP 2 are not difficult to obtain, but we
omit them here. It is also possible to generalize this peaking example by taking
cross-terms more general than x2y. Details will be given elsewhere.

5 Conclusion

We have presented but the bare elements of a theory of global (polynomial)
dynamics, combining a generalization of the classical Poincaré compactification
with the powerful Newton polytope method, so useful in singularity theory
and algebraic geometry. We have not touched on the topological information
provided by the Whitney-Morse theory of relations between the topology of the
state manifold and the indices of the equilibria of the vector field on it.

As the peaking example shows, a study of the compactified dynamics is some-
times necessary to clarify apparently strange transient dynamical behaviour.
The two-minimum example shows that, even within the class of polynomial sys-
tems, expectations on the dynamics based on the intuition derived from compact
state manifolds are occasionally wrong (two minima and no saddles). Compact-
ification can resolve these ambiguities. It is clear that more examples need to
be studied and that the genericity aspects must be more extensively addressed.

6 Appendix

Here we derive Equation (2). In Rn+1, write v = (x, Z), with x ∈ Rn and
Z ∈ R. The unit sphere is

Sn = {v; |v| =
√
|x|+ Z2 = 1}
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and the hyperplanes tangent to the North and South poles are

PN = {v;Z = 1} and PS = {v;Z = −1}.

The stereographic projection from the South pole sends the point v to the point,
pN , of intersection of Sn with the line

`N = {tv + (1− t)(−en+1), t ∈ R} = {t(x, 0) + (2t− 1)en+1, t ∈ R},

where en+1 is the unit vector in the Z-direction. We thus have

|t(x, 0) + (2t− 1)en+1|2 = t2|x|2 + (2t− 1)2|en+1|2 = 1,

which has the non-trivial solution

t =
4

4 + r2
, r = |x|.

Repeating for the projection from the North pole, we get a point pS satis-
fying

|s(ξ, 0)− (2s− 1)en+1|2 = s2|ξ|2 + (2s− 1)2|en+1|2 = 1,

giving

s =
4

4 + r′2
, r′ = |ξ|.

The change of coordinates means that

pn =
4

4 + r2
(x, 0) + (

8
4 + r2

− 1)en+1 =

=
4

4 + r′2
(ξ, 0)− (

8
4 + r′2

− 1)en+1 = pS

and, equating the Z-components, we check that rr′ = 4 and therefore

x =
4 + r2

4 + r′2
ξ =

4
r′2

ξ.
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[3] V. H. Baširov, The Poincaré sphere, (in Russian) Collection of articles
dedicated to the memory of Mazit Ifatovič Al’muhamedov. Mat. Sb. 16 45–
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différentielles. In Œvres, tom I, 3-84.

[14] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer,
1985.
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