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SOLUTIONS OF BOUNDARY-VALUE PROBLEMS IN
DISCRETIZED VOLUMES

MIHÁLY MAKAI & YURI ORECHWA

Abstract. The solution of a boundary-value problem in a volume discretized
by finitely many copies of a tile is obtained via a Green’s function. The al-
gorithm for constructing the solution exploits results from graph and group

theory. This technique produces integral equations on the internal and exter-
nal boundaries of the volume and demonstrates that two permutation matrices
characterize the symmetries of the volume. We determine the number of lin-

early independent solutions required over the tile and the conditions needed
for two boundary-value problems to be isospectral. Our method applies group

theoretical considerations to asymmetric volumes.

1. Introduction

The application of symmetry arguments to the solution of physical and mathe-
matical problems has a long and fruitful tradition. The development of mathemat-
ical machinery in the form of group and graph theory gave particular impetus to
their application, in particular, in modern physics. The advent of computers and
the parallel flowering of numerical methods have not yet exploited group theoretical
principles to the same extent. The development of nuclear power in the latter half
of the last century required the solution of large multidimensional boundary-value
problems of neutron transport which quickly taxed each advance in computational
power. Early on the possibility of systematically exploiting the symmetries inher-
ent in a nuclear reactor core using group theory were pointed out by Goldsmith
(1963) and Theophilou and Tsilimigras (1969); application to the finite element
formulation of boundary-value problems by Fässler (1976); applications to reac-
tor control by Nieva and Christensen (1977); the numerical formulation, viability
and the superior performance of a computer code for routine industrial application
was demonstrated for the solution of the neutron diffusion equation Makai,(1980),
Makai and Arkuszewski (1981); the application to the response matrix method
Makai (1984); the explanation for the convergence of routinely applied iterative
schemes Makai and Orechwa (1999) the domain decomposition for parallel applica-
tions Makai and Orechwa (1997); the optimization of sensor response in symmetric
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volumes Makai and Orechwa (2000). Independently and somewhat later there ap-
peared in the literature similar approaches in the context of model problems, see
Allgower, Böhmer, Georg and Miranda (1992) and subsequent publications.

The success demonstrated by these implementations has given impetus to a
search for possible further applications of group theoretic results to the numerical
solution of boundary-value problems. In particular, we seek the solution of an
elliptic equation in a volume V which is obtained by gluing together copies of a
given tile t. (Although only planar shapes are considered here, we shall use the
term volume, with an eye on those problems in physics which are modeled as
homogeneous and infinite in extent in the additional dimension.) The objective is
to combine the language of numerical analysis with that of modern algebra through
group and graph theory to boundary value problems on finite lattices.

To motivate the approach we can keep in mind two typical problems– one phys-
ical, the other mathematical– which have a common formulation.

(1) Determine the energy-band structure in a microscopic sample which con-
tains a few Wigner-Seitz cells. This requires the solution of the Schrödinger
equation in a finite region which consists of a finite number of cells. A sim-
ilar problem arises in the determination of the neutron distribution in a
finite periodic fuel lattice in a nuclear reactor.

(2) For the solution to a boundary-value problem with an elliptic operator in
a finite volume, one possible algorithm divides the volume into congruent
subvolumes (discretization). The solution is obtained iteratively from an
initial guess by taking one subvolume with given boundary conditions and
solving the equation in the subvolume; the solution inside the volume is
expressed with the help of the solution on the boundaries then we pass
on to the next subvolume. This type of numerical problem is encountered
quite frequently.

In the solution of a linear elliptic equation over a structure V, which consists of a
repetition of a tile t, we can exploit translational symmetry. In an infinite lattice,
for example, the solution is usually expanded in terms of the eigenfunctions of the
translation operator. In certain finite volumes, with Dirichlet boundary conditions,
the image pile concept of Weinberg and Schweinler (1948) applies.

Assume that V = G\t: that is, the orbit of t under group G is just V. Then, if G
commutes with operator A of the boundary value problem (to be defined later), we
can reduce the solution procedure from V to t. Sunada (1985) and Brooks (1988)
have given a method for deriving G by means of the fundamental groups π1(t) and
π1(V). When t is not simply connected, G is the quotient of the fundamental group
of t and V. When t is simply connected, Gordon, Webb, Wolpert (1992) made the
case tractable.

An issue of interest and of practical consequence is the existence of equispectral
volumes. When such volumes exist, the solids have the same spectrum, and the
solutions over two discretized volumes can be transformed into each other. Thus,
for a numerical solution we can choose the equispectral volume which is easiest
to solve. Sunada (1985), Brooks (1988) and Buser (1988) have given a systematic
method, based on group theory, for finding equispectral volumes.

Our first task is to find a formalism which accommodates some of the basic alge-
braic terms (e.g. covering group, connectivity matrix) in the numerical algorithms
for the solution of boundary-value problems.
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The Green’s function of the tile is used to build a formal solution to the boundary
value problem. We then exploit graph properties to show that an automorphism
of a discretized volume can be described by two permutations. The first permutes
nodes, while the second permutes node boundaries. The formal solution is expressed
in terms of the solution along node boundaries. These functions can be determined
iteratively from (3.11). In problems with Dirichlet boundary conditions the solution
vanishes on external node boundaries; and thus, the number of unknowns is smaller.
The formalism gives the number of linearly independent solutions over a node. In
Section 5, we apply this approach to specific problems: In the first, we show that
”collective modes” may exist; (i.e. there are situations where functions over two
or more nodes together form a set of node functions in such a way that they are
transformed into each other when they are reflected through a common internal
boundary) the second example illustrates the usage of the covering group, wherein
the solution procedure is reduced to a tile; the third example is taken from Gordon
et al. (1992) and demonstrates the covering group for a non-trivial shape. Section
6 addresses isospectral volumes. Assume that connectivity matrices (see Section 3)
C1 of volume V1 and C2 of volume V2 are equivalent so that C2 = TC1T−1 and the
edge connectivity patterns described by the block matrices of the geometry matrix
in Section 3 are the same for V1 and V2. Then, the solution of a suitable boundary-
value problem over the constituents of V1 is a linear expression of the solutions over
the constituents of V2. Thus, by solving an algebraic problem (viz. that of finding
equivalent connectivity matrices) we can solve boundary-value problems (viz. if the
solution in V1 is known we can also get the solution in V2).

Our main results can be summarized as follows:

(1) Knowledge of the covering group may result in a reduced range where we
have to find the solution. To demonstrate this, we present Example 3.

(2) The amount of reduction depends on the structure of the covering group.
Existence of two-dimensional or higher representation tends to lessen the
reduction.

(3) If the geometry matrices of volumes V1 and V2 are similar, and the condi-
tions stipulated in Lemma 2 are met, V1 and V2 are isospectral.

(4) We show the solution of a homogeneous problem contains as many linearly
independent node functions (defined later) as there are internal boundaries
in the volume.

The matrices introduced in connection with the Green’s function, can be used
to formulate the necessary conditions for two discretized volumes to be isospectral.
The discretized volumes can be ordered into classes with the help of the conju-
gate classes of the associated node permutations. Construction of a computational
scheme based on these results may consist of these steps:

• find the symmetries of a discretized volume,
• find the covering group, and
• reduce the solution to a few tiles.



4 MIHÁLY MAKAI & YURI ORECHWA EJDE–2002/01

2. The Physical Problem

Let A be a linear, second order, elliptic operator with finite coefficients at every
point x. Consider the problem

AΦ(x) = λΦ(x) x ∈ V

BΦ(x) = 0 x ∈ ∂V,
(2.1)

where B is a linear expression of Φ and of the normal gradient ∂nΦ, where n is the
outward normal at x ∈ ∂V.

In vibration problems, for example, A is the Laplace-Beltrami operator, and
B ≡ 1. In solid-state physics, the Schrödinger equation is given with

A =
~

2

2m
∇2 − V (x)

as the Hamiltonian operator and B ≡ 1. Here V (x) is a given potential. In neutron
diffusion,

A = −〈D〉∇2 + Σ,

where 〈D〉 is a diagonal matrix, its entries are the diffusion constants in the energy
groups, Σ is a matrix describing the energy transfer processes. In the last example,
the dependent variable is a vector, Φ(x), called the neutron flux whose components
give the distributions of neutrons in energy. On internal boundaries the flux and
〈D〉∂nΦ(x) (i.e. the normal component of the current) must be continuous and
B ≡ 1.

Some of the above problems have a unique solution if the material properties
(potential, cross-sections) have reasonable values, Habetler and Martino (1961). If
the solution is unique, the solution may inherit the symmetries of V, see Kawohl
(1998). The present work focuses on the conditions and numerical exploitation of
the latter observation.

We address the following mathematical properties of the above physical prob-
lems. A symmetry of V can be described as the direct product of a permutation
of the nodes and a permutation of the sides of the node. By means of the Green’s
function of the tile (i.e. of the node), and knowledge of the solution along the edges
the complete solution is determined. The Green’s function of the tile determines
the dimension of the solution. The number of edges where the solution is not zero
limits the linearly independent function shapes over a tile. In Section 5, we apply
the above considerations and construct a group G such that the orbit of t under G
just covers V. In Section 6, we give a condition for two volumes to be isospectral.
The condition is formulated using the Green’s function of the tile. We show that
the isospectral volumes derived by Sunada (1988), Brooks (1988), Gordon et al.
(1992) satisfy the condition we have specified.

3. Group theoretic, geometric and analysis background

Below we outline the group theoretic background applied throughout the present
work; for group theory and geometry, we follow Stillwell (1993) and Babai (1995),
for the response matrix method, as a numerical method for solving boundary-value
problems, Weiss (1977).
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Group theoretic background.
• Generator. In combinatorial topology, groups are described in terms of

“generators” and “relations”. A generator is a letter ai, and has a formal
inverse a−1

i . A word w is any finite sequence

aε1i1a
ε2
i2
. . . aεkik

of generators or their inverses, so that each εj = ±1, where a+1
i denotes

ai. The product w1w2 of words w1 and w2 is the concatenation of the
corresponding sequences. The empty word is denoted by 1. A relation is
an equation r = 1 where r is a word. Words w and w′ are called equivalent
with respect to relations rj = 1 if w is convertible to w′ by a finite sequence
of operations of the following types:
(1) insertion or deletion of a subword rj ,
(2) insertion or deletion of a subword aia

−1
i or a−1

i ai.
• Finitely presented group. The structure 〈a1, a2, · · · : r1, r2, . . . 〉 of equiv-

alence classes of words in ai with respect to the relations rj , under the
product operation, is a group G. The expression 〈a1, a2, · · · : r1, r2, . . . 〉 is
called a presentation of G. G is finitely presented if it has a presentation
in which the sets {ai} and {rj} are finite.

• Representation by matrices. If G is a finite group, and Mg is a matrix, the
isomorphism g ↔Mg for all g ∈ G is called a matrix representation of G.
• Coset representation. If A is a subgroup of G the sets Ag = {ag : a ∈ A}

for g ∈ G are called right cosets of G modulo A. They constitute a partition
of G, called the right coset decomposition.
• Orbit. Let d be an object on which the action of elements of G has been

defined. A point e in the orbit of d under the group G is the point for which
a group element g of G exists such that ĝd = e, where ĝd is the object “g
applied to d”.
• Group action on functions. Let x denote the independent variables in the

problem under consideration. With a matrix representation acting on x,
the group action on a function f(x) is usually defined as gf(x) = f(g−1x).

Geometric background. The geometric notions applied throughout the present
work follow Stillwell (1993).

• Graph. A graph Γ is defined by its vertex set W and edge set E.
• Symmetries of a graph. In analogy to symmetries of volume V, we need the

symmetries (automorphisms) of a graph. The automorphisms of a graph
Γ = (W,E) are permutation pairs P, p, where P permutes the elements of
set W whereas p permutes elements of set E so that the incidence between
vertices and edges is preserved, see Babai (1995).
• Discretized volume. A discretized volume is created by the following oper-

ations. We start from a tile t, which is a suitable polygon. We can reflect t
along a side if the vertices of the new copy lie on the boundary of the first
tile, or entirely outside it. This gives a discretized volume consisting of two
copies of t. The procedure can be repeated whenever the vertices of the
new copy of the tile do not lie inside another already existing tile. We call
the copies subvolumes or nodes. In the discretized volume, Ek (k = 1,K)
denotes the set of edges, A subvolume Fmα (α = 1, nF ) stands for the sides
of node m. φm is the restriction of the solution Φ(x) to the m-th node. As



6 MIHÁLY MAKAI & YURI ORECHWA EJDE–2002/01

the nodes are congruent, we can map them into each other. Node m = 1
is considered as the reference and τm is an isometry from node m = 1 to
the m-th node. Such an isometry is the reflection of a node through a joint
boundary. With the consecutive application of that step, we can map any
node in V into a given node. We can define a linear transformation among
the φm’s as follows:

aiφi + ajφj = aiΦ ◦ τi + ajΦ ◦ τj .

We divide the edges as

E = Ei + Ee =
N⋃
m=1

Em =
N⋃
m=1

nF⋃
α=1

Fmα =
K⋃
k=1

Ek,

where Ei, Ee are the set of internal and external edges; Em is the set of
edges belonging to node m, and Fmα stands for edge α of node m. An
internal edge separates two nodes; an external edge lies on the external
boundary ∂V; Ek is the k-th edge in V.
• Connectivity matrix. The geometry of a discretized volume consisting of
N copies of t is characterized by a square matrix C called the connectivity
matrix of volume V. Cij = 1 if subvolumes i and j share an edge, 0
otherwise.
• Fundamental group.The product and inverse of closed curves is defined as

follows. The natural product of two curves p, q which begin at P is their
concatenation, the inverse p−1 of p will lie on top of p but with the opposite
orientation. The fundamental group is a group of equivalence classes of
closed paths in a discretized volume V.
• Covering group. If there is a group G, acting on a tile t and its orbit is V,
G is called covering group of V.

• Chromatic number. Like a geographic map, a discretized volume can also
be colored. The minimal number of colors needed to color V is called its
chromatic number.
• Quotient manifold. Let us consider a manifold X, on which the action of

elements of G is defined with x being equivalent to y if they lie in the same
orbit of G. Let X/G denote the set of equivalence classes, or, equivalently,
the set of orbits of G. The equivalence class can be identified with the orbit
of G passing through x. X/G is called quotient manifold.

Analysis and numerical background. In this Section, we outline the basic
notions of mathematical analysis applied throughout the present work.

• Function space. Throughout the present work, we are interested in func-
tions given in a finite region V. The space of functions continuous along
with its first derivatives is denoted by C1(V).

• Operator. An operator A is a map C1(V)→ C1(V).
• Boundary value problem (BVP). The boundary-value problem under con-

sideration is (2.1). We assume operators A,B to be linear. The boundary
value is prescribed on the boundary of V.
• Green’s function. With the help of the Green’s function G, the boundary-

value problem is transformed into an integral equation. In the sequel, we
consider BVP where the solution is prescribed on the boundary (Dirichlet
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type BVP). We assume the existence of the following Green’s function in
each node:

AGnode(x, x′) = λGnode(x, x′) x, x′ ∈ Vnode

BGnode(x, x′) = δ(x− x′) x ∈ Vnode, x
′ ∈ ∂Vnode.

(3.1)

Here δ is Dirac’s delta function. Since all the nodes are congruent, Gnode is
applicable to every node in V. This Green’s function, when x′ is restricted
to side α, is written as Gnodeα(x, x′). Then, the solution in any node m is
expressed in terms of this Green’s function as a sum of integrals over the
edges of the node as

φm(x) =
∑

Fmα∈E

∫
Fmα

Gnodeα(x, x′)qmα(x′)dx′. (3.2)

Here
qmα(x) = Φ(x) x ∈ Fmα. (3.3)

When x tends to the boundary of t, we have

lim
x→∂t

Gnodeα(x, x′) =
{
δ(x− x′) if x ∈ Fmα
0 otherwise. (3.4)

Thus,

lim
x→∂t

∫
Fmβ

Gnodeα(x, x′)qmβ(x′)dx′ =
∫
Fmβ

δαβδ(x− x′)qmβ(x′)dx′ = δαβqmβ(x),

(3.5)
were δ is the Kronecker symbol. The solution of the Dirichlet type BVP
takes the form

Φ(x) =
∫
x′∈∂V

G(x, x′)f(x′)dx′ (3.6)

where G(x, x′) is the Green’s function for volume V and f(x′) is a given
function on the boundary ∂V. The Green’s function possesses the following
properties:

– If OA = AO then G(Ox,Ox′) = G(x, x′), i.e. the symmetries of A
leave the Green’s function invariant;

– G(x, x′) -along with its first-order derivatives- is continuous for all x, x′

if x 6= x′ and neither x nor x′ lies on the boundary;
– G(x, x′) = G(x′, x) and G(x, x′) > 0 if x 6= x′.

• Geometry matrix. The geometry matrix H expresses the connection be-
tween the nodes in discretized volume V. The solution belongs to C1,
hence, the normal gradients are continuous at internal faces, which can be
expressed as H11 . . . H1N

...
. . .

...
HN1 . . . HNN


J1

...
JN

 = 0. (3.7)

The geometry matrix contains N blocks of order nF in each row. In a row
there are at most nF non-zero blocks. The element (α, β) in block Hmm′ is
1 if nodes m and m′ are adjacent along side α of node m and side β of node
m′. The blocks on the diagonal are diagonal matrices of order nF . Element
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(Hmm)α = 1 if side α of node m is internal and (Hmm)α = 0 if side α of
node m is external. The vectors Jmβ(x) are defined in the following.

• Reformulation of BVP. Using the above Green’s function, the boundary
value problem is reformulated. In the context of the response matrix for-
malism, Weiss (1977), the normal gradient at face β of Vm is

Jmβ(x) = ∂nβΦ(x); x ∈ Fmβ . (3.8)

The gradient can then be expressed by the solution at the boundary as

Jmβ(x) =
∑
α∈Em

∫
Fmα

∂nβGnodeα(x, x′)qα(x′)dx′ =
∑
α∈Em

R(m)
βα q

(m)
α . (3.9)

Let face α separate nodes k+
α and k−α . The continuity of the normal gradient

is expressed by

Jk+
α

(x) =
∑

β∈E
k
+
α

R(k+
α )

αβ q
(k+
α )

β (x′) =

−Jk−α (x) =
∑

β∈E
k
−
α

R(k−α )
αβ q

(k−α )
β (x′).

This is a set of linear integral equations for the solutions on the boundaries.
A nontrivial solution exists only if the null space of the operator acting on
the ”q”s is not empty. This condition is met at certain values of λ, called
the eigenvalues of problem (2.1).

Let us collect the gradients at the faces of node m into a vector Jm =
(Jmα, α = 1, nF ). The continuity of the gradients at the Ni internal faces
takes the form (3.7), where N is the number of nodes in V. The matrix
in (3.7) is called a geometry matrix, Weiss (1977), and contains N blocks
of order nF in each row. As described above, in a row there are at most
nF non-zero blocks. The element (α, β) in block Hmm′ is 1 if nodes m and
m′ are adjacent along side α of node m and side β of node m′. The blocks
on the diagonal are diagonal matrices of order nF . Element (Hmm)α = 1
if side α of node m is internal and (Hmm)α = 0 if side α of node m is
external. Thus, the geometry matrix and the connectivity matrix of V are
related asH11 . . . H1N

...
. . .

...
HN1 . . . HNN

 = C×Hij +

E−P(1) 0
. . .

0 E−P(N)

 , (3.11)

where C is the connectivity matrix and the direct product (×) replaces 1 in
position mm′ by Hmm′ , E is the nF order identity matrix. The nF order
matrix P(m) projects out the external sides of node m. If edge α is on the
external boundary ∂V and it is in node m, then element (α, α) in block
Hmm specifies a linear relationship between the solution and its normal
gradient. Let constants a(k) and b(k) belong to the boundary condition at
edge Ek. We drop superscript k and characterize the general boundary
condition

aΦ(x) + b∂nΦ(x) = 0 (3.12)
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by a and b. Different edges may be characterized by different (a, b), which
may also depend on the position.

We collect solutions along the nF sides of node m into vector q
m

. Since
in node m the gradient is expressible by q

m
, and assuming that constants

a and b are the same in a given node, we getH11 . . . H1N

...
. . .

...
HN1 . . . HNN


R

(1) 0
. . .

0 R(N)


 q

1
...
q
N

 =

P(1)(b(1) ∗ R(1) + a(1)) 0
. . .

0 P(N)(b(N) ∗ R(N) + a(N))


 q

1
...
q
N

 . (3.13)

Here q
m

is the solution vector of nF components on the sides of node m.
In this equation, the external boundary condition has been implemented
as well. It should be noted that the left-hand side of (3.13) vanishes on
external boundaries, whereas the right hand side on internal boundaries.
When node m has at least one external boundary, the block Hmm on the
diagonal is an nF order diagonal matrix describing the boundary condition
at the boundaries of node m lying also on ∂V.

Equation (3.13) is the key to the solution of problem (2.1-3). Equa-
tion (3.13) is an integral equation, the unknowns to be determined being
q

1
(x), . . . , q

N
(x). The kernel is implicitly in the elements of R(1), . . . ,R(N)

and involves the gradients of the Green’s function. Equation (3.13) is a ho-
mogeneous problem: a nontrivial solution exists only when the null space
of the matrix is not empty. This is achieved by a suitable choice of the
eigenvalue λ in (3.1). Computer programs are available to solve (3.13),
see e.g. Dorning (1979). We introduce the following compact notation to
shorten (3.13):

HRq = Sq (3.14)

with obvious notation.
There are also numerical procedures to determine the largest eigenvalue

and the associated values of the solution at the boundaries. This is the
solution we are interested in; this solution is unique up to normalization.
Once the solution values at the boundaries are known, we can use (3.2) to
get the solution at arbitrary x in V. When the material composition is the
same in all the nodes, we have R(m) = R for m = 1, . . . , N .

4. Structure of the Solution to a BVP

We start with an analysis of the discretized volume V. The main question is to
determine when two apparently different discretized volumes are actually identical.
Definition 1. Let tile t have nF straight line sides. Let V be a volume composed
of N copies of a tile t, so that any two adjacent copies share a side of the tile.
Graph Γ is created in the following manner. N copies of t form the vertex set W
of the graph, and vertex i and j are connected by an edge of color α if tile i and j
share a side α of t. This graph is referred to as Γ(V, t).
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Definition 2. Two discretized volumes V and V′ are called equivalent, if there
exists a map i↔ i′ such that if nodes i1 and i2 in V share an edge of type α then
nodes i′1 and i′2 in V′ also share an edge of type α.

Figure 1. Square composed of 8 triangles

Figure 1 is an illustration for the introduced terms. There tile t is an isosceles
right triangle, the square volume V consists of 8 copies of t. Tile t has edges α, β, γ
but edge β is always on the external boundaries. There are 8 vertices and 8 edges in
Γ(V, t). Nodes 1 and 2 are connected by a γ type edge, nodes 2 and 3 are connected
by an α type edge. In this case the graph Γ(V, t) is closed.

Since the φm’s form a linear space, we can ask the ”dimension” of the solution.
In other words, we can ask the minimum number of functions over the tile with the
help of which we can build the solution of problem (1). Finally, exploiting the fact
that all the nodes can be mapped to t, we can define the dimension of a function
given on V.

Definition 3. Let Φ(x) be given for any x ∈ V. Let φm(x) denote the restriction
of Φ(x) to x ∈ Vm ⊂ V which we call node function and consider it as a function of
the position in tile t. Dim(Φ(x)) is the maximum number of linearly independent
node functions.

Given the above dimension of the solution, we can seek a relationship between the
solutions belonging to two problems, which are formulated with the same operators
A and B but for different volumes V1 and V2.

The first problem is to reduce the number of data to describe V. To this end
the following automorphisms are exploited in the reduction.

Definition 4. Operator O is called a symmetry of the boundary-value problem
(2.1-3) if (i), AO = OA (ii), BO = OB and (iii), O is invertible and maps V into
itself.

Lemma 4.1. Let O be a symmetry of problem (2.1). Then we can associate a
permutation P of the nodes and a permutation p of the nF node sides with O.

Proof: A symmetry maps V into itself, so it is an automorphism of Γ(V, t).
This ensures preservation of incidence relation between vertices and edges. Thus, a
general symmetry may have two effects: mapping nodes into nodes and permutation
of node faces as stated. 2
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Proposition 1. The permutation matrices, which preserve the adjacency relation
among node sides, form a group G. The elements of that group leave the matrix R
in (3.13) invariant.

Proof: Each element R(k) of block matrix R is a cyclic matrix Diaconis (1990),
its rows differ only in the element order. The permutations preserving adjacency
form a group because there is a unit transformation; they are closed for matrix
multiplication; matrix multiplication is associative, each matrix is invertible thus
each has an inverse. Hence, the permutations under consideration form group G.
R(k) is cyclic, thus its element Rij depends only on the adjacency of edges i and
j, which adjacency is untouched by elements of group G. 2

Proposition 2. A symmetry of (3.13) orders the nodes into cycles. The nodes in
one cycle are permuted among each other. For the node-side permutation p, when
the maximal orbit length is L, then pL = 1.

Proof: A symmetry maps a node into another node, this map is a permutation
of nodes. According to Lemma 4.1, a symmetry can be given by a permutation P
of nodes, actually P is a matrix of order N , and a node-side permutation p. The
permutation P can be ordered into cycles, the nodes in a cycle are permuted among
themselves. Applying a given symmetry as many times as the maximum cycle
length, we get the original node- and node-side numbering, i.e. we get the identity
transformation, thus, the associated side permutation matrix satisfies pL = 1 as
stated. 2

A corollary of Proposition 2 is that the length of an orbit in a node permutation
associated with a symmetry can not be longer than the maximum order of an
element in group G.

Unless otherwise stated, we consider Dirichlet problems: B ≡ 1, where the solu-
tion vanishes on the external boundaries and we deal only with internal boundaries.
The K non-zero boundary functions qk and the solutions φm in the N nodes are
collected into their respective vectors1:

q = (q1, . . . , qK)

~φ = (φ1, . . . φN ) .
(4.1)

Clearly,
~φ(x) =M(x, x′)q(x′), (4.2)

where operatorM has K columns and N rows. In a row,M may have at most nF
non-zero elements. M is also a matrix, its element Mmα is defined by

Mmα(x, x′) ∗ qα(x′) =
∫
Eα

Gnodeα(m)(x, x′)qα(x′)dx′. (4.3)

Here the notation α(m) refers to boundary type α in node m. The following
definition aims at separating a linear integral operator from the matrix. The latter
carries information on the structure of V, the former depends on the boundary
value to be solved.

1Note the formal difference between q and q. The former involves the solution as function

along the K internal faces, the latter consists of N vectors of length nF . The two vectors contain
the same information.
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Definition 5. We write the linear operator M(x, x′) as a product of a matrix in
which the elements may take the value 0 or 1, and a diagonal matrix, whose entries
are integral operators:

M(x, x′) = Q ∗ GK(x, x′), (4.4)

where Q is a K ×M matrix and GK is a diagonal matrix of order K, in the kth
row its entry is Gα(x, x′) provided that boundary k is of α type.

Proposition 3. dim(~φ) = rank(Q).

Proof: Because ~φ(x) is a linear expression (cf. Eqs. (4.2) and (4.4)) of the rows
in matrix Q, the statement follows. 2

When the solution to (2.1) is unique and O is a symmetry of (2.1) then O : q → q

and O : ~φ → ~φ. So a symmetry of problem (2.1)-(3) leaves the set of equations
determining the solution along boundaries invariant.

Let us return to the continuity of the normal gradients. Now the matrix in
(3.7) is a square matrix. To determine Dim(q), we note that if O is a symmetry
of V, then it transforms internal edges into internal edges and external edges into
external edges. The symmetries of V form a group G. Furthermore, the symmetries
of V permute edges among themselves. Symmetry transforms a vertex emanating
j edges into another vertex emanating j edges. If the symmetries of V commute
with operator A, a representation of the symmetry group is also an eigenspace of
A. If V0 = V/G then the solution in V0 fully describes a given representation.
Consequently, E/G fully describes the edges and q/G fully describes the internal
faces. Now, let

φ
0
(x) = φ(x)/G

q
0
(x) = q(x)/G,

so that the zero subscripted functions refer to nodes in V/G. We write (4.2) on
V/G as

φ
0
(x) =M0(x, x′)q(x′), x, x′ ∈ V/G. (4.5)

We have arrived at the following statement.

Proposition 4. Let G denote the symmetry group of V. Then, dim(~φ/G) =
rank(M0).

Since a symmetry of V permutes the internal edges, we can easily formulate how
to obtain a symmetry of V.

Proposition 5. Let O be a symmetry of problem (2.1). Assume that the solution
to problem (2.1) is unique. Then ORO−1 = R, OHO−1 = H and Oq = q.

Proof: According to Definition 4, item (i), O commutes with A, thus according
to the first property of the Green’s function OR = RO. By definition, O is an
automorphism of Γ(V, t) so adjacency and non-adjacency are preserved. Applying
O to (3.14) we get from Definition 4, item (ii): SO = OS and (O(HR)O−1O)q =
OSq = SOq. Since O is a symmetry, O~φ is also a solution but by the uniqueness
O~φ = ~φ and consequently Oq = q. Comparing the above equation to (3.14), and
using (O(HR)O−1) = (OHO−1)R we conclude OHO−1 = H as stated. 2
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5. Application of the Covering Group

Given V and t, we are seeking a group G such that the orbit of the group
elements applied to t is just V, i.e. V = G\t. We follow Buser’s recipe as given
in Buser et al. (1994). The permutation representation of G is obtained through
the following steps. If V consists of N copies of t, group G will be represented
by permutations on N letters. G is constructed by means of nF generators. We
enumerate the copies of t from 1 to N . We construct the first generator from
those copies that are adjacent along side α, say, (iα1, jα1), (iα2, jα2), . . . , (iαm, jαm)
make a = (iα1, jα1), (iα2, jα2), . . . , (iαm, jαm) The procedure is repeated for each
side, thus we obtain nF generators. G is the group generated by the nF generators.
That group permutates the N nodes among each other. Since most finite groups can
be presented on 2 generators, this representation is quite general. When nF is even,
we can reduce the number of generators by numbering the faces of t as (α, β, . . . )
along the first nF /2 sides and using the second nF /2 sides as ”conjugated” sides,
gluing side α to side α conjugated.

Example 1. If the covering group has two- or three-dimensional conjugate classes,
the corresponding irreducible representations contain collective modes to be deter-
mined over several nodes. In this example, t is an isosceles right triangle and V
consists of 8 copies of t. V is obtained with consecutive copies of t glued sequen-
tially along the hypotenuse (γ) and along another side (α), see Fig. 1. In this case
words can be written directly without resorting to a permutation representation.
The 8 copies of t are obtained by applying γ, αγ, γαγ, αγαγ, γαγαγ, αγαγαγ,
γαγαγαγ and the identity element. These 8 elements form a group isomorphic to
D4. There are 8 internal boundaries, so in the solution of a general boundary con-
dition problem we have 8 independent functions over t. The 8 functions are derived
from 4 functions over t, corresponding to even and odd functions along sides γ and
α. By means of the character table of group D4, any function f(x) given for x ∈ V
can be decomposed into irreducible components as

fi(x) =
∑
g∈D4

χ∗i (g) ∗ f(g−1x). (5.1)

Thus, the irreducible components of the solution in V along any side of type β
represent a linear combination of the boundary values along the 8 external faces of
the 8 copies of t that make up V.

In the case of a Dirichlet problem, we have to solve equation (2.1) over t with
the boundary condition solution being zero along sides β. In this case t = V/G
and t has 3 sides of which one is always an external boundary.

According to Proposition 3, Dim(~φ) = 8. Thus, the most general boundary
condition involves 8 linearly independent solutions in a tile t. There are four one
dimensional representations of the group D4, the corresponding solutions obey the
boundary conditions in Table 1.

We use the term reflective for normal gradient equals zero, and black for function
equals zero on the boundary. There are two, two-dimensional irreps, which are
determined for two attached copies of t; hence, these values are fixed at two α type
faces and at a γ type face, see Table 2.

Example 2. The covering group usually leads to a reduction in problem size. To
illustrate this, let us consider a square shaped tile and let V be composed of two
squares, see Fig. 2. The length of the side of the tile is a.
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Irrep Boundary condition at
side α side γ

A1 reflective reflective
A2 black black
B1 black reflective
B2 reflective black

Table 1. Boundary conditions for 1D Irreps of symmetries of Fig. 1

Irrep Boundary condition at
side α side γ side α

E1 black None reflective
E2 black None reflective
E3 reflective reflective black
E4 reflective black black

Table 2. Boundary conditions for 2D Irreps of symmetries of Fig. 1

Figure 2. V composed of two squares

Here node No. 2 can be obtained by a translation along the horizontal axis
from node No. 1, and V is obtained by mod2 addition. The covering group has
2 elements and is isomorphic to the inversion group. In contrast to the previous
example, here the group elements map an internal side into an external one (sides
β and δ) and vice versa. There is one internal side so in a Dirichlet problem the
solution is the same in the left and right squares. In the general case, we decompose
the prescribed value of the solution along the boundary into irreps of the covering
group and solve one boundary-value problem in one node for each irrep. Let us
consider the problem

∆Φ(x) +B2Φ(x) = 0, x ∈ V.

Its solution is Φ(x, y) = cos(µx)cos(νy) with µ2 + ν2 = B2.
Since the covering group is isomorphic to the inversion group, we decompose the

solution into irreducible representations of the covering group, i.e. into an even and
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Figure 3. V composed of 7 triangles

an odd component in x:

Φeven(x, y) = u0
cos(µx)

cos(µ ∗ a/2)
cos(νy)

Φodd(x, y) = u1
sin(µx)

sin(µa/2)
cos(νy).

If we choose

u0 = cos2(µ ∗ a/2)

u1 = sin2(µ ∗ a/2),

the even and odd solutions are exact. Thus, we have reduced the solution of the
problem to a fraction of V using the covering group.

Example 3. The covering group may introduce simplifications even in asymmetric
volumes. Notwithstanding, it is not trivial how to find the covering group even for
simple volumes. To demonstrate this, we present an example after Gordon et al.
(1992) and Buser et al. (1994). In Fig. 3, V is composed of 7 isosceles right
triangles. The edges of t are labeled as α, β, γ. Adjacent triangles are attached
along the appropriate edges, e.g. 7 and 3 share an α edge. As γ is always the
hypotenuse, and at an edge only two types of side are incident, the types of edges
are unique in Fig. 3. To find the covering group, we follow Buser (1988). We make
the map (α → a, β → b and γ → c). Since along side α we map nodes 7 and 3
into each other, as well as 6 and 2, the permutation representations of a, b and c
are readily available:

a = (7, 3)(6, 2)

b = (2, 4)(3, 5)

c = (5, 6)(1, 2).

Group G, generated by a, b, and c has 168 elements (in group theoretic cal-
culations the GAP program was used, see GAP (1995)), and G is isomorphic to
SL(3, 2) and PSL(2, 7). Let the subgroup A = Stabilizer(G, 1) be the stabilizer of
subvolume 1, that subgroup has 24 elements. A coset representation of G is

G = ∪7
i=1Gi = ∪7

i=1A ∗ ui
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where

u1 = () u2 = (1, 2)(5, 6)

u3 = (1, 3, 2)(5, 6, 7) u4 = (1, 4, 2)(3, 5, 6)

u5 = (1, 5, 7, 6, 3, 4, 2) u6 = (1, 6, 3, 7, 5, 4, 2)

u7 = (1, 7, 4, 2)(3, 6).

The ui elements are transformed under the generators a, b and c into some Lj if
ui ∗ s ∈ Gj for some j; and s is a generator of G. In the following table, indices j
of ui ∗ s ∈ Gj are given for s = a, b and c and i = 1, . . . , 7: which corresponds to
Fig. 3. Gordon, et al. (1992) have shown that Fig. 3 can also be considered as a
Cayley graph of G.

i ui ∗ a ui ∗ b ui ∗ c
1 1 1 2
2 6 4 1
3 7 5 3
4 4 2 4
5 5 3 6
6 2 6 5
7 3 7 7

Table 3. Coset indices for products ui ∗ s, for s = a, b, c

6. Isospectral Plane Manifolds

Further computational applications of isospectral, simply connected manifolds,
depend on the ability to generate such manifolds. Based on the relationship between
the connectivity matrix and the geometry matrix, we show that if V1 and V2 are
volumes with respective equivalent geometry matrices C1 and C2, then the solutions
of (2.1) on the boundaries are also equivalent. The statement is formulated in
Lemma 6.1.

Lemma 6.1. Let volumes V1 and V2 be such that (a) Each consists of N copies of
tile t. There are the same number of copies of t in V1 and V2 which are filled with
the same material. (b) The associated geometry matrices take the form H1 = C1×
Hij +S1 and H2 = C2×Hij +S2 , where C1 and C2 are the connectivity matrices
of order N , and Hij are the edge connection matrices of order nF introduced in
connection with (3.13). Si, i = 1, 2 refer to the external boundary, they are diagonal
block matrices of order N , the order of each block being nF . (c) Let C2 = TC1T−1

, and R2 = TR1T−1, where matrix T is of order N . (d) As to the external
boundaries, we assume TS1 = S2T. Then, from

H1R1q1 = S1q1 (6.1)

and
H2R2 (q2) = S2 (q2) (6.2)

it follows that q2 = Tq1.
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Proof: From conditions (a), (b), (c) and (d), the geometry matrices are equiva-
lent: H2 = TH1T−1 and because of condition (a), the following relationship holds
for the response matrices: R2 = TR1T−1. Now, multiplying (6.1) by T we get

TH1T−1TR1(T−1T)q1 = TS1q1 = S2Tq1, (6.3)

where, in the last equation we have used condition (d). By means of the relation-
ships between the geometry matrices and the response matrices of V1 and V2, the
above equation becomes H2R2Tq1 = S2Tq1, from which we get q2 = Tq1 as
stated. 2

According to Lemma 6.1, two volumes are equivalent if their connectivity ma-
trices are similar and the geometry matrices contain the same blocks. This means
that the nodes in V1 should match the nodes in V2 with regard to the external and
internal faces. Such volume pairs are generated by group theoretic means Buser
(1988), Brooks (1988), Gordon et al. (1992). In such volume pairs, the solutions
on every boundary of V1 will be a linear combination of the boundary fluxes of V2.
Because of (4.2), this implies that the node functions in V1 are linear expressions
of the node functions in V2. In a number of applications, it suffices to show that
the dominant eigenvalues are the same for some volumes V1 and V2 and the asso-
ciated eigenfunctions can be transformed into each other. If we know the solutions
in V1 and V2 and there is a matrix transforming one solution into the other, the
geometry- and response matrices of V1 and V2 are also related.
Lemma 6.2. Let us consider two volumes, V1 and V2, each consisting of N copies
of a tile t. Let V1 and V2 have the same number of internal and external faces. If
the eigenvalue problem (3.13) leads to

HiRiqi = Siqi, i = 1, 2 (6.4)

let the following relations hold between the solutions φ
1

and φ
2
:

φ
1
(x) = Uφ

2
(x), (6.5)

where U is invertible, furthermore,

S1Uq2 = VS2q2 (6.6)

where V is invertible, then the eigenvalues of problem (3.13) are the same on V1

and V2 and the geometry- and response matrices of the two problems are similar:
VH2 = H1U and R1U = UR2.

Proof: First, from (6.5) letting x tend to the boundary of t we get q1 = Uq2.
Substituting this into (6.4) with i = 1 we get H1R1Uq2 = S1Uq2. Now using
(6.6), we obtain

V−1H1R1Uq2 = S2Uq2. (6.7)

From this, we see

V−1H1UU−1R1Uq2 = (V−1H1U)(U−1R1U)q2 = H2R2q2, (6.8)

with the correspondence H2 = V−1H1U and R2 = UR1U−1, as stated. 2

Sunada (1985), Brooks (1988) and Gordon et al. (1992) have introduced a
systematic way of finding isospectral shapes.
Definition 6. Let G be a finite group, and let G1 and G2 be subgroups of G.
Then, (G,G1, G2) is a Sunada triple if the left R[G]-modules R[G/G1] and R[G/G2]
determined by the G-sets G/G1 and G/G2 are orthogonally isomorphic, where the
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inner products are those for which G/G1 and G/G2 are orthogonal bases. Gordon
et al. (1992).

The Sunada condition is equivalent to the assertion that G1 and G2 are almost
conjugate subgroups of G, i.e., there is a bijection of G1 with G2 carrying every
element ξ ∈ G1 to a conjugate element gξg−1 ∈ G2, where the conjugating element
g may depend upon ξ.
Theorem 6.3. (Sunada) Let M be a compact Riemannian manifold, G a finite
group acting on M by isometries. Suppose that (G,G1, G2) is a Sunada triple, and
that G1 and G2 act freely on M. Then the quotient manifolds M1 = G1\M and
M2 = G2\M are isospectral.

Based on a proof Berard (1992) of the Sunada theorem, the requirement that
G1 and G2 act freely, can be removed.
Theorem 6.4 (Berard). Let M be a compact Riemannian manifold upon which
a finite group G acts by isometries. Suppose that (G,G1, G2) is a Sunada triple.
Then the quotient orbifolds O1 = G1\M and O2 = G2\M are isospectral. If M
has a boundary, then O1 and O2 are isospectral both with Dirichlet and Neumann
boundary conditions.

We have to show that O1 and O2 satisfy the conditions postulated in Lemma
6.2. O1 and O2 consist of the same number of copies of tile t, they have the same
number of external faces because there is a one-to-one relationship between the
elements of G1 and G2. The R[G] modules allow the construction of matrix U.

7. Concluding Remarks

We have dealt with the solution of a linear elliptic equation in a finite volume
consisting of congruent nodes. In Section 4, we described the utilized basic concepts
and notations. The condition that the solution must be continuous along with its
first derivative gives an integral equation for the solution along the node boundaries.
The solution is given by means of the tile’s Green’s function. The M matrix
is factored into two components: the first component Q is a matrix, it contains
all information on the geometry of the investigated volume V and allows one to
establish the number of independent node functions in the solution. The second
component associates an integral operator to every boundary and depends only on
the equation to be solved. In Section 5, we dealt with examples.

Example 1 illustrates the existence of collective modes when the covering group
has a multidimensional irrep. A collective mode spreads over several nodes and its
components are transformed into each other under an element of the covering group.
A detailed investigation of the covering group in the context of Quantum Mechanics
may result in a systematic way of finding finite volumes in which the energy levels
of electrons are the same. In connection with Example 2, we demonstrated how
the covering group reduces the size of the problem. The asymmetric volume of
Example 3 also has a covering group, the numerical solution is reducible to a part
of the seven triangles.

In Section 6, we have formulated conditions for eigenvalue problems in volumes
V1 and V2 to be isospectral. If the response and geometry matrices meet the
stipulated conditions, the solutions of the two problems can be transformed into
each other. The postulated conditions are consistent with those of a few other
known isospectral problems.
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We presented a formulation of the boundary-value problem, which is applicable
in practice and capable of accommodating the connectivity matrix and the cov-
ering group. This facilitates combining group- and graph theory with numerical
methods. Graph- and group theory offers a means to make the investigation of
boundary value problems easier. The structure of the response matrix is similar to
the structure of the connectivity matrix, allowing us to find equivalent problems,
see Section 6. The covering group has made it possible to reduce the solution in
an asymmetric discretized volume. The structure of the covering group limits the
achievable reduction: The higher the dimension of the irreducible subspaces in-
duced by the covering group, the less reduction achieved. Thus, some of the group
theoretical techniques becomes applicable to asymmetric volumes, as in Section 6.
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[16] M. Makai (1984): Response matrix of Symmetric Nodes, Nucl. Sci. Eng. 86, 302–314
[17] M. Makai and J. Arkuszewski (1981): A Hexagonal Coarshe-Mesh Programme Based on

Symmetry Considerations, Trans. Am. Nucl. Soc. 38, 347–348

[18] M. Makai and Y. Orechwa (1999): Symmetries of boundary-value problems in mathematical
physics, J. Math. Phys. 40, 5247–5267

[19] M. Makai and Y. Orechwa (1997): Problem Decomposition and Domain Based Parallelism Via
Group Theoretic Principles, in: Proc. Int. Conf. on Mathematical Methods and Supercom-

puting for Nuclear Applications, American Nuclear Society, Saratoga (N.Y.), 2, 1444–1453

[20] R. Nieva and G. S. Christensen (1977): Symmetry Reduction of Reactor Systems, Nucl. Sci.
Eng. 64, 791–796
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