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Nonautonomous attractors of skew-product flows

with digitized driving systems ∗

R. A. Johnson & P. E. Kloeden

Abstract

The upper semicontinuity and continuity properties of pullback attrac-
tors for nonautonomous differential equations are investigated when the
driving system of the generated skew-product flow is digitized.

1 Introduction

The objective of this paper is to study the semicontinuity and continuity prop-
erties of pullback attractors for nonautonomous differential equations

x′ = f(t, x), x ∈ Rd, t ∈ R, (1.1)

under perturbation of the driving system through a digitization procedure. We
will formulate this problem in concrete terms using the language of skew-product
flows [1, 16, 17], in particular, the Bebutov approach to the skew-product flow
concept. Thus let F be some topological vector space of mappings f : R×Rd →
R
d and, for each t ∈ R, let θt : F → F be the translation operator defined

by θt(f)(s, x) := f(t + s, x) for all s ∈ R and x ∈ Rd. Now let P ⊂ F be
a metrizable compact set which is invariant in the sense that, if p ∈ P , then
θt(p) ∈ P for all t ∈ R. Suppose further that the mapping R×P → P defined by
(t, p) 7→ θt(p) is continuous. This just says that (P, {θt : t ∈ R}) is a topological
flow or autonomous dynamical system.

Now consider the family of differential equations

x′ = p(t, x). (1.2)

We assume, for each x0 ∈ Rd and p ∈ P , that the solution x(t) = φ(t, x0, p) of
(1.2) satisfying x(0) = x0 exists locally and is unique. We also assume that, if t ∈
R, x0 ∈ Rd and p ∈ P , then the correspondence (t, x0, p) 7→ (φ(t, x0, p), θt(p)) is
continuous on its domain of definition V ⊂ R × Rd × P . This correspondence
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2 Nonautonomous attractors of skew-product flows EJDE–2001/58

(t, x0, p) 7→ (φ(t, x0, p), θt(p)) : V → R
d × P is the skew product (local) flow

on Rd × P defined by the family of equations (1.2). The flow (P, {θt : t ∈ R})
is referred to as the driving system of equations (1.2). For each p ∈ P , the
solutions x(t) of (1.2) can be viewed as projections to Rd of trajectories of the
above skew-product flow.

When the equations (1.2) satisfy an appropriate dissipativity condition, they
induce a global pullback attractor A =

⋃
p∈P (Ap × {p}) ⊂ R

d × P , where
each fiber Ap is defined by a procedure which amounts to a nonlinear version
of the classical Weyl limit-point construction. The set A is compact and is
invariant with respect to the above skew-product system on Rd × P defined by
the solutions of the equations (1.2). For each p ∈ P , one can think of Ap as a
“pointwise” pullback attractor; see Section 2 for details. The problem we pose
is that of studying the semicontinuity, resp. continuity, properties of A and
the individual fibers Ap, as the compact translation-invariant set P is varied
within F . For technical simplicity, throughout the paper, we assume that the
equations (1.2) contract a fixed large ball in Rd. In this way the concepts of
local pullback attractor and global pullback attractor are made equivalent.

This problem has been considered by Kloeden and Kozyakin [12, 13], who,
in particular, studied the upper semicontinuity in the Hausdorff sense of the
Ap under perturbation in P when the driving system (P, {θt : t ∈ R}) has the
shadowing property. Here we will not assume that shadowing holds. Rather,
we will instead study perturbations in certain spaces F of a general compact,
metrizable, Bebutov-invariant subset P . Among these perturbations are those
determined by digitizing a given time-varying vector field f(t, x). By this,
we mean the following: the time-axis is decomposed into half-open intervals of
lengths, say, between δ/2 and δ for each δ > 0. On each such interval, the time-
varying vector field f(t, x) is replaced by an autonomous vector fieldf̄(x) (which
usually depends on the particular interval). For example, one may choose f̄(x)
to be the time-average of f(t, x) over the given (or previous) interval, or as
some particular value f(t∗, x), or in some other way as well. If now there is a
compact, metrizable, Bebutov-invariant subset P of F such that f ∈ P , then
we can identify (1.1) as one equation in the family (1.2). In this way one is led
to identify appropriate perturbations Pδ ⊂ F of P .

We will formulate and prove results to the effect that if

Aδ =
⋃

(Apδ × {pδ} : pδ ∈ Pδ}

is the pullback attractor for the skew-product dynamical system defined by
(Pδ, {θt : t ∈ R}), and if pδ ∈ Pδ corresponds to a digitized version of equation
(1.1), then Aδpδ converges upper semicontinuously to Af as δ → 0, with respect
to the Hausdorff metric on compact subsets of Rd. We will also provide sufficient
conditions that Aδpδ converges continuously to Af as δ → 0, with respect to the
Hausdorff metric.

We will make use of two distinct sets of methods in our study study A and
its fibers Ap. The first is drawn from the area of topological dynamics and
dynamical systems. In applying these methods, we will make systematic use of
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the the skew-product local flow on Rd×P induced by the solutions of equations
(1.2). The second is taken from the fixed point theory of nonlinear mappings on
Banach spaces. Fixed point theory can be applied here for the following reason
(among others): the set Ap is equal, under our hypotheses, to the set of initial
conditions x0 ∈ Rd for which the corresponding solution x(t) = φ(t, p, x0) of
(1.2) exists and is bounded for all t ∈ R. These solutions can be viewed as the
fixed points of an appropriate nonlinear mapping.

In order to illustrate the points made above, we consider the example

x′ = f(t, x) = −x+ h(t, x), x ∈ R, t ∈ R, (1.3)

where h is uniformly continuous and uniformly Lipschitz in x on each subset
of the form R ×K where K ⊂ Rd is compact. Assume that there are positive
numbers a and σ, such that for each t ∈ R one has

a+ h(t,−a) ≥ σ, −a+ h(t, a) ≤ −σ.

Let fδ(t, x) be obtained by digitizing f : thus, for example, we might set

fδ(t, x) = −x+
1
δ

∫ (n+1)δ

nδ

h(s, x)ds, t ∈ [nδ, (n+ 1)δ)

for each n ∈ Z. Using methods of dynamical systems, we will first show that
Aδfδ exists and tends upper semicontinuously to Af as δ → 0, and moreover that
this convergence is uniform in t when f is replaced by θt(f) for any t ∈ R.

On the other hand, a bounded solution of (1.3) is expressible as a fixed point
of the mapping T defined for each t ∈ R by

T [x](t) = −
∫ ∞
t

e(t−s)f(s, x(s)) ds.

This mapping is defined and continuous on the Banach space Cb of bounded,
continuous real-valued functions on R. If |h(t, x)| ≤ a whenever |x| ≤ a
and t ∈ R, and if

∣∣∂h
∂x

∣∣ ≤ α < 1 for all t ∈ R and |x| ≤ a, then T is
a contraction on the ball {x(·) ∈ Cb : ‖x‖∞ ≤ a}. One has that Af =
{x0 ∈ R : the solution x(·) of (1.3) with x(0) = x0 is bounded on (−∞,∞)},
and that the set of solutions x(·) of (1.3) which are bounded on (−∞,∞) is
the fixed point set of T . We will show that the digitization gives rise to contin-
uous convergence in the Hausdorff sense Aδfδ to Af as δ → 0, and moreover the
convergence is uniform in t when f is replaced by θt(f) for any t ∈ R.

2 Preliminaries

In this section, we formulate the concept of driving system in a way which is
convenient for present purposes. We define the notion of pullback attractor
when the driving system is compact and when a uniform dissipativity condition
is valid. Finally we introduce various basic definitions which will be needed later
on.
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Let F denote the vector space of all functions (time-varying vector fields)
f : R× Rd → R

d which satisfy the following properties:

i) For each compact set K ⊂ Rd, f is uniformly continuous on R×K;

ii) For each compact set K ⊂ Rd, there exists a constant LK (also depending
on f) so that

‖f(t, x)− f(t, y)‖ ≤ LK ‖x− y‖ for all x, y ∈ K, t ∈ R.

The second condition states that f is uniformly Lipschitz in x on each set of
the form R×K where K ⊂ Rd is compact.

It will be clear that all of our results can be formulated and proved when the
vector fields f in question satisfy less stringent conditions. However, Conditions
i) and ii) are not particularly restrictive and they permit a simple exposition of
the facts we wish to present.

We put the topology of uniform convergence on compact sets on F . Thus
a sequence {fn} of elements of F converges to f ∈ F if and only if fn(t, x) →
f(t, x) uniformly on each set D×K ⊂ R×Rd when D and K are compact. This
topology is metrizable, but not complete. There is a natural flow (Bebutov flow)
{θt : t ∈ R} defined on F by translation of the t-variable, specifically θt(f)(s, x)
:= f(t+ s, x) for all f ∈ F , x ∈ Rd and s, t in R.

A simple but basic observation can now be made: if f ∈ F (i.e., if f satisfies
the conditions i) and ii)), then the orbit closure P := cls{θt(f) : t ∈ R} ⊂ F is
compact. This follows from the uniform continuity conditions on f . Moreover,
condition ii) holds for each p ∈ P with the same set of Lipschitz constants {LK}.
See [16] for further details.

Consider the family of differential equations

x′ = p(t, x), (2.1)

where p ranges over P . If x0 ∈ Rd and p ∈ P , then equation (2.1) admits a
unique maximally defined solution x(t) = φ(t, x0, p) satisfying x(0) = x0. We
define a local flow {πt : t ∈ R} on Rd×P by setting πt(x0, p) = (φ(t, x0, p), θt(p))
for all triples (t, x0, p) such that the right-hand side is well-defined. This local
flow is said to be of skew-product type because the component θt(p) does not
depend on x0. As noted in the Introduction, the flow (P, {θt : t ∈ R}) is referred
to as the driving system for the family (2.1).

Of course, a skew-product local flow on Rd × P can be constructed for any
compact, translation-invariant subset of F ; it is not required that P be generated
as above by the translates of a fixed vector field f (when P is so generated, it
is referred to as the hull of f).

Next we turn to the concept of pullback attractor. Let us begin with a fixed
vector field f ∈ F and the corresponding differential equation

x′ = f(t, x). (2.2)
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To simplify matters, we assume that there exists R > 0 such that

〈f(t, x), x〉 < 0 (2.3)

for all t ∈ R and x ∈ Rd satisfying ‖x‖ ≥ R, where 〈·, ·〉 denotes the standard
inner product on Rd. Using the uniform continuity properties of f , one sees
that condition (2.3) actually implies that, for some η > 0,

〈f(t, x), x〉 ≤ −η

for all t ∈ R and x ∈ Rd satisfying ‖x‖ = R. Passing to the hull P of f , we
see that, for each p ∈ P , the closed ball BR = {x ∈ Rd : ‖x‖ ≤ R} is positively
invariant with respect to the solutions of the differential equation (2.1). In
particular, if p ∈ P and x0 ∈ BR, then the solution x(t) of (2.1) satisfying
x(0) = x0 exists and lies in BR for all t ≥ 0.

Let us write φ(t, x0, p) for the solution x(t) of (2.1) satisfying x(0) = x0. If
D ⊂ Rd, we write φ(t,D, p) = {φ(t, x0, p) : x0 ∈ D}. Define

Ap =
⋂
t≥0

φ (t, BR, θ−t(p)) , (2.4)

then put A =
⋃
p∈P (Ap × {p}) ⊂ R

d × P . We refer to Ap as the pullback
attractor for the single equation (2.1), and to A as the pullback attractor for the
family (2.1), or more simply as the global pullback attractor. Clearly, the sets Ap
are all nonempty and compact, and φ-invariant in the sense that φ (t, Ap, p) =
Aθt(p).

We will consider the sets Ap and A in more detail in the following sections.
In the remainder of the present section we briefly recall two basic definitions,
namely those of exponential dichotomy and of the Hausdorff distance.

Let P be a compact, translation-invariant subset of F . Let us suppose that
P consists entirely of linear vector fields: p(t, x) = P (t)x, where we permit
an abuse of notation. The function P (·) takes values in the set Md of d × d
real matrices and is uniformly continuous on R. Let Ψp(t) be the fundamental
matrix of the linear ordinary differential equation

x′ = P (t)x; (2.5)

thus Ψp(t) is the d × d-matrix solution of (2.5) such that Ψp(0) = I, the d × d
identity matrix. Let Q be the set of linear projections Q : Rd → R

d; this set has
finitely many connected components determined by the possible dimensions of
the image of Q.

Definition Say that the family (2.5) has an exponential dichotomy (ED)
over P if there are positive constants γ, L and a continuous projection-valued
function Q defined by p 7→ Qp ∈ Q such that for all p ∈ P ,∥∥Ψp(t)QpΨp(s)−1

∥∥ ≤ L exp−γ(t−s) (t ≥ s),∥∥Ψp(t)(I −Qp)Ψp(s)−1
∥∥ ≤ L expγ(t−s) (t ≤ s) .
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Now let (X , d) be a metric space and let A and B be nonempty compact
subsets of X . Define dist(a,B) := minb∈B d(a, b) and then define the Hausdorff
semi-distance

H∗(A,B) := max
a∈A

dist(a,B).

Thus, if ε > 0 and H∗(A,B) < ε, then for each a ∈ A there exists b ∈ B such
that d(a, b) < ε. Finally, define the Hausdorff distance H(A,B) between A and
B as follows:

H(A,B) := max {H∗(A,B),H∗(B,A)} .

Note that if B happens to be a singleton, B = {b}, then H∗(A,B) = H(A,B).

3 Semicontinuity results

We begin by fixing a compact, translation-invariant subset P of the topological
vector space F described in the preceding section. We assume that there exist
numbers R > 0, η > 0 so that, if ‖x‖ = R and p ∈ P , then

〈p(t, x), x〉 ≤ −η. (3.1)

Let BR =
{
x ∈ Rd : ‖x‖ ≤ R

}
be the closed ball in Rd centered at the origin

with radius R.
We make some remarks about the pullback attractor Ap and the global

pullback attractor A, first when P is held fixed and then when it is varied in
some systematic way. First of all, it follows from (3.1) that, if t > s, then
φ (t, BR, θ−t(p)) ⊂ φ (s,BR, θ−s(p)). Thus the intersection in (2.4) is over a
decreasing collection of sets. Using the continuity property of the reduced Čech
homology functor Ȟ in the category of compact spaces together with the fact
that each set φ (t, BR, θ−t(p)) is homeomorphic to a ball, we have Ȟ(Ap) = 0.
In particular, we have:

Proposition 3.1 For each p ∈ P , the space Ap is connected; in fact Ap is
∞-proximally connected in the sense of [4].

We record a second fact which also follows quickly from (3.1) and from the
definition of Ap.

Proposition 3.2 For each p ∈ P , one has Ap = {x0 ∈ R: the solution x(·) of
(1.2) with x(0) = x0 is defined on the entire real axis and satisfies ‖x(t)‖ ≤ R
for all t in R}.

Proof. Let x0 ∈ Ap. Then for each t < 0, there exists x̄ ∈ BR such that
φ (t, x̄, θ−t(p)) = x0, and one has x(t) = x̄. It follows that x(t) is defined and
satisfies ‖x(t)‖ ≤ R for all t ∈ R. It is equally easy to see that, if the solution
x(t) of (1.2) satisfying x(0) = x0 exists and is bounded on R, then x0 ∈ Ap. �

It follows from Proposition 3.2 that A ⊂ Rd × P is compact, and from this
one sees that Ȟ(A) = Ȟ(P ) because of the continuity of the Čech homology



EJDE–2001/58 R. A. Johnson & P. E. Kloeden 7

functor on compact spaces. One also sees that, if K(Rd) is the space of all
nonempty compact subsets of Rd, then the mapping p 7→ Ap : P → K(Rd) is
upper semicontinuous in the sense that (using the notation of Section 2):

H∗ (Apn , Ap)→ 0 whenever pn → p in P.

Next let f ∈ F be a vector field satisfying condition (2.3). We want to con-
sider the upper semicontinuity properties of the pullback attractor Af when f is
digitized. It will be convenient and informative to study the upper semicontinu-
ity properties of the pullback attractor Af using the language of skew-product
flows.

First we introduce some terminology. By a digitization we mean a proce-
dure which, to each f ∈ F and each real number δ > 0, assigns the following
data with the indicated properties:

I) There is a collection Iδ = {Iδj : j ∈ Z} of nonempty half-open intervals
in R such that ∪∞j=−∞Iδj = R, and such that each interval Iδj has length
≤ δ and (say) ≥ δ/2.

II) To each f ∈ F there is associated a collection {f jδ : δ > 0, j ∈ Z} of
autonomous vector fields. There is a positive function ω = ω(ε), defined
for positive values of ε and tending to zero as ε → 0+, such that for
each interval Iδj ∈ Iδ and each x ∈ Rd the following property holds: if
εx = sup

{
‖f(r, x)− f(s, x)‖ : r, s ∈ Iδj

}
, then∥∥∥f jδ (x)− f(t, x)

∥∥∥ ≤ ω(εx), t ∈ Iδj .

III) There is a positive function ω1 = ω1(M), which is defined for positive
values of M and which depends only on M , such that, if x, y in Rd satisfy
‖f(t, x)− f(t, y)‖ ≤M for all t in some interval Iδj , then∥∥∥f jδ (x)− f jδ (y)

∥∥∥ ≤ ω1(M)‖x− y‖

for all δ > 0.

IV) There is a positive function ω2 = ω2(η), defined for positive values of η
and tending to zero as η → 0+, such that, if J ⊂ R is an interval and if
x ∈ Rd is a point, and if f , f̃ ∈ F satisfy ‖f(t, x) − f̃(t, x)‖ ≤ η for all
t ∈ J , then ∥∥∥f jδ (x)− f̃ jδ (x)

∥∥∥ ≤ ω2(η)

for all δ > 0 and all j such that Iδj ⊂ J .

Although these properties are cumbersome to state, they are reasonable
requirements on a digitization scheme. Now let f ∈ F be a vector field
satisfying (2.3). Put fδ(t, x) = f jδ (x) for t ∈ Iδj , j ∈ Z. Abusing language
slightly, we call {fδ : δ > 0} a digitization of f . The vector fields fδ
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discussed in the Introduction are obtained by procedures for which I)–
IV) are satisfied, so these fδ are digitizations in our sense. In fact , the
subintervals Iδ in I) for each fixed δ > 0 of such digitizations often also
satisfies the following recurrence condition, in which case it will be called
a recurrent digitization.

V) Fix δ > 0. To each η > 0 there corresponds a number T (which may
depend on δ as well as on η) so that each interval [a, a+ T ] ⊂ R contains
a number s such that dist(Iδ, Iδ + s) < η. Here Iδ + s is the s-translate
of Iδ and dist is the Hausdorff distance on R.

Now consider the differential equation

x′ = fδ(t, x) (3.2)

for each δ > 0. Though fδ is only piecewise continuous in t, it nevertheless
admits a unique local solution x(t, x0) for each initial condition x(0, x0) = x0 ∈
R
d; moreover x(t, x0) is jointly continuous on its domain of definition. Using

property II) and condition (2.3) on f , we see that fδ also satisfies condition
(2.3) for small δ > 0. It follows that the pullback attractor Afδ ⊂ Rd of the
equation (3.2), which is defined by the formula (2.4), is contained in BR and is
compact for small δ > 0.

For each δ > 0 and t ∈ R, let (θt(f))δ be the digitization of the t-translate
of f (we remark parenthetically that θt(fδ) 6= (θt(f))δ in general). We want to
prove that H∗

(
A(θt(f))δ

, Aθt(f)

)
converges to zero as δ → 0, uniformly in t ∈ R.

That is, we want to prove that A(θt(f))δ
tends to Aθt(f) upper semicontinuously,

uniformly in t ∈ R. Actually we will prove more. Let P ⊂ F be the hull of f
and let pδ be the digitization of p for each p ∈ P ; then H∗ (Apδ , Ap) tends to
zero as δ → 0, uniformly in p ∈ P .

To prove this, it will be convenient to work in an enlarged topological vector
space G which contains F together with the (in general, temporally discontinu-
ous) vector fields pδ. We define G to be the class of jointly Lebesgue measurable
mappings g ∈ R× Rd → R

d which satisfy the following conditions:

a) For each compact set K ⊂ Rd, one has

sup
x∈K

sup
t∈R

∫ t+1

t

‖g(s, x)‖ ds <∞;

b) For each compact set K ⊂ Rd there is a constant LK (depending on g) so
that, for almost all t ∈ R:

‖g(t, x)− g(t, y)‖ ≤ LK ‖x− y‖, x, y ∈ K.

Now, for each r = 1, 2, 3, . . . and each N = 1, 2, 3, . . . introduce a pseudo-metric
dr,N on G:

dr,N (g1, g2) = sup
‖x‖≤r

∫ N

−N
‖g1(s, x)− g2(s, x)‖ ds.
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Then put

dr(g1, g2) =
∞∑
N=1

1
2N

dr,N (g1, g2)
1 + dr,N (g1, g2)

,

and finally set

d(g1, g2) =
∞∑
r=1

1
2r

dr(g1, g2)
1 + dr(g1, g2)

.

We identify two elements of G if their d-distance is zero, thereby obtaining a
metric space which we also call G.

Observe that, if g ∈ G, then the Cauchy problem

x′ = g(t, x), x(0) = x0 (3.3)

admits a unique, maximally-defined local solution x(t, x0) for each x0 ∈ Rd;
moreover, x(t, x0) depends continuously on (t, x0) on its domain of definition.
This can be proved using the standard Picard iteration method to solve (3.3).
We will write

x(t, x0) = φ(t, x0, g)

to maintain consistency with notation used previously.
Observe further that, for each t ∈ R, the translation θt : G → G, i.e.,

θt(g)(s, x) = g(t + s, x) is well-defined. Let G1 ⊂ G be a translation invariant
subset such that the supremum in a) and the constants LK in b) of the definition
of G are uniform in g ∈ G1, for each compact K ⊂ Rd. Then (t, g) → θt(g) :
R× G1 → G1 is continuous.

Next let δ0 > 0. We will show that the set U = P ∪ {pδ : p ∈ P, 0 <
δ ≤ δ0} ⊂ G is equi-uniformly continuous in the sense that, to each ε > 0,
there corresponds η > 0 such that, if |t − s| < η, then d(θt(p), θs(p)) < 2ε and
d(θt(pδ), θs(pδ)) < 2ε for all p, pδ ∈ U and for all t, s ∈ R.

To do this, fix ε > 0. Recall that P ⊂ F ⊂ G is the hull of the uniformly
continuous function f . Hence if B ⊂ Rd is a ball centered at the origin and if
N ≥ 1, then we can find η1 > 0 such that, if |t− s| < η1, then∫ N

−N
‖θt(p)(v, x)− θs(p)(v, x)‖ dv < ε/3

for all x ∈ B. Then, taking account of the definition of the distance d, we see
that it is sufficient to prove that, for some sufficiently large ball B ⊂ Rd and
some sufficiently large N , there exists η2 ∈ (0, η1] such that

sup
x∈B

∫ N

−N
‖θt(pδ)(v, x)− θs(pδ)(v, x)‖ dv < ε (3.4)

whenever |t − s| < η2, 0 < δ ≤ δ0. Let us write dB(θt(pδ), θs(pδ)) for the
quantity on the left hand side of (3.4).

To prove (3.4), we use the properties I)–IV) of a recurrent digitization.
Choose ε1 > 0 so that ω(ε1) < ε/3, then choose δ1 so that, if 0 < δ ≤ δ1
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then εx ≤ ε1/(2N) for all x ∈ B. Using property II), we see that, if 0 < δ ≤ δ1
and p ∈ P , then

dB(θt(pδ), θs(pδ)) ≤ dB(θt(pδ), θt(p)) + dB(θt(p), θs(p)) + dB(θs(p), θs(pδ))
< 3 · ε/3 = ε

whenever |t− s| < η.
If δ1 ≥ δ0, we set η = η1 and stop. If δ1 < δ0 and if δ1 < δ ≤ δ0, we first

choose η2 ≤ δ/100, then note that on each interval [u, u+N ] ⊂ R of length N ,
the difference pδ(t, x)−pδ(s, x) is zero except on at most [2N/δ]+1 subintervals
of length 2η2, where [·] denotes the integer part of a positive number. Using the
uniform boundedness of the vector fields pδ ∈ U on R × B, we can determine
η3 ≤ η2 so that, if |t−s| < η3, then dB(θt(pδ), θs(pδ)) < ε. So if η = min{η1, η3}
we obtain (3.4) for all p, pδ ∈ U .

Now let δ ∈ (0, δ0]. For each p ∈ P , let Pδ(p) = cls{θt(pδ) : t ∈ R}.
Then Pδ(p) is compact (this uses the recurrence condition V) of a recurrent
digitization) and translation invariant in G. Moreover, using property III) of a
digitization and a Gronwall-type argument, one shows that the map (t, x0, g)
7→ (φ(t, x0, g), θt(g)) defines a (continuous) skew-product flow on Rd × Pδ(p).

Choose δ0 so that each pδ satisfies (2.3) for all p ∈ P and 0 < δ ≤ δ0. Then
the pullback attractor Apδ exists and equals {x0 ∈ Rd : φ(t, x0, pδ) is defined on
all of R and satisfies ‖φ(t, x0, pδ)‖ ≤ R }; see Proposition 3.2. In fact, Apδ is then
the pδ-fiber of a global pullback attractor Aδ ⊂ Rd×Pδ(p). Now pδ → p in G as
δ → 0, so using property III) of a digitization and a Gronwall argument, together
with the characterization of Apδ in terms of bounded solutions of x′ = pδ(t, x),
one shows that H∗(Apδ , Ap) → 0 as δ → 0. However, more is true. Using
property IV) of a digitization one has the following: if pn> ∈ P and if δn → 0,
then d(p(n,δn), p)→ 0. Again using II) together with a Gronwall argument and
the above characterization of Ap(n,δn) , one sees that H∗(A(pn,δn)

, Ap) → 0 as
n→∞. This is a strong uniformity statement, and implies

Proposition 3.3 H∗(Apδ , Ap) → 0 as δ → 0, uniformly in p ∈ P . In particu-
lar,

H∗(A(θt(f)δ , Aθt(f))→ 0 as δ → 0,

uniformly in t ∈ R.

We use the recurrence condition V) to prove that the sets Pδ(p) are compact.
This would seem to be a basic requirement to be satisfied when one sets about
computing the pullback attractor, because otherwise the convergence in (2.4) of
the intersection to Apδ cannot be expected to have any uniformity properties.
We note, however, that Proposition 3.3 could be proved without asumptions
ensuring that the sets Pδ(p) are compact; one only needs the uniform continuity
in t on R (uniform on compact x subsets of Rd) of the vector field f(t, x) and
the continuity of the Bebutov flow on (G, d).



EJDE–2001/58 R. A. Johnson & P. E. Kloeden 11

4 Continuity results

In this section, we continue to investigate the perturbation properties of pull-
back attractors, this time with the goal of giving a sufficient condition for the
Hausdorff continuity (and not just upper semicontinuity) of the sets Ap, resp.
A, as the base space P is varied in some functional space.

To be specific, let F be the topological space introduced in Section 2. Let
P be a compact, translation-invariant subset of F (which need not be the hull
of any one element f ∈ F). Let us assume that each p ∈ P can be written in
the form

p(t, x) = Lp(t)x+ hp(t, x),

where Lp(·) is a uniformly continuous function with values in the setMd of real
d× d matrices. We assume that the mappings (p, t, x) 7→ Lp(t)x and (p, t, x) 7→
hp(t, x) are uniformly continuous on compact subsets of P ×R×Rd. A sufficient
condition that this is the case is the following. Consider the metric space P ; put
F (p, x) = p(0, x) for each p ∈ P and x ∈ Rd. Note that F (θt(p), x) = p(t, x) for
all t ∈ R, p ∈ P . Suppose that the Jacobian ∂F

∂x (p, 0) is continuous as a function
of p. Then, setting

Lp(t)x =
∂F

∂x
(θt(p), 0)x, hp(t, x) = p(t, x)− Lp(t)x,

we obtain the desired decomposition.
We now impose the following hypothesys.

(H1) The family of linear systems

x′ = Lp(t)x, p ∈ P,

admits an exponential dichotomy over P with constants L > 0, γ > 0 and
continuous family of projections {Qp : p ∈ P}.

Let Cb = Cb(R,Rd) be the Banach space of bounded continuous functions
x : R → R

d with the norm ‖x‖∞ = supt∈R ‖x(t)‖. For each p ∈ P , define a
nonlinear operator Tp : Cb → Cb as follows:

Tp[x](t) =
∫ ∞
t

Ψp(t)QpΨp(s)−1hp(s, x(s)) ds

+
∫ t

−∞
Ψp(t)(Qp − I)Ψp(s)−1hp(s, x(s)), ds

where Ψp(t) is the fundamental matrix with initial value Ψp(0) = I (identity
matrix) of the linear equation x′ = Lp(t)x.

Assume from now on that condition (2.3) holds for all p ∈ P . We further
impose a condition of uniform contractivity.

(H2) For all p ∈ P and for all x, y in BR, one has

‖hp(t, x)− hp(t, x)‖ ≤ k‖x− y‖,

where k < γ/2L.
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To simplify the analysis, we now modify each hp(t, x) outside the ball BR so that
hp satisfies Hypothesis (H2) for all x ∈ Rd and so that hp(t, x) = 0 whenever
‖x‖ ≥ R + 1. This means that condition (2.3) does not hold if ‖x‖ ≥ R + 1,
but it will clear that this will have no effect on our analysis of the pullback
attractors of the equations (4.1).

Proposition 4.1 For each p ∈ P , the equation

x′ = p(t, x), (4.1)

admits a unique solution xp(t) which is bounded on all of R.

Proof. The argument is standard (see, e.g., Fink [3]). The operator Tp is
a contraction on Cb and hence admits a unique fixed point xp(·), which is a
bounded solution of (4.1). Since each fixed point of Tp in Cb is a bounded
solution of (4.1) the proposition is proved. �

Using Propositions 3.2 and 4.1, we see that, for each p ∈ P , the pullback
attractor Ap = {xp(0)}, i.e., each Ap contains exactly one point. Then from
continuity with respect to parameters of the fixed point of a contractive map-
ping, we see that A = {(xp(0), p) : p ∈ P} ⊂ Rd × P is compact. One verifies
that A ⊂ Rd × P is the global pullback attractor for the family (4.1).

Now, if {x0} is a singleton subset of a metric space X , and if B ⊂ X is
compact, then H∗(B, {x0}) coincides with the Hausdorff distance H(B, {x0}).
This fact will allow us to prove that, if p ∈ P , then Ap is a point of Hausdorff
continuity for the pullback attractors Ap̃ of equations x′ = p̃(t, x) obtained by
appropriate perturbations p̃ of p. We will formulate a fairly general continuity
result whose hypotheses are satisfied in particular by the digitizations of Section
3.

We view the compact metric space P as a subset of G. Choose fixed values
for the suprema in a) and for the constants LK in b) of the definition of G, and
let G1 ⊂ G be the set of all g ∈ G for which a) and b) hold with these fixed
values. As in Section 3, write θt(g)(s, x) = g(t+ s, x), and let φ(t, x0, g) denote
the solution of the Cauchy problem (3.3) for each g ∈ G1. Using a Gronwall-
type inequality, one verifies that the mapping (t, x0, g) 7→ (φ(t, x0, g), θt(g)) is
continuous on its domain of definition V ⊂ R×Rd×G1, and defines a continuous
local skew-product flow on Rd × G1.

Next let P̃ ∈ G1 be a compact translation-invariant set. The Hausdorff
semi-metric H∗(P̃ , P ) is defined relative to the metric d in G1. Let η∗ > 0 be a
constant so that

〈p(t, x), x〉 ≤ −η∗ (4.2)

for all p ∈ P , t ∈ R, and x ∈ Rd with ‖x‖ = R. One can show that there
exists δ > 0 so that, if H∗(P̃ , P ) < δ, and if p̃ ∈ P̃ , then for each x0 ∈ Rd with
‖x0‖ = R, the solution x(t) of the Cauchy problem

x′ = p̃(t, x), x(0) = x0,
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satisfies ‖x(t)‖ < R for all t > 0. The proof uses the continuity of the local
skew-product flow on Rd × G1. This means that the family {(4.1) : p ∈ P}
admits a global pullback attractor Ã, which lies in BR × P̃ .

Since Ap is a singleton set, we have H∗(Ap, Apδ) ≤ H∗(Apδ , Ap), whether
the sets Apδ are singleton sets or not. Thus in Proposition 3.3 we actually have
continuous convergence in this case.

Proposition 4.2 For each each δ > 0, let {pδ : p ∈ P} be a subset of G
such that d(pδ, p) → 0 as δ → 0, uniformly with respect to p ∈ P . Then
H (Apδ , Ap)→ 0 as δ → 0, uniformly in p ∈ P .

Note that the equations x′ = pδ(t, x) need not give rise to contractions in Cb,
so this result cannot be proved using the continuity properties of fixed points
of contraction mappings.

5 Example

We give an example to illustrate the strength of Proposition 4.2. We will work
with quasi-periodic vector fields. Let Tk be the k-torus, k ≥ 2, and let
γ = (γ1, . . . , γk) be a rationally independent vector in Rk. Let (φ1, . . ., φk) be
angular coordinates mod 2π on Tk. Introduce the corresponding Kronecker
flow {θt : t ∈ R} on Tk by setting θt(φ1, . . . , φk) = (φ1 + γ1t, . . . , φk + γkt). For
brevity we set φ = (φ1, . . . , φk) and θt(φ) = φ+ γt.

Let F : Tk × Rd → R
d be a continuous function such that the Jacobian

∂F
∂x (φ, 0) is defined and is a continuous function of φ ∈ T

k. Let Lφ(t) =
∂F
∂x (θt(φ), 0) and hφ(t, x) = F (θt(φ), x) − Lφ(t)x. Suppose that the family of
linear equations

x′ = Lφ(t)x, φ ∈ Tk,

admits an exponential dichotomy over Tk with constants L > 0, γ > 0 and a
continuous family of projections {Qφ : φ ∈ Tk}. Suppose further that there
exists R > 0 so that 〈F (φ, x), x〉 < 0 for all φ ∈ Tk and x ∈ Rd with ‖x‖ ≥ R.
Suppose finally that there is a constant k < γ/(2L) such that

‖hφ(t, x)− hφ(t, y)‖ ≤ k‖x− y‖

for all φ ∈ Tk and x, y in Rd with ‖x− y‖ ≤ R.
Let Gn = Gn(φ, x) be any sequence of continuous functions on Tk×Rd with

values in Rd such that

1) Gn → 0 uniformly on Tk ×BR as n→∞;

2) There is a real number M such that

‖Gn(φ, x)−Gn(φ, y)‖ ≤M‖x− y‖

for all φ ∈ Tk and x, y ∈ BR and n ≥ 1.
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We do not assume that ∂Gn
∂x (φ, 0) exists, nor that M is small. Hence, if we

consider the vector functions

Fn(φ, x) = F (φ, x) +Gn(φ, x),

it may not be the case that the family of equations

x′ = Fn(θt(φ), x), φ ∈ Tk, (5.1)

generates a family of fixed-point mappings {Tφ}, and even if it does, there is no
guarantee that any Tφ is a contraction on Cb.

The Fn are of course perturbations of F . Let us now introduce a further per-
turbative element. Namely, let γ(n) = (γ(n)

1 , . . . , γ
(n)
k ) be a sequence of frequency

vectors such that γ(n) → γ in Rk. Of course, it is not assumed that the γ(n) are
rationally independent. Write θ(n)

t (φ1, . . . , φk) = (φ1 + γ
(n)
1 t, . . . , φk + γ

(n)
k t) for

the corresponding Kronecker flow with n = 1, 2, 3, . . ..
Now let

P =
{
p ∈ F : p(t, x) = F (θt(φ), x) for some φ ∈ Tk

}
,

P (n) =
{
p ∈ F : p(t, x) = Fn(θ(n)

t (φ), x) for some φ ∈ Tk
}
, n ≥ 1.

These are all compact translation-invariant subsets of F . One can verify that
H(P (n), P ) → 0 as n → ∞; this is true even though the frequency vector
has been perturbed. Since condition (2.3) is satisfied by the family (5.1) for
all sufficiently large n, there are pullback attractors A(n) ⊂ Rd × P (n) for each
such n defined by the respective families of equations (5.1). Using the arguments
preceding Proposition 4.2, one has that H(A(n),A)→ 0 as n→∞, where A is
the pullback attractor defined by the equations

x′ = F (θt(φ), x), φ ∈ Tk.

Let us now use this example to illustrate how information can be obtained
concerning convergence of pullback attractors under digitization. Let the letters
F , Fn, Gn, γ(n) have the significance attributed to them above. Suppose we are
given a digitization scheme satisfying the conditions I)–IV) of Section 3.

Let P = {p ∈ G : p(t, x) = F (θt(φ), x) for some φ ∈ Tk}; thus P is the same
as before except that now it is viewed as a subset of G. Let {δn} be a sequence
of positive numbers which converges to zero. For each φ ∈ Tk, let p(n)

φ be the
δn-digitization of the time-varying vector field (t, x)→ Fn(φ+ γ(n)t, x).

Now, for large n, each p(n)
φ (φ in Tk) satisfies condition (2.3), so the pullback

attractor A(n)
φ defined by the equation x′ = p

(n)
φ (t, x) is contained in BR. Let

A ⊂ Rd×P be the global pullback attractor defined by the family of equations
(1.2). Each p ∈ P corresponds to (at least) one point φ ∈ Tk. Let us write
p = pφ if p corresponds to φ, then write Aφ instead of Ap for the fiber of A at
p. Each fiber Aφ is a singleton subset of Rd.

Finally, arguing as in Section 3, we can show that H(A(n)
φ , Aφ) → 0 as

n→∞. In fact, the convergence here is uniform with respect to φ ∈ Tk.
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