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MULTIPLICITY OF FORCED OSCILLATIONS FOR SCALAR
DIFFERENTIAL EQUATIONS

MASSIMO FURI, MARIA PATRIZIA PERA, & MARCO SPADINI

Abstract. We give, via topological methods, multiplicity results for small pe-
riodic perturbations of scalar second order differential equations. In particular,
we show that the equation

ẍ = g(x) + εf(t, x, ẋ),

where g is C1 and f is continuous and periodic in t, has n forced oscillations,

provided that g changes sign n times (n > 1).

1. Introduction

Despite the illusory simplicity of the equations considered, the problems of ex-
istence and multiplicity of periodic solutions for periodically forced second order
scalar autonomous differential equations have been the subject of extensive studies.
Classical references for this topic are e.g. the books [12, 19, 20]. Currently, although
the research is now often pursued with different methods, the activity in this field is
still vigorous and it is impossible to give here a complete account even of the most
recent results in this field. We confine ourselves to mentioning some papers, as for
instance [3, 2, 5, 15, 18, 22] along with their references, where various problems
of existence and multiplicity of forced oscillations are investigated using different
methods.

In this paper we consider parametrized second order differential equations on R
of the form (the simpler case when damping is present was treated in [8]):

ẍ = g(x) + λf(t, x, ẋ), λ ≥ 0, (1.1)

where g : R → R and f : R3 → R are continuous. We are interested in the
forced oscillations of (1.1); that is, those periodic solutions with the same period
as the forcing term f . We shall prove (Theorem 3.6) that if the function g changes
sign n times, n > 1, then, for small values of λ, (1.1) admits at least n forced
oscillations, provided that the uniqueness of solutions of the Cauchy problem for
the unperturbed equation ẍ = g(x) holds.

2000 Mathematics Subject Classification. 34C25, 34C60.
Key words and phrases. Forced oscillations, ordinary differential equations,

multiplicity of periodic solutions.
c©2001 Southwest Texas State University.

Submitted December 31, 2000. Published May 21, 2001.

1



2 M. FURI, M. P. PERA, & M. SPADINI EJDE–2001/36

In the case n = 1 the result is true with an extra assumption on the unperturbed
equation (Theorem 3.5). Namely, the non-T -isochronism of ẍ = g(x) is the key con-
dition ensuring the existence of forced oscillations for the perturbed equation (1.1).
Such a condition extends to the nonlinear case the non-T -resonance hypothesis for
the linear equation

ẍ = −ax+ λ sinωt .

Theorems 3.5 and 3.6 are obtained combining an analysis of the periodic orbits
of the unperturbed equation ẍ = g(x) with a point-set topology result (Lemma 2.6)
which gathers some previously known connectivity results (see e.g. [1, 11] and [6]),
which are in the spirit of the so called Wyburn Lemma.

We note in passing that our results give only a lower bound which might be well
below the actual number of forced oscillations of (1.1). In fact, it follows from a
theorem of [4] that when limx→±∞ g(x)/x = +∞, f depends only on t and has a
minimal period T > 0, then (1.1) admits infinitely many T -periodic solutions for
any λ > 0 (see also e.g. [16, 17] for the case n = 1).

The results described in this paper are not merely obtained by specializing to R
the techniques that were exhibited in [7, 8] for the more general case of ODEs on
manifolds. The spirit of Theorems 3.5 and 3.6 is indeed quite different from that of
those papers which depended essentially on a different kind of connectivity result
(Proposition 2.4).

2. Ejecting sets and T -pairs

We will denote by C1
T (R) the Banach space of all the T -periodic C1 maps x :

R→ R with the usual C1 norm.
A pair (λ, x) ∈ [0,∞) × C1

T (R) is called a T -pair for the second-order equation
(1.1) if x is a solution of (1.1) corresponding to λ. In particular we will say that
(λ, x) is trivial if λ = 0 and x is constant. Note that, in general, there may exist
nontrivial T -pairs of (1.1) even for λ = 0.

One can show that the set of T -pairs of (1.1) is always a closed, locally compact
subset of [0,∞)×C1

T (R) (see e.g. [6] or [9]). Moreover, any bounded closed subset
of T -pairs is compact.

As in [10], we tacitly assume some natural identifications. That is, we will regard
every space as its image in the following diagram of closed embeddings:

[0,∞)× R −−−−→ [0,∞)× C1
T (R)x x

R −−−−→ C1
T (R),

(2.1)

where the horizontal arrows are defined by regarding any point p in R as the con-
stant map p̂(t) ≡ p in C1

T (R), and the two vertical arrows are the natural identifi-
cations p 7→ (0, p) and x 7→ (0, x).

According to these embeddings, we say that Z ⊂ [0,∞)× C1
T (R) meets K ⊂ R

if there exists a point p ∈ K such that the pair (0, p̂) belongs to Z. In this case we
will say that p belongs to Z.

We will make use of the following consequence of Corollary 4.4 in [10] regarding
the global structure of the set of T -pairs of (1.1).
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Theorem 2.1. If g changes sign at some (isolated) zero p ∈ R, then (1.1) admits
a connected set of nontrivial T -pairs whose closure meets p and is either unbounded
or intersects g−1(0) \ {p}.

According to the fact that a T -pair might have λ = 0, it turns out that the
connected set in Theorem 2.1 might be entirely contained in the slice {0}×C1

T (R).
This happens for instance for the following equation (with T = 2π):

ẍ = −x+ λ sin t, λ ≥ 0.

In order to find multiplicity results for the forced oscillations of (1.1) we need
to avoid such a “degenerate” situation. We tackle this problem from an abstract
viewpoint.

We need some notation. Let S be a metric space and let C be a subset of
[0,∞)× S. Given λ ≥ 0, we denote by Cλ the slice

{
y ∈ S | (λ, y) ∈ C

}
. In what

follows, S will be identified with the subset {0} × S of [0,∞)× S.
Definition 2.2. Let C be a subset of [0,∞) × S. We say that a subset A of C0

is an ejecting set for C if it is relatively open in C0 and there exists a connected
subset of C which meets A and is not included in C0.

We shall simply say that p ∈ C0 is an ejecting point if {p} is an ejecting set. In
this case p is clearly isolated in C0.

Using compactness arguments, it is not difficult to show the following lemma
which relates ejecting sets and multiplicity results.
Lemma 2.3. Let S be a metric space and let C be a locally compact subset of
[0,∞) × S. Assume that C0 contains n pairwise disjoint compact ejecting sets for
C. Then, there exists δ > 0 such that the cardinality of Cλ is greater than or equal
to n, for λ ∈ [0, δ).

In fact, in [7] we proved the following stronger result.
Proposition 2.4. Let S be a metric space and let C be a locally compact subset
of [0,∞) × S. Assume that C0 contains n pairwise disjoint ejecting sets, n − 1
of which are compact. Then, there exists δ > 0 such that the cardinality of Cλ is
greater than or equal to n, for λ ∈ [0, δ).

In [7] we also provided examples showing that in the above proposition the
compactness assumption on n− 1 ejecting sets cannot be dropped.

In the sequel, we shall need an extension (Lemma 2.6 below) of the following
well-known connectivity result (see e.g. [1] and [11, chapter V]).
Lemma 2.5. Let Y be a compact Hausdorff space and let Y1 and Y2 be disjoint
closed subsets of Y . Then either there exists a connected subset of Y \ (Y1 ∪ Y2)
whose closure intersects Y1 and Y2 or there exist disjoint compact and open sets K1

and K2 in Y such that K1 ⊃ Y1 and K2 ⊃ Y2.
The following result reduces to Lemma 2.5 when n = 2 and Y is compact.

Besides, when n = 1 one gets Lemma 1.4 of [6].
Lemma 2.6. Let Y be a locally compact Hausdorff topological space and let Y1, . . . ,
Yn, n ≥ 1, be pairwise disjoint compact subsets of Y . Then the following alternative
holds:

(1) there exists n pairwise disjoint compact open subsets A1, . . . , An of Y con-
taining Y1, . . . , Yn respectively;
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(2) there exists a connected set of Y \
⋃n
i=1 Yi whose closure in Y meets

⋃n
i=1 Yi

and has one of the following properties:
(a) it is not compact;
(b) meets at least two different Yi’s.

Proof. We distinguish two cases.

Case 1 (Y is compact). In this case the proof is by induction on n.
For n = 1, the assertion holds clearly true since one can take A1 = Y . If n > 1

assume the assertion true for n − 1. Apply Lemma 2.5 to the two disjoint closed
subsets Yn and

⋃n−1
i=1 Yi of Y . Then, either there exists a connected set whose

closure meets Yn and one of the remaining Yi’s, or there exist disjoint compact
open sets K ⊃ Yn and H ⊃

⋃n−1
i=1 Yi. In the latter case, the assertion follows

applying the inductive assumption to the n− 1 sets Y1, . . . , Yn−1 contained in the
compact space H.

Case 2 (Y is not compact). Let Ŷ = Y ∪ {∞} be the one-point compactification
of Y . Then, applying Case 1 to the Hausdorff space Ŷ we have that either there
exist n + 1 pairwise disjoint compact open neighborhoods of Y1, . . . , Yn, {∞} (so
that alternative (1) of the assertion holds) or there exists a connected subset C of

Ŷ \
( n⋃
i=1

Yi ∪ {∞}
)

whose closure meets two different sets among Y1, . . . , Yn, {∞}. In this case, alter-
native (2) of the assertion holds. In fact, there are two possibilities (not mutually
exclusive) corresponding to (a) and (b) of (2):

• the closure of C meets {∞} and (at least) one of the Yi’s, and, thus, the
closure of C in Y cannot be compact;
• the closure of C meets Yi and Yj for some i 6= j.

The proof is now complete. �

3. Application to second order scalar equations

In this section we will be concerned with the scalar equation

ẍ = g(x) + λf(t, x, ẋ), λ ≥ 0, (3.1)

where g : R → R and f : R3 → R are continuous and f is T -periodic in t (the
period T > 0 is given).

Consider the unperturbed equation

ẍ = g(x). (3.2)

We shall always assume the uniqueness of the solutions of the Cauchy problems
associated with (3.2).

The potential energy is any primitive V of −g, while the total mechanical energy,
which is a first integral for (3.2), is

E(s, v) =
v2

2
+ V (s).
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Lemma 3.1. If x(·) is a periodic solution of (3.2), its image [αx, βx] is such that

V (s) ≤ V
(
αx
)

= V
(
βx
)
, (3.3)

for any s ∈ [αx, βx]. Consequently, if p is an isolated zero of g which is not a local
minimum point of V , then there exists a neighborhood U of p with the property that
there are no periodic solutions of (3.2) with image in U different from the constant
p̂(t) ≡ p.

Proof. Let x be a periodic solution of period T and let t0, t1 ∈ [0, T ] be such that
x(t0) = αx and x(t1) = βx. Clearly, one has ẋ(t0) = 0 = ẋ(t1), therefore

V
(
αx
)

= E
(
x(t0), ẋ(t0)

)
= E

(
x(t1), ẋ(t1)

)
= V

(
βx
)
.

This yields the inequality (3.3), since for any t ∈ [0, T ]

V
(
αx
)

= V
(
βx
)

=

(
ẋ(t)

)2
2

+ V
(
x(t)

)
≥ V

(
x(t)

)
.

Let us prove the last assertion. Let p be an isolated zero of g which is not a local
minimum point for V . Since V ′(s) = −g(s), there exists a neighborhood U of p
which does not contain minimum points of V . Then the inequality (3.3) yields the
assertion. �

Lemma 3.2. Let G ⊂ C1
T (R) be a connected set of solutions of (3.2) containing

a zero p of g in which g changes sign. Then one has αx ≤ p ≤ βx for any x ∈ G,
where αx and βx are as in Lemma 3.1. Moreover, if one of the two intervals

Ap := {αx | x ∈ G}, Bp := {βx | x ∈ G}

is nontrivial, then the other is nontrivial as well, and V is decreasing on Ap and
increasing on Bp. In addition, Ap ∩Bp = {p}.

Proof. If p is not a local minimum point for V , Lemma 3.1 implies that G reduces to
{p}, and the assertions hold trivially. Assume, therefore, that p is a local minimum
point for V .

Let us prove first that αx ≤ p for any x ∈ G. Put D = {x ∈ G | αx ≤ p}. Clearly
D is nonempty as it contains p, and is closed since x 7→ αx is continuous. Let us
show that D is open in G. It is enough to prove that, given x̄ ∈ D, if αx̄ = p then
x̄ lays in the interior of D. Assume by contradiction x̄ not in the relative interior
of D in G. Since p is a local minimum point of V , the inequality (3.3) of Lemma
3.1 yields βx̄ = p, so that x̄(t) ≡ p. Let δ > 0 be such that g(s) 6= 0 in (p, p + δ).
The fact that x̄ is not in the relative interior of D implies the existence of x ∈ G,
sufficiently close to x̄, such that p < αx. As x̄ is constant, by the continuity of
the map x 7→ βx, we may assume that βx < p + δ. Since V is strictly increasing
in (p, p + δ), again by (3.3), one has αx = βx. Therefore x(t) is constantly equal
to some constant q ∈ (p, p + δ). Consequently g(q) = 0, which is a contradiction.
Thus D is open in G, and αx ≤ p for any x ∈ G, as claimed. Analogously p ≤ βx
for all x ∈ G.

Suppose now that Ap does not reduce to {p}. Let us prove first that V is
decreasing in Ap. Assume by contradiction that this is not the case. Then there
exist a, b ∈ Ap, a < b, such that V (a) < V (b). Since V is C1, there exist s1, s2 ∈
(a, b), with s1 < s2, such that V ′(s) > 0 in [s1, s2]. Consequently, given x ∈ G such
that αx = s1, by Lemma 3.1 one has βx = s1 as well. Thus x is a constant solution
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of (3.2). This implies V ′(s1) = 0, which is a contradiction. The fact that if Bp is
nontrivial then V is increasing in Bp can be proved in an analogous way.

Let us show now that if Ap is nontrivial, then so is Bp. Since p is an isolated
zero of g in which V attains a local minimum, there exists a left neighborhood
of p where V is strictly decreasing. Consequently there exists x ∈ G such that
V (αx) = V (βx) > V (p), and Bp is nontrivial. A symmetric argument shows that
when Bp is nontrivial so is Ap.

It remains to show that the interval Ap∩Bp, which clearly contains p, reduces to
{p}. In fact, if this were not the case, the function V would be both decreasing and
increasing in Ap ∩Bp, contradicting the assumption that g changes sign at p. �

We say that the equation (3.2) is T -isochronous if all its solutions are T -periodic.

Lemma 3.3. Let G, p, Ap and Bp be as in Lemma 3.2. Assume the equation (3.2)
non-T -isochronous. Then Ap ∪Bp 6= R.

Proof. Assume by contradiction Ap ∪ Bp = R. By Lemma 3.2, V is decreasing on
Ap and increasing on Bp. Therefore V attains its minimum at p. Let ξ : J → R be
a maximal non-T -periodic solution of (3.2) (recall that equation (3.2) is assumed
non-T -isochronous). Since V is bounded from below, then |ξ̇(·)| is bounded. This
clearly implies that both the interval J and the image of ξ coincide with R.

Denote by K the total energy of ξ, i.e.

E
(
ξ(t), ξ̇(t)

)
=

1
2

[ξ̇(t)]2 + V
(
ξ(t)

)
= K, for all t ∈ R.

Let us show that the total energy of any x ∈ G is bounded above by K. To this
end, take x ∈ G and let t0 ∈ R be such that ẋ(t0) = 0. Since ξ(R) = R, there exists
t1 ∈ R such that ξ(t1) = x(t0). Therefore,

K =
1
2

[ξ̇(t1)]2 + V
(
ξ(t1)

)
≥ V

(
x(t0)

)
.

Since ẋ(t0) = 0, V
(
x(t0)

)
represents the total energy of the solution x. Conse-

quently,
E (x(t), ẋ(t)) = V

(
x(t0)

)
≤ K, for all t ∈ R

as claimed.
Again the fact that V is bounded from below implies the existence of a constant

H such that |ẋ(t)| ≤ H for all t ∈ R. By integrating and recalling that, as proved
in Lemma 3.2, p belongs to the image of x, one obtains

|x(t)− p| ≤ HT for all t ∈ R.

Thus Ap ∪Bp ⊂ [p−HT, p+HT ], contradicting the assumption. �

Lemma 3.4. Assume that the T -isochronism property does not hold for (3.2). Let
G ⊂ C1

T (R) be a connected component of the set of T -periodic solutions of (3.2)
containing a zero p of g in which g changes sign. Then G is compact and does not
meet any zeros of g different from p.

Proof. Let us prove first that G is compact. Define, as before, the intervals

Ap := {αx | x ∈ G}, Bp := {βx | x ∈ G}.
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Since, by assumption, (3.2) is non-T -isochronous, by Lemma 3.3 we have Ap∪Bp 6=
R. Since by Lemma 3.2 one has Ap ∩ Bp = {p}, at least one of the two intervals,
say Bp, is bounded. Given any x ∈ G, one has

E
(
x(t), ẋ(t)

)
= E(βx, 0) = V (βx) ≤ supV (Bp) < +∞ .

Therefore one has

|ẋ(t)| ≤ k :=
√

2
(

supV (Bp)− inf V (Bp)
)
,

and, since p ∈ x
(
[0, T ]

)
,

|x(t)− p| ≤ Tk, for any t ∈ [0, T ].

Thus G is bounded in C1
T (R). The compactness of G now follows from the fact that

it is a closed subset of the set of T -periodic solutions of (3.2).
Finally, if q ∈ g−1(0) belongs to G, then αq = βq = q. Consequently, by Lemma

3.2, one has q = p. �

The following theorem clears the way to the main result of this section.
Theorem 3.5. Assume that in equation (3.1) the force g satisfies the following
conditions:

• g changes sign at n zeros;
• the T -isochronism property does not hold.

Then there exists δ > 0 such that (3.1) has at least n forced oscillations for λ ∈
[0, δ).

Proof. Let p1, . . . , pn be zeros at which g changes sign. We shall prove that there
exist n pairwise disjoint compact ejecting sets for the set X of T -pairs of (3.1)
containing p1, . . . , pn. Then, the assertion will follow from Lemma 2.3.

By Lemma 3.4 we get that alternative (2) in Lemma 2.6 does not hold, therefore
there exist n pairwise disjoint compact and open subsets A1, . . . , An of the slice

X0 = {x ∈ C1
T (R) | x is a solution of (3.2)}

containing p1, . . . , pn respectively.
Since g changes sign at the points p1, . . . , pn, thus, by Theorem 2.1, for any

i = 1, . . . , n, there exists a connected set Γi of nontrivial T -pairs for (3.1) whose
closure Γi meets pi and is either non-compact or intersects g−1(0)\{pi}. By Lemma
3.4 we get Γi 6⊂ X0. This implies that all the Ai’s are ejecting sets for X. �

We observe that the non-T -isochronism assumption in Theorem 3.5 is not very
restrictive. In fact (see e.g. [13]), the unique odd continuous function g for which
T -isochronism holds is

g(s) = −
(

2π
T

)2

s.

See also [21] along with the references therein, where a discussion on isochronal
oscillations around a zero of g can be found.

If the function g changes sign at least two times, then the potential energy has
a maximum point p. Thus, given a neighborhood U of p, the solutions of (3.2)
starting close to p (at t = 0) remain in U for all t ∈ [0, T ] (recall we are assuming
the uniqueness of the solutions of the Cauchy problem). Consequently, by Lemma



8 M. FURI, M. P. PERA, & M. SPADINI EJDE–2001/36

3.1, the equation (3.2) is not T -isochronous. We can therefore state our main
multiplicity result:
Theorem 3.6. Assume that in equation (3.1) the force g changes sign at n > 1
zeros. Then there exists δ > 0 such that (3.1) has at least n forced oscillations for
λ ∈ [0, δ).

Observe that when, in equation (3.1), g−1(0) consists of isolated points and g
changes sign at infinitely many zeros, Theorem 3.6 implies that, given n ∈ N, there
exists δn > 0 such that (3.1) admits at least n forced oscillations for any λ ∈ [0, δn).
This does not mean that one necessarily has infinitely many T -periodic solutions
for small λ > 0, as illustrated by the following equation where we set T = 2π

ẍ = sinx+ λ(x− ẋ). (3.4)

Clearly, due to the friction effect of the term −λẋ, the only possible T -periodic
solutions are the zeros of sinx + λx. Thus (3.4) has a finite number of T -periodic
solutions for any λ > 0.
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