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EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN WITH
INDEFINITE WEIGHTS

MABEL CUESTA

Abstract. We consider the eigenvalue problem −∆pu = λV (x)|u|p−2u, u ∈
W 1,p

0 (Ω) where p > 1, ∆p is the p-Laplacian operator, λ > 0, Ω is a bounded

domain in RN and V is a given function in Ls(Ω) (s depending on p and N).
The weight function V may change sign and has nontrivial positive part. We

prove that the least positive eigenvalue is simple, isolated in the spectrum and
it is the unique eigenvalue associated to a nonnegative eigenfunction. Further-

more, we prove the strict monotonicity of the least positive eigenvalue with
respect to the domain and the weight.

1. Introduction

In this work we study the nonlinear eigenvalue problem

−∆pu = λV (x)|u|p−2u in Ω,
u = 0 on ∂Ω,

(1.1)

where p > 1, ∆pu = div(|∇u|p−2∇u) denotes the p-Laplacian, Ω is a bounded
domain in RN , V is a given function which may change sign and λ is the eigenvalue
parameter. We assume that

V + 6≡ 0 and

V ∈ Ls(Ω) for some s >
N

p
if 1 < p ≤ N and s = 1 if p > N.

(1.2)

As usual V ±(x) = max{±V (x), 0}. We are interested in positive eigengenvalues.
The goal of this paper is the study of the main properties (isolation, simplicity)

of the least positive eigenvalue,

λ1
def= inf

{∫
Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) and

∫
Ω

V |u|p dx = 1
}
. (1.3)

We prove that λ1 is associated to a Cαloc(Ω) eigenfunction which is positive in Ω
and unique (up to a multiplicative constant). Moreover λ1 is the unique positive
eigenvalue associated to a nonnegative eigenfunction.

These properties are well known in the case of bounded weights (see [3] for
indefinite weigths and [15] for the case V ≡ 1). For non-negative weights satisfying
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(1.2) see [1, 10], and for indefinite weights with different integrability conditions see
[2, 19].

Of course the main difficulty to prove the different properties of λ1 is the lack
of regularity of the eigenfunctions. The results (as far as we know) concerning
the regularity of weak solutions to degenerate elliptic equations are proved by [13,
14, 16]. These authors prove, for a class of degenerate quasilinear problems more
general that the one considered here, that solutions of (1.1) are essentially bounded
in Ω and at least of class Cαloc(Ω) for some 0 < α < 1. In the case of a bounded
weight one can prove better results. In fact the results of [20],[21] and [9] imply
that the solutions of problem (1.1) for V bounded are at least of class C1,α

loc (see
Remark 2.3).

This lack of regularity can be a handicap if one wants to use for instance “Diaz-
Saa’s inequality”, which is a classical tool to prove the simplicity, or the “strong
maximum principle” of Vazquez, a property which is used repeatedly in this con-
text. We will show in this paper how to deal with this lack of regularity by using
for instance “Picone’s identity” instead of Diaz-Saa’s inequality and “Harnack’s
inequality” instead of Vazquez’s results.

This paper is organized as follows. In section 2 we recall some results about
the existence of sequences of eigenvalues for problem (1.1). We also recall some
regularity results that we will use later. In section 3 we give some basic properties
of λ1 and we study the sign of the eigenfunctions. In section 4 we study simplicity,
isolation and monotonicity properties of λ1. We conclude this work in section 5
where we comment on some new results from [5, 11] and [4] on the second positive
eigenvalue.

This work is mainly motivated by the study of asymmetric elliptic problems with
weights done in [5]. Some of the results proved here were announced in that paper.

2. Preliminaries

Throughout this paper Ω will be a bounded domain of RN and we will always
assume that condition (1.2) is satisfied.
W 1,p

0 (Ω) will denote the usual Sobolev space with norm ||u|| = (
∫

Ω
|∇u|pdx)1/p.

We will write || · ||p for the Lp−norm. 〈·, ·〉 will denote the duality product between
W 1,p

0 (Ω) and its dual W−1,p′(Ω).
We will write Y = Ls

′p(Ω) if 1 < p ≤ N and Y = C(Ω) if p > N . The
Lebesgue norm of Y (or the infinity norm in the case Y = C(Ω) ) will be denoted
by || · ||Y . Notice that hypothesis (1.2) on s implies that the Sobolev imbedding
i : W 1,p

0 (Ω) ↪→ Y is compact.
We will also denote p′ = p

p−1 the Hölder conjugate exponent of p and p∗ the
critical exponent, that is p∗ =∞ if p ≥ N and p∗ = Np

N−p if 1 < p < N .
If A ⊂ RN is a mesurable set, |A| denotes the Lebesgue measure in RN .

We recalll that a value λ ∈ R is an eigenvalue of problem (1.1) if and only if
there exists u ∈W 1,p

0 (Ω) \ {0} such that∫
Ω

|∇u|p−2∇u∇ϕdx = λ

∫
Ω

V |u|p−2uϕdx (2.1)

for all ϕ ∈W 1,p
0 (Ω). u is then called an eigenfunction associated to λ. It is easy to

see that the set of eigenvalues, called the spectrum of (1.1), is a closed subset in R.
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Let us formulate variationally problem (1.1). For that purpose we introduce the
C1 functionals Φ and J : W 1,p

0 (Ω)→ R defined by

Φ(u) def=
∫

Ω

|∇u|p dx and J(u) def=
∫

Ω

V |u|p dx.

J is well defined as we have, for all u ∈W 1,p
0 (Ω), |J(u)| ≤ ||V ||s||u||pY . Notice that

J is indefinite if V changes sign.
It follows from the previous definitions that a real value λ is an eigenvalue of

problem (1.1) if and only if there exists u ∈W 1,p
0 (Ω)\{0} such that Φ′(u) = λJ ′(u).

At this point let us introduce the set

M def= {u ∈W 1,p
0 (Ω) : J(u) = 1}.

Condition V + 6≡ 0 from (1.2) implies thatM 6= ∅. Moreover the setM is a manifold
in W 1,p

0 (Ω) of class C1. For any u ∈M the tangent space of M at u, TuM, is the
set TuM = {w ∈W 1,p

0 (Ω) : 〈J ′(u), w〉 = 0}. Let us denote by Φ̃ the restriction of
Φ to M. We recall that a value c is a critical value of Φ̃ if Φ′(u)|TuM ≡ 0 and
Φ̃(u) = c for some u ∈M.

It follows from standard arguments that positive eigenvalues of (1.1) correspond
to positive critical values of Φ̃. A first sequence of positive critical values of Φ̃ comes
from the Ljusternik-Schnirelman critical point theory on C1 manifolds proved by
[18]. That is, if γ(A) denotes the Krasnoselski’s genus on W 1,p

0 (Ω) and for any
k ∈ N∗ we set Γk

def= {A ⊂M : A is compact, symmetric and γ(A) ≥ k}. then the
value

λk
def= inf

A∈Γk
max
u∈A

Φ(u) (2.2)

is an eigenvalue of (1.1). Moreover lim
k→+∞

λk = +∞.

Remark 2.1. One can also define another sequence of critical values minimaxing
Φ̃ along a smaller family of symmetric subsets of M. The following result can be
proved using the minimax principle of [6]. Let us denote by Sk the unit sphere of
R
k+1 and

O(Sk,M) def= {h ∈ C(Sk,M) : h is odd}.
Then for any k ∈ N∗ the value

µk
def= inf

h∈O(Sk−1,M)
max
z∈Sk−1

Φ(h(z)) (2.3)

is an eigenvalue of (1.1). Moreover λk ≤ µk.
This new sequence of eigenvalues was fist introduced in the case of V ≡ 1 by [11]

and was used there to establish resonance and nonresonace results associated to the
p-laplacian operator. More recently, this sequence appears to be of some interest
in the study of the Fučik spectrum of the p-laplacian made by the author in [7].

Remark 2.2. It is a trivial fact that

λ1 = µ1 = inf{
∫

Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) and

∫
Ω

V |u|p dx = 1}.

We will see in section 5 that also λ2 = µ2. Whether or not λk = µk for other k’s
is still an open question when p 6= 2. The proof that λk = µk for all k ≥ 1 in the
case p = 2 is quite simple and it is left to the reader. When N = 1, V ≡ 1 and
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p > 1 it is proved for instance in [7] that λk = µk for all k ≥ 1 but this last equality
remains an open question when N > 1.

We conclude this section recalling some results about the regularity and bound-
edness of the eigenfunctions of (1.1). The first part of the next proposition is proved
in [13, Propositions 1.2 and 1.3] (see also in [14, Théorèmes 7.1-7.2, pg.262]) The
second part can be found in [16, Theorem 8].
Proposition 2.1. [13, 16] Let u ∈ W 1,p

0 (Ω) \ {0} be an eigenfunction associated
to λ. Then (i) u ∈ L∞(Ω) and (ii) u is locally Hölder continuous, that is, there
exists α = α(p,N, ||λV ||s) ∈ ]0, 1[ s.t. for any subdomain Ω′ ⊂ Ω there exist C =
C(p,N, ||λV ||s, dist(Ω′, ∂Ω)) such that

|u(x)− u(y)| ≤ C||u||∞|x− y|α, ∀x, y ∈ Ω′.

Remark 2.3. Under the hypothesis (1.2) on V we can not assure that the solutions
of (1.1) are of class C1,α

loc . The C1,α
loc regularity proved by [20, 21, 9] could be

applied here provided the weight V is either bounded or belongs to some Lr(Ω)
with r > Np′.

3. Sign properties of the eigenvalues

Proposition 3.1. The infimum λ1 in (1.3) is achieved at some u ∈ M, λ1 > 0
and λ1 is the least positive eigenvalue of problem (1.1). Moreover λ1 = Φ(u) for
some u ∈M if and only if u is an eigenfunction associated to λ1.

Proof. The proof is an straight application of Theorem 1.2 of [17] and the
Lagrange’s multiplier rule. �

The following “strong maximum principle” holds :
Proposition 3.2. If u ∈ W 1,p

0 (Ω) is a non-negative weak solution of (1.1) then
either u ≡ 0 or u(x) > 0 for all x ∈ Ω.

Proof. The result is a direct consequence of the following Harnack’s inequality
for nonnegative solutions of (1.1). We referee here to [16, Theorems 5,6 and 9,
pg.264-270].

“Let u ∈ W 1,p(Ω) be a non-negative weak solution of (1.1) and assume that
B(x0, 3r) ⊂ Ω for some r > 0 and x0 ∈ Ω. Then for some C = C(p,N, r, λV,Ω),

max
B(x0,r)

u ≤ C min
B(x0,r)

u.′′

�

We also have the following result :
Proposition 3.3. The eigenfunctions associated to λ1 are either positive or nega-
tive in Ω.

Proof. Let u ∈ M be an eigenfunction associated to λ1. Then u achieves the
infimum in (1.3). Since ||∇|u| ||p = ||∇u||p and |u| ∈ M it follows that |u| achieves
also the infimum in (1.3) and therefore, from Proposition 3.1, |u| is an eigenfunction
for λ1. By Proposition 3.2 we conclude that |u(x)| > 0 ∀x ∈ Ω and consequently
u is either positive or negative in Ω. �

In what follows we will use the so-called “Picone’s identity” proved in [2]. We
recall it here for completness.
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Theorem 3.1. [2] Let v > 0, u ≥ 0 be two continuous functions in Ω differentiable
a.e. Denote

L(u, v) = |∇u|p + (p− 1)u
p

vp |∇v|
p − pu

p−1

vp−1 |∇v|p−2∇v∇u ,

R(u, v) = |∇u|p − |∇v|p−2∇( up

vp−1 )∇v.

Then (i) L(u, v) = R(u, v), (ii) L(u, v) ≥ 0 a.e. and (iii) L(u, v) = 0 a.e. in Ω if
and only if u = kv for some k ∈ R.

In the next theorem we give an estimate of the measure of the nodal domains of
an eigenfunction u. We recall that a nodal domain of u is a connected component
of Ω \ {x ∈ Ω: u(x) = 0}. The same result for positive weights can be found in [1].
Our exponent γ is slightly different.
Theorem 3.2. Any eigenfunction v associated to a positive eigenvalue 0 < λ 6= λ1

changes sign. Moreover if N is a nodal domain of v then

|N | ≥ (Cλ||V ||s)−γ (3.1)

where γ = sN
sp−N and C is some constant depending only on N and p if p 6= N and

on N and s′ if p = N .
Proof. Assume by contradiction that v ≥ 0, the case v ≤ 0 being completely

analogous. By Proposition 3.2 it follows that v(x) > 0 for all x ∈ Ω. Let ϕ > 0 be
an eigenfunction associated to λ1. For any ε > 0 we apply Picone’s identity to the
pair ϕ, v + ε. We have

0 ≤
∫

Ω
L(ϕ, v + ε) dx =

∫
Ω
R(ϕ, v + ε) dx =

λ1

∫
Ω
V ϕp dx−

∫
Ω
|∇v|p−2∇( ϕp

(v+ε)p−1 )∇v dx.
(3.2)

Notice that ϕp

(v+ε)p−1 belongs to W 1,p
0 (Ω) and then it is admissible in the weak

formulation of −∆pv = λV |v|p−2v. Then if follows from (3.2) that

0 ≤
∫

Ω

V ϕp(λ1 − λ
vp−1

(v + ε)p−1
) dx.

Letting ε → 0 it comes that 0 ≤
∫

Ω
V ϕp(λ1 − λ) dx which is imposible because

λ > λ1 and
∫

Ω
V ϕp dx > 0. Hence we have proved that v must change sign.

Next we prove estimate (3.1). Assume that v > 0 in N , the case v < 0 being
completely analogous. We observe that because v ∈ W 1,p

0 (Ω) ∩ C(Ω) then v|N ∈
W 1,p

0 (N ). Hence the function w defined as w(x) = v(x) if x ∈ N and w(x) = 0 if
x ∈ Ω \ N belongs to W 1,p

0 (Ω).
Let us start with the case 1 < p < N . Using w as a test function in the weak

equation satisfyied by v we find∫
N
|∇v|p dx = λ

∫
N
V |v|p dx ≤ λ||V ||s||v||pp∗,N |N |

p∗−s′p
s′p∗

by Hölder inequality. On the other hand using Sobolev imbeddings we have that∫
N |∇v|

p dx ≥ C||v||pp∗,N for some constant C = C(N, p). Hence

C ≤ λ||V ||s|N |
p∗−s′p
s′p∗

and the proposition follows.



6 MABEL CUESTA EJDE–2001/33

In the case p = N we proceed similarly using Sobolev’s inclusion W 1,N
0 (N ) ⊂

LNs
′
(N ), the estimate (7.38) of [12] and then apply Hölder inequality. We find

C||v||NNs′,N |N |−1/s′ ≤
∫
N
|∇v|N dx ≤ λ||V ||s||v||NNs′,N

for some C = C(N, s′) and then inequality (3.1) follows.
In the case p > N we have on the one hand∫

N
|∇v|p dx ≤ λ||V ||1||v||p∞,N ,

and on the other hand, from Morrey’s lemma,

C||v||∞,N ≤ |N |−1/p+1/N ||∇v||p,N
for some C = C(N, p). Then inequality (3.1) holds. �

Corollary 3.1. Each eigenfunction has a finite number of nodal domains.
Proof. Let Nj be a nodal domain of an eigenfunction associated to some positive

eigenvalue λ. It follows from (3.1) that

|Ω| ≥
∑
j

|Nj | ≥ (Cλ||V ||s)−γ
∑
j

1

and the claim follows. �

4. On the first eigenvalue

We have proved in the previous section that the eigenfunctions associated to
λ1 have definite sign in Ω. We are now going to prove that this property implies,
through Picone’s identity, that λ1 is simple. We will also prove that λ1 is isolated
in the spectrum of (1.1) as a consequence of Theorem 3.2.

Finally we give a result on the strict monotoniticy of λ1 with respect to both
the domain and the weight.
Proposition 4.1. λ1 is simple in the sense that the eigenfunctions associated to
it are merely a constant multiple of each other.

Proof. We proceed as in the first part of the proof of Theorem 3.2. Let u, v be
two eigenfunctions associated to λ1. We can assume without restriction that u and
v are positive in Ω. Let ε > 0. From Picone’s identity we have

0 ≤
∫

Ω
L(u, v + ε) dx =

∫
Ω
R(u, v + ε) dx =

λ1

∫
Ω
V up dx−

∫
Ω
|∇v|p−2∇( up

(v+ε)p−1 )∇v dx.

The function up

(v+ε)p−1 belongs to W 1,p
0 (Ω) and then it is admissible for the weak

formulation of −∆pv = λ1V |v|p−2v. It follows then from the previous equation
that

0 ≤
∫

Ω

L(u, v + ε) dx = λ1

∫
Ω

V up(1− vp−1

(v + ε)p−1
) dx.

Letting ε→ 0 it follows that L(u, v) = 0. Then, by Theorem 3.1, there exists k ∈ R
such that u = kv. �

Proposition 4.2. λ1 is isolated, that is, there exists δ > 0 such that in the interval
(λ1, λ1 + δ) there are no other eigenvalues of (1.1).
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Proof. The result follows easily from the estimate (3.1). Assume by contradiction
that there exists a sequence of eigenvalues of (1.1) λn with 0 < λn ↘ λ1. Let un
be an eigenfunction associated to λn. Since 0 <

∫
Ω
|∇un|p dx = λn

∫
Ω
V |un|p dx

we can define
vn :=

un
(
∫

Ω
V |un|p dx)1/p

.

vn is bounded in W 1,p
0 (Ω) so there exist a subsequence (still denoted vn) and v ∈

W 1,p
0 (Ω) such that vn → v in Y and weakly in W 1,p

0 (Ω). Moreover
∫

Ω
V |v|p dx = 1.

On the other hand ∫
Ω

|∇v|p dx ≤ lim inf
n→∞

∫
Ω

|∇vn|p dx = λ1

and then
∫

Ω
|∇v|p dx = λ1 by (1.3). Using Proposition 3.1 we conclude that v is

an eigenfunction associated to λ1. It follows then from Proposition 3.3 that either
v > 0 or v < 0. In the case v > 0 (the other case is analogous) we conclude from
the convergence in measure of the sequence vn towards v that

|Ω−n | → 0 (4.1)

where Ω−n denotes the negative set of un. But (4.1) clearly contradicts estimate
(3.1). �

In the sequel we will denote the least positive eigenvalue of (1.1) by λ1(V ) or
λ1(Ω) when comparing λ1 for different weights or domains.

We will always assume that condition (1.2) is satisfied for the weights appearing
in the claims.
Proposition 4.3. Let V1, V2 be two weights and assume that V1 ≤ V2 a.e. and
|{x ∈ Ω : V1(x) < V2(x)}| 6= 0. Then λ1(V2) < λ1(V1).

Proof. Let u > 0 be an eigenfunction associated to λ1(V1). Since

0 < λ1(V1)−1

∫
Ω

|∇u|p dx =
∫

Ω

V1 u
p dx ≤

∫
Ω

V2 u
p dx,

we can use u/(
∫

Ω
V2 u

p dx)1/p as an admisible function in the infimum of (1.3) for
λ1(V2). We have

λ1(V2) ≤
∫

Ω
|∇u|p dx∫

Ω
V2 up dx

≤
∫

Ω
|∇u|p dx∫

Ω
V1 up dx

= λ1(V1).

Thus λ1(V2) ≤ λ1(V1). The equality holds if and only if
∫

Ω
V1 u

p dx =
∫

Ω
V2 u

p dx.
This last identity implies that V1 ≡ V2 because u > 0 in Ω, contradicting our
hypothesis. �

Proposition 4.4. Let Ω1 be a proper open subset of a domain Ω2 ⊂ RN . Then
λ1(Ω2) < λ1(Ω1).

Proof. Let u ∈W 1,p
0 (Ω1) be a positive eigenfunction associated to λ1(Ω1) and put

ũ the function obtained by extending u by zero in Ω2 \Ω1. Then ũ ∈W 1,p
0 (Ω2) and∫

Ω2
V ũp dx =

∫
Ω1
V up dx > 0. Using ũ/(

∫
Ω2
V ũp dx)1/p as an admissible function

for λ1(Ω2) we get

λ1(Ω2) ≤
∫

Ω2
|∇ũ|p dx∫

Ω2
V ũp dx

=

∫
Ω1
|∇u|p dx∫

Ω1
V up dx

= λ1(Ω1)
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The equality holds only if ũ is an eigenfunction associated to λ1(Ω2) but this is
impossible because |ũ = 0| > 0 in contradiction with Proposition 3.3. �

Remark 4.1. In [19] the authors proved the existence of a least positive eigenvalue
for indefinite weights satisfying an integrability condition which is less restrictive
than condition (1.2). Precisely they consider the case 1 < p < N and an in-
definite L1

loc-weight having a positive part V + = V1 + V2 with V1 ∈ L
N
p (Ω) and

lim
x→y
|x− y|pV2(x) = 0 ∀y ∈ Ω. Thus, in the particular case V2 ≡ 0, their hypothe-

sis on V = V1 is weaker than ours. Concerning the properties of the least positive
eigenvalue, the authors only proved that the associated eigenfunctions have definite
sign.

5. Final comments and remarks

Since λ1 is isolated in the spectrum and there exist eigenvalues different from
λ1, it makes sense to define the second eigenvalue of (1.1) as

λ2
def= min{λ ∈ R : λ eigenvalue and λ > λ1}.

There exist several variational characterizations of λ2 through mimimax formulae.
For instance in [4] it is proved that λ2 = λ2 when V ∈ L∞(Ω) and in [11] that
λ2 = µ2 when V ≡ 1. A further variational characterization has been given by
[8] in the case V ≡ 1. This last characterization has been generalized recently by
[5] to weights as those considered here. The following result was obtained as a
consequence of the construction of the first curve of the Fučik spectrum in [5].
Theorem 5.1. [5] Assume that V satisfies (1.2). Then

λ2 = inf
h∈F

max
u∈h([−1,1]

∫
Ω

|∇u|p dx

where F def= {γ ∈ C([−1,+1],M) : γ(±1) = ±ϕ1} and ϕ1 ∈ M is the positive
eigenfunction associated to λ1.

Remark 5.1. Notice that F ⊂ ∆2 ⊂ Γ2. The variational characterization of
Theorem 5.1 is slighty better than the one of [4] and [11] because it suffices to
minimize along a smaller family of subsets of M to get the same value.

A straight consequence of this result is the following :

Corollary 5.1. λ2 = λ2 = µ2 = inf
h∈F

max
u∈h([−1,1]

∫
Ω

|∇u|p dx.
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