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Stabilization of linear continuous time-varying

systems with state delays in Hilbert spaces ∗

Vu Ngoc Phat

Abstract

This paper studies the stabilization of the infinite-dimensional linear
time-varying system with state delays

ẋ = A(t)x+A1(t)x(t− h) +B(t)u .

The operator A(t) is assumed to be the generator of a strong evolution
operator. In contrast to the previous results, the stabilizability conditions
are obtained via solving a Riccati differential equation and do not involve
any stability property of the evolution operator. Our conditions are easy
to construct and to verify. We provide a step-by-step procedure for finding
feedback controllers and state stability conditions for some linear delay
control systems with nonlinear perturbations.

1 Introduction

Consider a linear control system with state delays

ẋ(t) = A(t)x(t) +A1(t)x(t− h) +B(t)u(t), t ≥ t0,
x(t) = φ(t), t ∈ [−h, t0],

(1.1)

where x ∈ X is the state, u ∈ U is the control, h ≥ 0. The stabilizability
question consists on finding a feedback control u(t) = K(t)x(t) for keeping the
closed-loop system

ẋ(t) = [A(t) +B(t)K(t)]x(t) +A1(t)x(t− h)

asymptotically stable in the Lyapunov sense. In the qualitative theory of dy-
namical systems, the stabilizability is one of the most important properties of
the systems and has attracted the attention of many researchers; see for ex-
ample [1, 7, 10, 16, 17, 21] and references therein. It is well known that the
main technique for solving stabilizability for control systems is the Lyapunov
function method, but finding Lyapunov functions is still a difficult task (see,
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e.g. [3, 13, 15, 19, 20, 22]). However, for linear control system (1.1), the system
can be made exponentially stabilizable if the underlying system ẋ(t) = A(t)x(t)
is asymptotically stable. In other words, if the evolution operator E(t, s) gen-
erated by A(t) is stable, then the delay control system (1.1) is asymptotically
stabilizable under appropriate conditions on A1(t) (see [1, 17, 22]). For infinite-
dimensional control systems, the investigation of stabilizability is more compli-
cated and requires sophisticated techniques from semigroup theory. The difficul-
ties increase to the same extent as passing from time-invariant to time-varying
systems. Some results have been given in [2, 4, 9, 17] for time-invariant systems
in Hilbert spaces.

This paper considers linear abstract control systems with both time-varying
and time-delayed states and the object is to find stabilizability conditions based
on the global controllability of undelayed control system [A(t), B(t)]. In contrast
to [1, 17, 19], the stabilizability conditions obtained in this paper are derived by
solving Riccati differential equations and do not involve any stability assumption
on the evolution operator E(t, s). New sufficient conditions for the stabilizability
of a class of linear systems with nonlinear delay perturbations in Hilbert spaces
are also established. The main results of the paper are further generalizations
to infinite-dimensional case and can be regarded as extensions of the results of
[7, 12, 14, 21].

The paper is organized as follows. In Section 2 we give the notation, and
definitions to be used in this paper. Auxiliary propositions are given in Section
3. Sufficient conditions for the stabilizability are presented in Section 4.

2 Notation and definitions

We will use the following notation: R+ denotes the set of all non-negative real
numbers. X denotes a Hilbert space with the norm ‖.‖X and the inner product
〈., .〉X , etc. L(X) (respectively, L(X,Y )) denotes the Banach space of all linear
bounded operators S mapping X into X (respectively, X into Y ) endowed with
the norm

‖S‖ = sup{‖Sx‖ : x ∈ X, ‖x‖ ≤ 1}.

L2([t, s], X) denotes the set of all strongly measurable square integrable X-
valued functions on [t, s]. D(A), Im(A), A∗ and A−1 denote the domain, the
image, the adjoint and the inverse of the operator A, respectively. If A is
a matrix, then AT denotes the conjugate transpose of A. B1 = {x ∈ X :
‖x‖ = 1}. clM denotes the closure of a set M ; I denotes the identity operator.
C[t,s],X denotes the set of all X-valued continuous functions on [t, s]. Let X,U
be Hilbert spaces. Consider a linear time-varying control undelayed system
[A(t), B(t)] given by

ẋ(t) = A(t)x(t) +B(t)u(t), t ≥ t0,
x(t0) = x0,

where x(t) ∈ X, u(t) ∈ U ; A(t) : X → X; B(t) ∈ L(U,X).
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In the sequel, we say that control u(t) is admissible if u(t) ∈ L2([t0,∞), U).
We make the following assumptions on the system (2.1):

(i) B(t) ∈ L(U,X) and B(.)u ∈ C[t0,∞),X for all u ∈ U .

(ii) The operator A(t) : D(A(t)) ⊂ X → X, clD(A(t)) = X is a bounded
function in t ∈ [t0,∞) and generates a strong evolution operator E(t, τ) :
{(t, τ) : t ≥ τ ≥ t0} → L(X) (see, e.g. [5, 6]):

E(t, t) = I, t ≥ t0, E(t, τ)E(τ, r) = E(t, r), ∀t ≥ τ ≥ r ≥ t0 ,

E(t, τ) is continuous in t and τ , E(t, t0)x = x+
∫ t
t0
E(t, τ)A(τ)xdτ , for all

x ∈ D(A(t)), so that the system (2.1), for every admissible control u(t)
has a unique solution given by

x(t) = E(t, t0)x0 +
∫ t

t0

E(t, τ)B(τ)u(τ)dτ.

Definition The system [A(t), B(t)] is called globally null-controllable in time
T > 0, if every state can be transferred to 0 in time T by some admissible
control u(t), i.e.,

ImU(T, t0) ⊂ LT (L2([t0, T ), U),

where LT =
∫ T
t0
E(T, s)B(s)ds.

Definition The system [A(t), B(t)] is called stabilizable if there exists an op-
erator function K(t) ∈ L(X,U) such that the zero solution of the closed loop
system ẋ = [A(t) +B(t)K(t)]x is asymptotically stable in the Lyapunov sense.

Following the setting in [2], we give a concept of the Riccati differential
equation in a Hilbert space. Consider a differential operator equation

Ṗ (t) +A∗(t)P (t) + P (t)A(t)− P (t)B(t)R−1B∗(t)P (t) +Q(t) = 0, (2.2)

where P (t), Q(t) ∈ L(X) and R > 0 is a constant operator.

Definition An operator P (t) ∈ L(X) is said to be a solution of the Riccati
differential equation (2.2) if for all t ≥ t0 and all x ∈ D(A(t)),

〈Ṗ x, x〉+ 〈PAx, x〉+ 〈Px,Ax〉 − 〈PBR−1B∗Px, x〉+ 〈Qx, x〉 = 0 .

An operator Q ∈ L(X) is said to be non-negative definite ,denote by Q ≥ 0, if
〈Qx, x〉 ≥ 0, for all x ∈ X. If for some c > 0, 〈Qx, x〉 > c‖x‖2 for all x ∈ X,
then Q is called positive definite and is denote by Q > 0. Operator Q ∈ L(X)
is called self-adjoint if Q = Q∗. The self-adjoint operator is characterized by
the fact that its inner product 〈Qx, x〉 takes only real values and its spectrum
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is a bounded closed set on the real axis. The least segment that contains the
spectrum is [λmin(Q), λmax(Q)], where

λmin(Q) = inf{〈Qx, x〉 : x ∈ B1},
λmax(Q) = sup{〈Qx, x〉 : x ∈ B1} = ‖Q‖.

We denote by BC([t,∞], X+) the set of all linear bounded self-adjoint non-
negative definite operators in L(X) that are continuous and bounded on [t,∞).

3 Auxiliary propositions

To prove the main results we need the following propositions.

Proposition 3.1 ([5]) If Q ∈ L(X) is a self-adjoint positive definite operator,
then λmin(Q) > 0 and

λmin(Q)‖x‖2 ≤ 〈Qx, x〉 ≤ λmax(Q)‖x‖2, ∀x ∈ X.

Proposition 3.2 ([2, 5]) The system [A(t), B(t)] is globally null-controllable
in time T > 0 if and only if one of the following conditions hold:

(i) There is a number c > 0 such that∫ T

t0

‖B∗(s)E∗(T, s)x‖2ds ≥ c‖E∗(T, t0)x‖2, ∀x ∈ X.

(ii) The operator
∫ T
t0
E(T, s)B(s)B∗(s)E∗(T, s)ds is positive definite.

Associated with control system [A(t), B(t)] we consider the cost functional

J(u) =
∫ ∞

0

[〈Ru(t), u(t)〉+ 〈Q(t)x(t), x(t)〉]dt, (3.1)

where R > 0, Q(t) ∈ BC([t0,∞), X+). The following proposition solves the
optimal quadratic problem (2.1)–(3.1).

Proposition 3.3 ([18]) Assume that the optimal quadratic problem (2.1)-(3.1)
is solved in the sense that for every initial state x0 there is an admissible control
u(t) such that the cost functional (3.1) exists and is finite. Then the Riccati
differential equation (2.2) has a solution P (t) ∈ BC([t0,∞), X+). Moreover,
the control u(t) is given in the feedback form

u(t) = −R−1B∗(t)P (t)x(t), t ≥ t0 (3.2)

minimizes functional (3.1).



EJDE–2001/67 Vu Ngoc Phat 5

For the finite-dimensional case, it is well known [12, 14] that if system [A,B]
is globally null-controllable then the control

u(t) = −BTP−1(T )x(t), T > t0,

where P (T ) > 0 is the solution of the Riccati equation

Ṗ (t) +AP (t) + P (t)AT + P (t)QP (t) +BR−1BT , P (t0) = 0,

for a matrix Q > 0, minimizes the cost functional (3.1). In the proposition
below, we extend this assertion to the infinite-dimensional case based on solving
an optimal quadratic control problem.

Proposition 3.4 If control system [A(t), B(t)] is globally null-controllable in
finite time, then for every operator Q(t) ∈ BC([t0,∞), X+), Riccati differential
equation (2.2) has a solution P (t) ∈ BC([t0,∞), X+) and the feedback control
(3.2) minimizes the cost functional (3.1).

Proof. Assume that the system is globally null-controllable in some T > t0.
Let us take operators R > 0, Q(t) ∈ BC([t0,∞), X+) and consider a linear
optimal quadratic control problem for the system [A(t), B(t)] with the cost
functional (3.1). Due to the global null-controllability, for every initial state
x0 ∈ X there is an admissible control u(t) ∈ L2([t0, T ], U) such that the solution
x(t) of the system, according to the control u(t), satisfies

x(t0) = x0, x(T ) = 0.

Let ux(t) denote an admissible control according to the solution x(t) of the
system. Define

ũ(t) = ux(t), t ∈ [t0, T ],
ũ(t) = 0, t > T.

If x̃(.) is the solution corresponding to ũx̃(.), then x̃(t) = 0 for all t > T .
Therefore, for every initial state x0, we have

J(u) =
∫ ∞
t0

[〈Q(s)x̃(s), x̃(s)〉+ 〈Rũx̃(s), ũx̃(s)]ds < +∞.

The assumption of Proposition 3.3 for the optimal quadratic problem (2.1), (3.1)
is satisfied and hence there is an operator function P (t) ∈ BC([t0,∞), X+),
which is a solution of the Riccati equation (2.2) and the control (3.2) minimizes
the cost functional (3.1). Proposition is proved. ♦

We conclude this section with a Lyapunov stability result on functional dif-
ferential equations. Consider a general functional differential equation of the
form

ẋ(t) = f(t, xt), t ≥ t0,
x(t) = φ(t), t ∈ [−h, t0],

(3.3)
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where φ(t) ∈ C[−h,t0],X , xt(s) = x(t+ s), −h ≤ s ≤ t0. Define

‖xt‖ = sup
s∈[−h,t0]

‖x(t+ s)‖.

Proposition 3.5 ([11]) Assume that there exist a function V (t, xt) : R+ ×
C([t0,−h])→ R+ and numbers c1 > 0, c2 > 0, c3 > 0 such that

(i) c1‖x(t)‖2 ≤ V (t, xt) ≤ c2‖xt‖2, for all t ≥ t0.

(ii) d
dtV (t, xt) ≤ −c3‖x(t)‖2, for all t ≥ t0.

Then the system (3.3) is asymptotically stable.

4 Stabilizability conditions

Consider the linear control delay system (1.1), where x(t) ∈ X, u(t) ∈ U ; X,U
are infinite-dimensional Hilbert spaces; A1(t) : X → X and A(t), B(t) satisfy
the assumptions stated in Section 2 so that the control system (1.1) has a unique
solution for every initial condition φ(t) ∈ C[0,∞),X and admissible control u(t).
Let

p = sup
t∈[t0,∞)

‖P (t)‖.

Theorem 4.1 Assume that for some self-adjoint constant positive definite op-
erator Q ∈ L(X), the Riccati differential equation (2.2), where R = I has a
solution P (t) ∈ BC([t0,∞), X+) such that

a1 := sup
t∈[t0,∞)

‖A1(t)‖ <
√
λmin(Q)

2p
. (4.1)

Then the control delay system (1.1) is stabilizable.

Proof. For simplicity of expression, let t0 = 0. Let 0 < Q ∈ L(X), P (t) ∈
BC([0,∞), X+) satisfy the Riccati equation (2.2), where R = I. Let

u(t) = K(t)x(t), (4.2)

where K(t) = − 1
2B
∗(t)P (t), t ≥ 0.

For some number α ∈ (0, 1) to be chosen later, we consider a Lyapunov
function, for the delay system (1.1),

V (t, xt) = 〈P (t)x(t), x(t)〉+ α

∫ t

t−h
〈Qx(s), x(s)〉ds.

Since Q > 0 and P (t) ∈ BC([0,∞), X+), it is easy to verify that

c1‖x(t)‖2 ≤ V (t, xt) ≤ c2‖xt‖2,
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for some positive constants c1, c2. On the other hand, taking the derivative of
V (t, xt) along the solution x(t) of the system, we have

V̇ (t, xt) =〈Ṗ (t)x(t), x(t)〉+ 2〈P (t)ẋ(t), x(t)〉
+ α[〈Qx(t), x(t)〉 − 〈Qx(t− h), x(t− h)〉].

(4.3)

Substituting the control (4.2) into (4.3) gives

V̇ (t, xt) = −(1− α)〈Qx(t), x(t)〉+ 2〈P (t)A1(t)x(t− h), x(t)〉
−α〈Qx(t− h), x(t− h)〉.

From Proposition 3.1 it follows that

λmin(Q)‖x‖2 ≤ 〈Qx, x〉 ≤ λmax(Q)‖x‖2, x ∈ X,

where λmin(Q) > 0. Therefore,

V̇ (t, xt) ≤ −λmin(Q)(1−α)‖x‖2 + 2pa1‖x(t−h)‖‖x(t)‖−λmin(Q)α‖x(t−h)‖2.

By completing the square, we obtain

2pa1‖x(t− h)‖‖x(t)‖ − λmin(Q)α‖x(t− h)‖2

= −
[√

αλmin(Q)‖x(t− h)‖ − pa1√
αλmin(Q)

‖x(t)‖
]2

+
p2a2

1

αλmin(Q)
‖x(t)‖2.

Therefore,

V̇ (t, xt) ≤ −λmin(Q)(1− α)‖x(t)‖2 +
p2a2

1

αλmin(Q)
‖x(t)‖2

= −
[
λmin(Q)(1− α)− 1

αλmin(Q)
p2a2

1

]
‖x(t)‖2.

Since the maximum value of α(1−α) in (0, 1) is attained at α = 1/2, from (4.1)
it follows that for some c3 > 0,

V̇ (t, xt) ≤ −c3‖x(t)‖2, ∀t ≥ t0.

The the present proof is complete by using Proposition 3.5. ♦
The following theorem shows that if the system [A(t), B(t)] is globally null-

controllable then the delay system (1.1) is stabilizable under an appropriate
condition on A1(t).

Theorem 4.2 Assume that [A(t), B(t)] is globally null-controllable in finite
time. Then the delay system (1.1) is stablizable if (4.1) holds, where Q(t) = I,
and P (t) satisfies the Riccati equation (2.2). Moreover, the feedback control is
given by

u(t) = −1
2
B∗(t)P (t)x(t), t ≥ 0.
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Proof. By assumption, the system [A(t), B(t)] is globally null-controllable in
some T > 0 time. This means that for every initial state x0 ∈ X there is an
admissible control u(t) ∈ L2([0, T ], U) such that the solution x(t) of the system
according to the control u(t) satisfies

x(0) = x0, x(T ) = 0.

Define an admissible control ũ(t), t ≥ 0 by

ũ(t) = u(t), t ∈ [0, T ],
ũ(t) = 0, t > T.

Denoting by x̃(t) the solution under to the control ũ(t), we have

J(ũ) =
∫ ∞

0

[‖ũ(t)‖2 + ‖x̃(t)‖2]dt

=
∫ T

0

[‖u(t)‖2 + ‖x(t)‖2]dt < +∞.

Therefore, by Proposition 3.4, there is P (t) ∈ BC([0,∞), X+) satisfying the
Riccati differential equation (2.2), where Q = R = I. Based on the condition
(4.1) the proof is completed by the same arguments used in the proof of Theorem
4.1, where we use the same feedback control operator K(t) and the Lyapunov
function V (t, xt).

Remark Note that when Q = I, then the condition (4.1) is replaced by the
condition

sup
t∈[0,∞)

‖A1(t)‖ < 1
2p
. (4.4)

Therefore, when the controllability problem of the linear control system is solv-
able, the following step-by-step procedure can be used to find the feedback
controller for system (1.1).
Step 1: Verify the controllability conditions by Proposition 3.1.
Step 2: Find a solution P (t) ∈ BC([t0,∞), X+) to the Riccati differential equa-
tion

Ṗ (t) +A∗(t)P (t) + P (t)A(t)− P (t)B(t)B∗(t)P (t) + I = 0 (4.5)

Step 3: Compute a1 = supt∈[0,∞){‖A(t)‖} and p = supt∈[0,∞){‖P (t)‖}.
Step 4: Verify the condition (4.4)
Step 5: The stabilizing controller is then defined by (4.2).

In the same way, Theorem 4.2 can be extended to the system with multiple
delays

ẋ(t) = A(t)x(t) +
r∑
i=1

Ai(t)x(t− hi) +B(t)u(t), t ≥ t0,

x(t) = φ(t), t ∈ [−hr, t0],

(4.6)

where Ai(t) ∈ L(X), 0 ≤ h1 ≤ · · · ≤ hr, r ≥ 1.
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Theorem 4.3 Let the control system [A(t), B(t)] be globally null-controllable in
some finite time. Assume that

r∑
i=1

sup
t∈[t0,∞)

‖Ai(t)‖2 <
2− r
4p2

.

Then the control delay system (4.6) is stabilizable.

The proof is similar to the proof of Theorem 4.2, with Q = I and

V (t, xt) = 〈P (t)x(t), x(t)〉+
1
2

r∑
i=1

∫ t

t−hi
‖x(s)‖2ds.

Remark It is worth noting that although the Lyapunov function method is
not used, the results obtained in [8, 9] give us explicit stabilizability conditions
under a dissipative assumption on the operator W (t) = A(t) + A1(t − h) +
B(t)K(t). In contrast to these conditions, our conditions are obtained via the
controllability assumption and the solution of Riccati differential equation (4.5)
and do not involve the stability of evolution operator E(t, s) or the dissipa-
tive property of the operator W (t), therefore they can be easily verified and
constructed.

As an application, we consider the stabilization of the nonlinear control
system in Hilbert spaces

ẋ(t) = A(t)x(t) +A1(t)x(t− h) +B(t)u(t) + f(t, x(t), x(t− h), u(t)),
t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],
(4.7)

where x ∈ X,u ∈ U and f(t, x, y, u) : [0,∞) × X × X × U → X is a given
nonlinear function. We recall that nonlinear control system (4.7) is stabilizable
by a feedback control u(t) = K(t)x(t), where K(t) ∈ L(X,U), if the closed-loop
system

ẋ = [A(t)x+K(t)B(t)]x+A1(t)x(t− h) + f(t, x, x(t− h),K(t)x),

is asymptotically stable. Stabilizability of nonlinear control systems has been
considered in [1, 14, 21] under the stability assumption on the evolution operator
E(t, s) and on the perturbation function f(t, .) that for all (t, x, y, u) ∈ [0,∞)×
X ×X × U ,

‖f(t, x, y, u)‖ ≤ a‖x‖+ b‖y‖+ c‖u‖ (4.8)

for some positive numbers a, b, c. In the following, in contrast to the mentioned
above results, we give stabilizability conditions for nonlinear control system (4.7)
via the global null-controllability of linear control system (2.1). Let

β = sup
t∈[0,+∞)

‖B(t)‖, a1 = sup
t∈[0,+∞)

‖A1(t)‖, p = sup
t∈[0,+∞)

‖P (t)‖.
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Theorem 4.4 Let the linear control system [A(t), B(t)] be globally null-control-
lable in finite time. Assume that a1 ≤ 1/(2p) and the condition (4.8) holds for
positive numbers a, b, c satisfying

a <
1− 4a2

1p
2

4p
, 2b2p2 + cβp2 + 4ba1p

2 <
1
2
− 2ap− 2a2

1p
2. (4.9)

Then the nonlinear control system (4.7) is stabilizable.

Proof. Since the system [A(t), B(t)] is globally null-controllable in finite time,
by Proposition 3.4, for Q = I there is an operator P (t) ∈ BC([0,∞), X+)
satisfying the Riccati equation (4.5). Let us consider the Lyapunov function

V (t, xt) = 〈P (t)x(t), x(t)〉+
1
2

∫ t

t−h
‖x(s)‖2ds

for the nonlinear control system (4.7). Taking the derivative of V (t, xt) along
the solution x(t) we have

d

dt
V (t, xt)) = 〈Ṗ (t)x(t), x(t)〉+ 2〈P (t)ẋ(t), x(t)〉+

1
2

(‖x(t)‖2 − ‖x(t− h)‖2)

≤ −1
2
‖x(t)‖2 + 2〈P (t)f(x(t), x(t− h), u(t)), x(t)〉

+2〈P (t)A1(t)x(t− h), x(t)〉 − 1
2
‖x(t− h)‖2. (4.10)

Substituting the control u(t) = − 1
2B
∗(t)P (t)x(t) in (4.10) gives

d

dt
V (t, xt) ≤ −1

2
‖x(t)‖2 + 2p

[
a‖x(t)‖+ b‖x(t− h)‖+

c

2
pβ‖x(t)‖

]
‖x(t)‖

+2pa1‖x(t− h)‖‖x(t)‖ − 1
2
‖x(t− h)‖2

≤ (−1
2

+ 2ap+ cβp2)‖x‖2 + 2p〈(b+ a1)‖x(t− h)‖‖x(t)‖

−1
2
‖x(t− h)‖2

≤ −
[1

2
− 2ap− cβp2 − 2(b+ a1)2p2

]
‖x(t)‖2.

Therefore, from condition (4.9) it follows that there is a number c3 > 0 such
that

d

dt
V (t, x(t)) ≤ −c3‖x(t)‖2, ∀t ≥ 0.

The proof is then completed by using Proposition 3.5. ♦
Reasoning as above, Theorem 4.4 can be extended to nonlinear systems with
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multiple delays. For the system

ẋ(t) = A(t)x(t) +
r∑
i=1

Ai(t)x(t− hi) +B(t)u(t)

+f(t, x(t), x(t− h1), ..., x(t− hi), u(t)), t ≥ 0,
x(t) = φ(t), t ∈ [hr, 0],

where the nonlinear perturbation satisfies the condition

‖f(t, x, y1, . . . , yr, u)‖ ≤ a‖x‖+
r∑
i=1

bi‖yi‖+ c‖u‖

for all (t, x, y, u) ∈ [0,∞)×X×Xr×U , the Lyapunov function will be replaced
with

V (t, xt) = 〈P (t)x(t), x(t)〉+
1
2

r∑
i=1

∫ t

t−hi
‖x(s)‖2ds.
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