\documentclass[twoside]{article} \usepackage{amssymb,amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil nonlinear elliptic variational inequalities \hfil EJDE--2002/14} {EJDE--2002/14\hfil Luka Korkut, Mervan Pa\v si\'c, \& Darko \v Zubrini\'c \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 14, pp. 1--14. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A class of nonlinear \\ elliptic variational inequalities:\\ qualitative properties and existence of solutions % \thanks{ {\em Mathematics Subject Classifications:} 35J65, 35J85, 35B05. \hfil\break\indent {\em Key words:} variational inequalities, double obstacle, qualitative properties, \hfil\break\indent Schwarz symmetrization, generating singularities. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted December 15, 2001. Published February 9, 2002.} } \date{} % \author{Luka Korkut, Mervan Pa\v si\'c, \& Darko \v Zubrini\'c} \maketitle \begin{abstract} We study a class of nonlinear elliptic variational inequalities in divergence form. In the recent paper \cite{KPZ1}, we obtained results on the local control of essential infimum and supremum of solutions of quasilinear elliptic equations, and here we extend this point of view to the case of variational inequalities. It implies a new qualitative property of solutions in $W^{1,p}(\Omega )$ which we call ``jumping over the control obstacle.'' Using the Schwarz symmetrization technique, we give an existence and symmetrization theorems in $W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$ which agree completely with previous qualitative results. Also we consider generating singularities of weak solutions in $W^{1,p}(\Omega )$ of variational inequalities. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{prop}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Problem setting and main results} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$, $N\geq 1$, and $p\in (1,\infty)$. We are concerned with the following nonlinear elliptic double obstacle problem: Find $u\in W^{1,p}(\Omega)$ such that $\omega_1\leq u\leq \omega _2$ in $\Omega$ and \begin{equation}\label{osn} \int_{\Omega }a(x,u,\nabla u)\cdot\nabla (v-u)\,dx\geq \int_{\Omega } \bigl[f(x,u)+g(x,u)|\nabla u|^{p}\bigl](v-u)\,dx, \end{equation} for all $v\in W^{1,p}(\Omega )$ such that $v-u\in L^{\infty }(\Omega )$ and $\omega_1\leq v\leq \omega _2$ in $\Omega$. The obstacles $\omega_1$ and $\omega _2$ are two measurable functions without any global regularity, such that $\omega_1\leq \omega _2$ in $\Omega$. For any measurable set $A$ in $\mathbb{R}^N$ we say that a property holds ``in $A$'' if it holds in the a.e.\ sense. The leading term on the left-hand side is the Carath\'{e}odory vector function $a(x,\eta ,\xi)$ satisfying general structure conditions of Leray-Lions type, see (\ref{ll1})--(\ref{ll2}). The leading terms on the right-hand side are Carath\'{e}odory real functions $f(x,\eta )$ and $g(x,\eta )$ which will essentially influence the main results. In order to describe our main goals of this paper, we introduce an additional obstacle $\omega _{c}$, that we call control obstacle, which is taken to be a measurable real function defined on $\Omega$, satisfying the following natural condition relative to $\omega_1$ and $\omega _2$: \begin{equation}\label{oc} \omega_1\leq \omega _{c}\leq \omega _2\quad \mbox{in }\Omega\,. \end{equation} Furthermore, we assume that there exist two balls $B_{r}$ and $B_{\rho }$ in $\Omega$ such that $B_{2r}\subseteq \Omega $, $B_{2\rho }\subseteq \Omega $, $B_{2r}\cap B_{2\rho }=\emptyset$, \begin{equation}\label{mm} \begin{gathered} m_1={\mathop{\rm ess\,inf}}_{B_{2r}}\omega_1, \quad M_{c}={\mathop{\rm ess\,sup}}_{B_{2r}}\omega _{c}, \quad m_2={\mathop{\rm ess\,inf}}_{B_{2r}}\omega _2, \\ -\infty \omega _{c}(x)\}\big|\neq 0, \qquad \big|\{x\in \Omega :u(x)<\omega _{c}(x)\}\big|\neq 0\,, \end{equation} where $|A|$ denotes the Lebesgue measure of a subset $A$ of $\mathbb{R}^N$. Taking $B_{r}$, $B_{\rho }$, $m_1$, $M_1$, $m_{c}$, $M_{c}$, $m_2$ and $% M_2$ as in (\ref{oc})--(\ref{MM}), and $\alpha_0 $, $a_0(x)$, $a_1$, $a_2$ as in structure conditions (\ref{ll1})--(\ref{ll2}), we now impose two crucial sets of hypotheses. First those corresponding to ball $B_{2r}$: \begin{enumerate} \item[(H1)] $ g(x,\eta )\geq 0$ in $B_{2r}$, for all $\eta \in I_1=(m_1,M_{c})$ \item[(H2)] There exists $f_1\in L^{1}(B_{2r})$, such that $f(x,\eta )\geq f_1(x)$ in $B_{2r}$, for all $\eta \in I_1$, $f_1(x)\geq 0$ in $\ B_{2r}\setminus B_{r}$, and $$ \int_{B_{r}}f_1(x)\,dx>D_1\frac{m_2-m_1}{m_2-M_{c}}, $$ where $D_1=\overline{d}\int_{B_{2r}}[a_0(x)+a_1\widehat{m}^{p-1} ]^{p^{\prime}}\,dx+\bigl(\frac{p}{d}\bigl)^{p-1} \frac{(2^N-1)|B_{r}|}{r^{p}}$, \\ $\widehat{m}=\max \{ |m_1|,|M_{c}|\}$, $\overline{d}=\frac{\alpha_0 }{a_2^{p'}(m_2-m_1)}$, $d=\frac{p'}{2^{p'-1}}\overline{d}$. \end{enumerate} Now we impose the dual hypotheses corresponding to ball $B_{2\rho}$. \begin{enumerate} \item[(H3)] $g(x,\eta )\leq 0$ in $B_{2\rho }$, for all $\eta \in I_2=(m_{c},M_2)$ \item[(H4)] There exists $f_2\in L^{1}(B_{2\rho })$, such that $f(x,\eta )\leq f_2(x)$ in $B_{2\rho }$ for all $\eta \in I_2$, $f_2(x)\leq 0$ in $B_{2\rho }\setminus B_{\rho }$, $$\int_{B_{\rho }}f_2(x)\,dx<-D_2\frac{M_2-M_1}{m_{c}-M_1}, $$ where $D_2=\overline{d}\int_{B_{2\rho }}[a_0(x)+a_1\widehat{m} ^{p-1}]^{p'}\,dx+\bigl(\frac{p}{d}\bigl)^{p-1} \frac{(2^N-1)|B_{\rho}|}{\rho ^{p}}$, \\ $\widehat{m}=\max \{\ |m_{c}|,|M_2|\ \},$ $\overline{d}=\frac{\alpha_0 }{a_2^{p'}(M_2-M_1)}$, $d=\frac{p'}{2^{p'-1}}\overline{d}$, with $p'$ satisfying $1/p+1/p'=1$. \end{enumerate} Two complementary situations occur: the hypotheses (H1)--(H2) require that the function $f(x,\eta )$ be sufficiently large and positive in the strip $B_{2r}\times I_1$, and that $g(x,\eta )$ be non-negative in the same strip (respectively, the hypotheses (H3)--(H4) require that $f(x,\eta )$ be sufficiently large and negative in the strip $B_{2\rho}\times I_2$, and that $g(x,\eta )$ be non-positive in the strip). These conditions will imply, see Theorem~\ref{main}, that each solution $u$ of (\ref{osn}) satisfy \begin{equation}\label{ne} \big|\{x\in B_{2r} :u(x)>\omega _{c}(x)\}\big|\neq 0,\qquad \big|\{x\in B_{2\rho}:u(x)<\omega _{c}(x)\}\big| \neq 0\,, \end{equation} that is to say, there are two measurable sets $E_{r}\subseteq B_{2r}$ and $% E_{\rho }\subseteq B_{2\rho }$, $|E_{r}|\neq 0$, $|E_{\rho }|\neq 0$, satisfying $u(x)>\omega _{c}(x)$ for each $x\in E_{r}$ and $u(x)<\omega _{c}(x)$ for each $x\in E_{\rho }$. Since $B_{2r}\cap B_{2\rho }=\emptyset$, both pairs of hypotheses (H1)--(H2) and (H3)--(H4) are independent of each other, which allows us to combine them and derive the main result of this paper: \begin{theorem}[Jumping over the Control obstacle in $W^{1,p}(\Omega )$] \label{main} Under assumptions (\ref{oc})--(\ref{MM}), let the Carath\'eodory vector function $a(x,\eta ,\xi )$ satisfy: \begin{equation} \label{ll1} \exists \alpha_0 >0,\ a(x,\eta ,\xi )\cdot \xi \geq \alpha_0 |\xi |^{p}\quad \mbox{in }\Omega ,\ \eta \in \mathbb{R},\ \xi \in \mathbb{R}^N, \end{equation} \begin{equation}\label{ll2} \begin{gathered} \exists a_0=a_0(x)\geq 0,\quad a_0\in L^{p'}(\Omega ),\quad \exists a_1\geq 0,\quad \exists a_2>0,\\ |a(x,\eta ,\xi )|\leq a_0(x)+a_1|\eta |^{p-1}+a_2|\xi |^{p-1}\quad \mbox{in }\Omega ,\; \eta \in \mathbb{R},\; \xi \in\mathbb{R}^N. \end{gathered} \end{equation} If the Carath\'eodory functions $f(x,\eta )$ and $g(x,\eta)$ satisfy the hypotheses (H1)--(H4), then for each solution $u\in W^{1,p}(\Omega )$ of (\ref{osn}) satisfies (\ref{ne}). \end{theorem} To prove (\ref{ne}) we argue by contradiction. First we choose appropriate test functions in order to localize the balls in $\mathbb{R}^N$, then integrate over level sets of the form $\{u>t\}$ and $\{u0$ and $g_0\geq 0$ such that $|f(x,\eta )|\leq f_0$, $|g(x,\eta )|\leq g_0$, in $\Omega \times \mathbb{R}$, and \[ f_0^{p'-1}g_0<\Big(\frac{\alpha_0 NC_{N}^{1/N}}{2\mid \Omega \mid ^{1/N}}\Big)^{p'}\frac{p'}{N(p'+1)}. \] \end{enumerate} Then we have the following result on existence and symmetrization of solutions in $W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$). \begin{theorem} \label{thm2} Under the structure assumptions (\ref{oc})--(\ref{MM}) where $\omega_1\leq 0\leq \omega _2$ in $\Omega $ and $\omega_1,\omega _2\in L^{p}(\Omega )$, let the Carath\'eodory vector function $a(x,\eta ,\xi )$ satisfy the hypotheses (\ref{ll1}), (\ref{monoton}), and \begin{equation}\label{monoton} (a(x,\eta ,\xi )-a(x,\eta ,\xi ^{*}))\cdot (\xi -\xi ^{*})>0\quad \mbox{in }\Omega ,\; \eta \in \mathbb{R},\; \xi ,\xi^{*}\in \mathbb{R}^N, \;\xi\ne \xi ^{*}. \end{equation} Assume that Carath\'eodory functions $f(x,\eta )$ and $g(x,\eta )$ satisfy conditions (H1)--(H5). Then there exists a solution $u\in W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$ of (\ref{osn}) satisfying (\ref{Oc}). Moreover, \begin{equation}\label{sharp<} \begin{gathered} u^{\#}(x)\leq v^{\#}(x)=v(x)\quad \mbox{in } \Omega ^{\#}, \\ \|u\|_{L^{\infty }(\Omega )}\leq \|v\|_{L^{\infty }(\Omega ^{\#})} \quad \mbox{and}\quad \|\nabla u\|_{L^{p}(\Omega )}\leq \|\nabla v\|_{L^{p}(\Omega ^{\#})}, \end{gathered} \end{equation} where $u^{\#}$ is the Schwarz symmetrization of $u$, and $v$ is the unique solution of the symmetrized problem \begin{equation}\label{sharp=} \begin{gathered} -\mathop{\rm dvi}(\alpha_0 |\nabla v|^{p-2}\nabla v) =f_0+g_0|\nabla v|^{p} \quad \mbox{in } \Omega ^{\#}, \\ v\in W_0^{1,p}(\Omega ^{\#})\cap L^{\infty }(\Omega ^{\#}), \mbox{ $v$ is positive and spherically symetric.} \end{gathered} \end{equation} Here $\Omega ^{\#}$ is a ball in $\mathbb{R}^N$ centered at the origin, with the same volume as $\Omega$. \end{theorem} Applications of the Schwartz symmetrization to partial differential equations can be seen for instance in \cite{ALT,FP,Tal}, while applications to variational inequalities are treated in \cite{BMP,BM, FPR}. Let us mention that the additional condition (H5), that is to say, the ``smallness condition'' on the data $f(x,\eta )$ and $g(x,\eta )$ is used only sufficient for existence of a solution $v$ of the symmetrized equation (\ref{sharp=}). This problem is treated in detail in \cite{P3,KPZ3,Tu}. In contrast to the proof of qualitative property (\ref{ne}), the proof of existence result requires a more complicated procedure. Here we exploit the method of penalty functions as approximation step, and the method of Schwartz symmetrization of penalty equation in order to derive a priori estimates which are independent on the approximative process. This construction has already been announced in the recent paper \cite{P1}, but without proof and details. \paragraph{(iii)} The third type of results concerns the possibility to generate singularities of solutions in a given point. In particular, this enables to obtain nonexistence result for essentially bounded weak solutions. It will be convenient to define essential supremum $u^*$ and essential infimum $u_*$ of a measurable function $u\:\Omega\to\overline{\mathbb{R}}$ in the point $x_0\in\Omega$: \begin{equation} u^*(x_0)=\lim_{r\to0}{\mathop{\rm ess\,sup}}_{B_r(x_0)}u(x),\quad u_*(x_0)=\lim_{r\to0}{\mathop{\rm ess\,inf}}_{B_r(x_0)}u(x). \end{equation} We say that $u$ has singularity at $x_0$ if $u^*(x_0)=+\infty$. The following theorem shows that it is possible to generate a singularity of all solutions of variational problem (\ref{osn}) in a given point $x_0\in\Omega$. Of course, the upper obstacle $w_2$ also has to be singular in this point. \begin{theorem}\label{sing} {\rm(Generating singularities of solutions)} Assume that $a(x,\eta,\xi)$ satisfies conditions (\ref{ll1}) and (\ref{ll2}). Let there exist $x_0\in \Omega$ and $\beta\in\mathbb{R}$ such that: \begin{equation}\label{intBr} \int_{B_{r}}[a_0(x)+a_1 \widehat m^{p-1}]^{p'}dx=O(r^\beta),\quad as\,\, r\to0, \end{equation} where $B_r=B_r(x_0)$. Assume that there exist positive constants $\alpha$, $\gamma$, $R$, $C_1$, $C_2$, such that for a.e.\ $x\in B_R$ and $\eta\ge{\mathop{\rm ess\,inf}}_{B_R} \omega_1$, \begin{equation}\label{f} g(x,\eta)\ge0,\quad f(x,\eta)\ge\frac {C_1}{|x-x_0|^\gamma},\quad w_2(x)\ge\frac{C_2}{|x-x_0|^\alpha}. \end{equation} If \begin{equation}\label{ac} \alpha<\frac{\gamma-p}{p-1}, \end{equation} and \begin{equation}\label{beta} \alpha+\beta+\gamma> N, \end{equation} then any solution $u$ of problem (\ref{osn}) is singular at $x_0$, that is, $u^*(x_0)=\infty$. In particular, problem (\ref{osn}) has no solutions in $W^{1,p}(\Omega)\cap L^{\infty}(\Omega)$. \end{theorem} \paragraph{Remark} Note that conditions (\ref{f}), (\ref{ac}) and $\alpha>0$ imply that $p<\gamma0$, then condition (\ref{beta}) is fulfilled with $\beta=N$ or $\beta<\frac{\alpha+\gamma}p$ respectively. It is also possible to consider the case of $\alpha=(\gamma-1)/(p-1)$ in Theorem~\ref{sing}. Under simple additional conditions we can ensure that the solution will bump on the upper obstacle infinitely many times near its singular point $x_0$, that is, along an infinite sequence converging to $x_0$. \begin{theorem} [Bumping on the Upper Obstacle near the Singularity] \label{Bump} Assume that $a(x,\eta,\xi)=|\xi|^{p-2}\xi$, and let there exist positive constants $\alpha$, $\gamma$, $R$, $C_1$, $C_2$, such that for a.e.\ $x\in B_R$ and $\eta\ge {\mathop{\rm ess\,inf}}_{B_R(x_0)}\omega_1$, \begin{gather} g(x,\eta)\ge0,\quad f(x,\eta)\ge\frac {C_1}{|x-x_0|^\gamma},\\ \omega_2(x)\le C_2|x-x_0|^{-\alpha} \mbox{ a.e. on $B_R(x_0)$.}\label{o2} \end{gather} Let $\alpha<\frac{\gamma-p}{p-1}$ and let a solution $u$ of (\ref{osn}) and lower obstacle $w_1$ satisfy the condition \begin{gather} u_*(x)>w_1^*(x) \quad \mbox{for all } x\in B_R \mbox{ for some $R>0$,}\\ u(x)\ge 0\quad \mbox{a.e. on $B_R$,} \end{gather} Then for any $r>0$ there exists $x_r\in B_r(x_0)\setminus \{x_0\}$, such that \begin{equation} u^*(x_r)=w_{2*}(x_r). \end{equation} \end{theorem} \begin{theorem}[Pushing to the upper obstacle] \label{Pushing} Assume that $a(x,\eta,\xi)=|\xi|^{p-2}\xi$. Let $x_0$ be a given point in $\Omega$ such that $w_{2*}(x_0)<\infty$. Assume that $$ f(x,\eta)\ge C\cdot|x-x_0|^{-\gamma}\quad\mbox{for a.e. } x\in B_R=B_R(x_0),\; \eta\in (\overline m_1,\overline m_2), $$ where $\overline m_1={\mathop{\rm ess\,inf}}_{B_R} w_1$ and $\overline m_2={\mathop{\rm ess\,sup}}_{B_R}w_2$. If $p1$ and $r>0$ there exists a function $\Phi \in C_0^{\infty }(\mathbb{R}^N)$, $0\leq \Phi \leq 1$ in $\mathbb{R}^N$ such that \begin{equation}\label{local} \begin{gathered} \Phi (x)=1\quad\mbox{for }x\in B_{r}\quad\mbox{and} \quad \Phi (x)=0\quad\mbox{for }x\in \mathbb{R}^N\setminus B_{2r} \\ \Phi (x)>0\quad\mbox{for }x\in B_{2r}\quad\mbox{and}\quad |\nabla \Phi |\leq c_0/r\quad\mbox{in }\mathbb{R}^N\,. \end{gathered} \end{equation} Taking $B_{r}$, $m_1$, $M_{c}$ and $m_2$ such that conditions (\ref{oc})--(\ref{MM}) are satisfied, let us choose for any $c_0>1$ an appropriate test function $\varphi $ defined by \begin{equation}\label{test} \varphi =(u-t)^{-}\Phi ^{p}+u\quad\mbox{with }t\in (M_{c},m_2]\,. \end{equation} Here and in the sequel $u$ is a solution of (\ref{osn}) and $\eta ^{-}=\max \{0,-\eta \}$.\ The basic step it is to check that $\varphi$ has the properties \begin{equation}\label{uvjeti} \varphi \in W^{1,p}(\Omega ),\quad\varphi -u\in L^{\infty }(\Omega ),\quad\mbox{and}\quad \omega_1\leq \varphi \leq \omega _2\quad \mbox{in}\Omega \,. \end{equation} Arguing by contradiction, we assume that there holds the opposite of (\ref{ne}), say $|\{x\in B_{2r} :u>\omega _{c}\}|=0$. In other words, $u\leq \omega _{c}$ in $B_{2r}$. Remark that we already have $\omega_1\leq u$ in $\Omega$. Taking one-sided supremum and infimum over $B_{2r}$ in the previous two inequalities, we deduce: \begin{equation}\label{muM} m_1\leq u\leq M_{c}\quad\mbox{ \ \ in }B_{2r}\,. \end{equation} Since \[ \nabla (u-t)^{-}=\left\{ \begin{array}{ll} -\nabla u & \mbox{in }\{u0$, we obtain \begin{eqnarray} \label{0} 0&=&\big[\alpha_0 -a_2^{p'}\overline{d}(m_2-m_1)\big] \int_{B_{2r}}|\nabla u|^{p}\Phi ^{p}\,dx\nonumber\\ &\leq& \overline{d}\int_{B_{2r}}\bigl(a_0(x)+a_1|u|^{p-1}\bigl)^{p'}\Phi ^{p}(t-u)\,dx +\bigl(\frac{p}{d}\bigl)^{p-1}\int_{B_{2r}}|\nabla \Phi |^{p}(t-u)\,dx \nonumber\\ &&-\int_{B_{2r}}f(x,u)(t-u)\Phi ^{p}\,dx, \end{eqnarray} where the numbers $d$ and $\overline{d}$ are defined in (H2). Now we are in the position to exploit properties of the localization function $\Phi $ in (\ref{0}). First, since $f(x,\eta )\geq f_1(x)$ in $B_{2r}$ for all $\eta \in I_1$ (see $(H2)$), then using (\ref{local}) and (\ref{muM}) we derive \begin{eqnarray*} 0&\leq& (t-m_1)\overline{d}\int_{B_{2r}}[a_0(x)+a_1\widehat{m}% ^{p-1}]^{p'}\,dx\\ &&+(t-m_1)\bigl(\frac{p}{d}\bigl)^{p-1}|B_{2r}\setminus B_{r}|\bigl (\frac{c_0}{r}\bigl)^{p}-(t-M_{c})\int_{B_{r}}f_1(x)\,dx. \end{eqnarray*} Setting $s=t-M_{c}$, using $|B_{2r}\setminus B_{r}|=(2^N-1)|B_{r}|$, and passing to the limit as $c_0\to1$, we obtain \[ \int_{B_{r}}f_1(x)\,dx\leq D_1\frac{\bigl[s+(M_{c}-m_1)\bigl]}{s},\quad\mbox{ for all }s\in (0,m_2-M_{c}]. \] Since in the previous inequality the function appearing on the right-hand side is decreasing with respect to $s$, we can set $s=m_2-M_{c}$ to obtain \[ \int_{B_{r}}f_1(x)\,dx\leq D_1\frac{m_2-m_1}{m_2-M_{c}}. \] However, this contradicts (H2), and the theorem is proved. \hfill$\diamondsuit$ \paragraph{Sketch of the proof of Theorem \ref{thm2}} The penalty method is carried out in the following three steps (see for instance \cite{L} for the case of $Au=f\in V'$). Firstly, we associate to (\ref{osn}) an $\varepsilon$-problem, the so called penalty equation \begin{equation}\label{penal} \begin{gathered} -\mathop{\rm dvi}a(x,u_{\varepsilon },\nabla u_{\varepsilon }) +\frac{1}{\varepsilon }\beta (x,u_{\varepsilon }) =f(x,u_{\varepsilon})+g(x,u_{\varepsilon })|\nabla u_{\varepsilon }|^{p} \quad\mbox{in } D'(\Omega ), \\ u_{\varepsilon }\in W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega ), \end{gathered} \end{equation} where the penalty function $\beta (x,\eta )$ is a Carath\'eodory function defined by \begin{equation} \beta (x,\eta )=((\eta -\omega _2(x))^{+})^{p-1}-((\eta -\omega _1(x))^{-})^{p-1},\quad\mbox{ \ in }\Omega \times \mathbb{R}. \end{equation} Since $\omega_1(x)\leq 0\leq \omega _2(x)$ in $\Omega$, the penalty function $\beta$ has the following three important properties: \begin{gather}\label{beta0} \beta (x,v)=0\quad\mbox{in }\Omega \quad\mbox{if and only if}\quad \omega_1\leq v\leq \omega _2\quad\mbox{in }\Omega ,\\ \label{beta-} (\beta (x,\eta_1)-\beta (x,\eta _2))(\eta_1-\eta _2)>0\quad \mbox{in }\Omega ,\; \eta_1\neq \eta _2\in \mathbb{R}, \\ \label{betasgn} \beta (x,\eta )\mathop{\rm sgn}(\eta )\geq 0\quad\mbox{in }\Omega , \; \eta \in \mathbb{R}. \end{gather} In the first step, by means of the Schwartz symmetrization we derive some basic a priori estimates for $u_{\varepsilon }$ in $W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$. \begin{prop} \label{prop1} Under the assumptions of Theorem \ref{thm2}, for each $\varepsilon >0$ there exist a solution $u_{\varepsilon }$ of (\ref{penal}), and two constants $C_1$ and $C_2$ which are independent on $\varepsilon $, such that \begin{equation}\label{ue} \begin{gathered} u_{\varepsilon }^{\#}(x)\leq v^{\#}(x)=v(x) \quad\mbox{in }\Omega^{\#}, \\ \|u_{\varepsilon }\| _{L^{\infty }(\Omega )}\leq C_1=\|v\|_{L^{\infty }(\Omega ^{\#})}, \\ \|\nabla u_{\varepsilon }\|_{L^{P}(\Omega )}\leq C_2=\|\nabla v\|_{L^{p}(\Omega ^{\#})}, \end{gathered} \end{equation} where $u_{\varepsilon }^{\#}$ is the Schwarz symmetrization of $u$, and $v$ is the unique solution of~(\ref{sharp=}). \end{prop} Having in mind the sign condition (\ref{betasgn}) for the penalty function $\beta (x,\eta )$, the proof of Proposition 1 is very similar to the proofs of \cite[Theorems 2, 3, 4]{P2}. Next, we consider the relative compactness of the sequence $u_{\varepsilon}$. According to previous estimates and the relative compactness results from \cite{BMP}, one can show the following proposition. \begin{prop} \label{prop2} Under the assumptions of Theorem \ref{thm2}, let $u_{\varepsilon }$ be a solution of (\ref{penal}). Then there exist a subsequence of $u_{\varepsilon}$, still denoted by $u_{\varepsilon}$, and a function $u\in W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$, such that as $\varepsilon \rightarrow 0$, \begin{equation}\label{ueto} \begin{gathered} u_{\varepsilon }\rightarrow u \quad\mbox{strongly in }W_0^{1,p}(\Omega ), \\ a(x,u_{\varepsilon },\nabla u_{\varepsilon })\rightarrow a(x,u,\nabla u) \quad \mbox{weakly in }L^{p'}(\Omega ), \\ f(x,u_{\varepsilon })\rightarrow f(x,u),\quad g(x,u_{\varepsilon })|\nabla u_{\varepsilon }|^{p}\rightarrow g(x,u)|\nabla u|^{p} \quad \mbox{weakly in }L^{1}(\Omega ). \end{gathered} \end{equation} \end{prop} \paragraph{Proof} According to (\ref{ue}), and using the reflexivity of $W_0^{1,p}(\Omega )$ and compactness of imbedding of $W_0^{1,p}(\Omega )$ into $L^{p}(\Omega )$, we immediately conclude that there exist a subsequence of $u_{\varepsilon}$, still denoted by $u_{\varepsilon}$, and a function $u\in W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$, such that \begin{equation}\label{uetow} \begin{gathered} u_{\varepsilon }\rightarrow u \quad \mbox{weakly in $W_0^{1,p}(\Omega )$ and strongly in $L^{p}(\Omega )$}, \\ \mbox{a.e.\ in $\Omega $ and weak$^{*}$ in $L^{\infty }(\Omega )$.} \end{gathered} \end{equation} By means of the monotonicity assumption (\ref{monoton}) we are able to repeat all steps from the proof of \cite[Lemma 4, p.\ 189]{BMP}, and to derive: \begin{equation}\label{ue-} \int_{\Omega }[a(x,u_{\varepsilon },\nabla u_{\varepsilon })-a(x,u_{\varepsilon },\nabla u)]\cdot\nabla (u_{\varepsilon }-u)\,dx\rightarrow 0. \end{equation} Now, with the help of the compactness result from \cite[Lemma 5, p.\ 190]{BMP}, and using the convergence result from \cite[Lemma 3.2]{L}, together with (\ref{uetow}) and (\ref{ue-}), we derive all claims in (\ref{ueto}).\hfill$\diamondsuit$\smallskip Finally, as a consequence of two previous propositions, we obtain the following statement. \begin{prop} Under the assumptions of Theorem \ref{thm2}, let $u_{\varepsilon }$ be a solution of $(\ref{penal})$ satisfying (\ref{ue}), and let $u\in W_0^{1,p}(\Omega )\cap L^{\infty }(\Omega )$ be a function satisfying (\ref{ueto}). Then we have: \begin{enumerate} \item[{\rm(i)}] $\omega_1\leq u\leq \omega _2$ \ {in} $\Omega $ \item[{\rm(ii)}] $u$ is a solution of (\ref{osn}). \end{enumerate} \end{prop} \paragraph{Proof} Using (\ref{beta0}) we see that in order to prove (i) it suffices to check that $\beta (x,u)=0$ in $\Omega $. Let us remark that with the help of (\ref{ll2}), $(H5)$ and (\ref{ue}) we obtain the existence of three positive constants $c_1$, $c_2$ and $c_{3}$ such that \begin{gather*} \int_{\Omega }a(x,u_{\varepsilon },\nabla u_{\varepsilon })\cdot\nabla u_{\varepsilon }\,dx0$. If we show that for any $r>0$ sufficiently small condition \begin{equation}\label{h2} \int_{B_r}f_1(x)\,dx>D_1(r)\cdot\frac{m_2(r)-\overline m_1}{m_2(r)-M_c(r)}, \end{equation} is satisfied, see (H2), than the claim will follow from Theorem~\ref{main}, since $M_c(r)\to\infty$ as $r\to0$, and $\cap_{r>0}B_{2r}=\{0\}$. Denoting the left-hand side of (\ref{h2}) by $F(r)$, we have (note that $\gamma1$ we have that $m_2(r)-\overline m_1\le k^{1/p}\cdot m_2(r)$ for all $r$ small enough. Also, the left-hand side of (\ref{intBr}) can be estimated by $C\cdot r^\beta$, where $C$ is a positive constant. Hence, \begin{eqnarray} \lefteqn{G(r)} \nonumber\\ &\le& [\alpha_0 a_2^{-p'}C\cdot r^{\beta} +2k\left(\frac{p-1}{\alpha_0}\right)^{p-1} a_2^p(2^N-1)\omega_N m_2(r)^p\cdot r^{N-p}] \frac{2^\alpha r^\alpha}{(1-L)C_1} \nonumber \\ &=& D_1 r^{\alpha+\beta}+D_2r^{-\alpha(p-1)+N-p}, \end{eqnarray} where $D_1\ge0$ and $D_2>0$ are explicit positive constants independent of $r$. In order to ensure $F(r)>G(r)$ for all $r>0$ small enough, see (\ref{h2}), it suffices have: $$ \frac{C_1\omega_N}{2^{\gamma}(N-\gamma)}r^{N-\gamma}>D_1 r^{\alpha+\beta}+D_2r^{-\alpha(p-1)+N-p}, $$ that is, $$ \frac{C_1\omega_N}{2^{\gamma}(N-\gamma)}r^{\alpha(p-1)+p-\gamma}>D_1 r^{\alpha+\beta+\alpha(p-1)-N+p}+D_2. $$ This inequality holds for all $r>0$ small enough due to $\alpha(p-1)+p-\gamma<0$ and $\alpha(p-1)+p-\gamma<\alpha+\beta+\alpha(p-1)-N+p$. \hfill$\diamondsuit$\smallskip \paragraph{Proof of Theorem~\ref{Bump}} Assume, contrary to claim of the theorem, that there exists a ball $B_r=B_r(x_0)$ such that $u^*(x)0$ small enough. Similarly as in the proof of Theorem~\ref{sing} we obtain that condition (\ref{h2}) is satisfied for all $r>0$ small enough if we have $r^{N-\gamma}>a\cdot r^{N-p-\varepsilon}$, where $a$ is a positive constant independent of $r$. Thus we have to secure that $r^{\gamma-p-\varepsilon}<1/a$ for $r>0$ small, and this is possible by taking $\varepsilon\in(0,\gamma-p)$. The claim follows from Theorem~\ref{main}, since $M_c(r)\to w_{2*}(x_0)$ as $r\to0$. \hfill$\diamondsuit$\smallskip As a final remark, we note that our main Theorem~\ref{main} can be formulated in a much more general context. \begin{theorem} Assume that $a(x,\eta,\xi)$ satisfies conditions (\ref{ll1}) and (\ref{ll2}). Let $A$ be a measurable subset of $\Omega$, such that $A_r\subseteq\Omega$ and $|A_r\setminus A|<\infty$. Let $M_c$ be a given number such that \begin{equation} M_c\in(m_1,m_2),\quad m_i={\mathop{\rm ess\,inf}}_{A_r}\omega_i(x),\quad i=1,2. \end{equation} Assume that \begin{gather} g(x,\eta)\ge0 \quad\mbox{for a.e. }x\in A_r \quad\mbox{and}\quad \eta\in I_1=(m_1,M_c), \\ \exists f_1\in L^1(A_r),\quad f(x,\eta)\ge f_1(x)\quad\mbox{for a.e. } x\in A_r,\; \eta\in I_1,\\ f_1(x)\ge0 \quad\mbox{on } A_r\setminus A. \end{gather} Furthermore, assume that \begin{equation} \int_A f_1(x)\,dx> D_1\cdot\frac{m_2-m_1}{m_2-M_c}, \end{equation} where \begin{equation} D_1=\overline d\int_{A_r}[a_0(x)+a_1 \widehat m^{p-1}]^{p'}dx+\left(\frac pd\right)^{p-1}\frac{|A_r\setminus A|}{r^p}, \end{equation} with $\widehat m$, $\overline d$ and $d$ defined in the same way as in Theorem~\ref{main}. Then for any solution $u$ of (\ref{osn}) we have \begin{equation} |\{x\in A_r\: u(x)>M_c\}|\ne0. \end{equation} \end{theorem} {\bf Proof.} The proof is the same as the proof of Theorem~\ref{main}. We only have to change $B_r$ to $A$, $B_{2r}$ to $A_r$, and to use our general result about localization of measurable sets stated in \cite[Lemma 5]{KPZ2}. \begin{thebibliography}{00} \frenchspacing \bibitem{ALT} {A. Alvino, P. -L. Lions and G. Trombetti, Comparison results for elliptic and parabolic equations via Schwartz symmetrization, {\em Ann. Inst. Henri Poincar\'{e}}, {\bf7}, (1990), 37--65.} \bibitem{BMP} {L. Boccardo, F. Murat and J. -P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, {\em Anali di Mat. Pura ed Appl.}, {\bf152}, (1988), 183--196.} \bibitem{BM} {C. Bandle and J. Mossino, Rearrangement in variational inequalities, {\em Ann. Mat. Pura ed Appl.} {\bf138}, (1984), 1--14.} \bibitem{FP} {V. Ferone, M. R. Posteraro, On a class of quasilinear elliptic equations with quadratic growth in the gradient, {\em Nonlinear Anal. T. M. A.}, {\bf20}, (1993), 703--711.} \bibitem{FPR} {V. Ferone, M. R. Posteraro, and J. M. Rakotoson, $L^{\infty}$% -estimates for nonlinear elliptic problems with $p$-growth in the gradient, {\em J. Inequal. Appl.} {\bf3}, No.2, 109--125 (1999).} \bibitem{KPZ1} {L. Korkut, M. Pa\v {s}i\'{c} and D. \v {Z}ubrini\'{c}, Control od essential infimum and supremum of solutions of quasilinear elliptic equations, {\em C. R. Acad. Sci. Paris,} {\bf329}, (1999), 269--274.} \bibitem{KPZ2} {L. Korkut, M. Pa\v {s}i\'{c} and D. \v {Z}ubrini\'{c}, Some qualitative properties of quasilinear elliptic equations and applications, {\em J.\ Differential Equations,} {\bf170}, (2001), 247--280.} \bibitem{KPZ3} {L. Korkut, M. Pa\v {s}i\'{c} and D. \v {Z}ubrini\'{c}, A singular ODE related to quasilinear elliptic equations, {\em Electron.\ J.\ Diff.\ Eqns.}, Vol.\ {\bf2000}(2000), No. 12, pp. 1--37.} \bibitem{L} {J. -L. Lions, {\em Quelques m\'{e}thodes de r\'{e}solution des probl\'{e}mes aux limites non lin\'{e}aires}, Dunod, Paris, 1969.} \bibitem{P1} {M. Pa\v {s}i\'{c}, Comparison and existence results for a nonlinear elliptic variational inequality, {\em C. R. Acad. Sci. Paris}, {\bf323}, (1996), 341--346.} \bibitem{P2} {M. Pa\v {s}i\'{c}, Isoperimetric inequalities in some quasilinear elliptic equations with p-growth in the gradient, {\em J. Math. Pures Appl.} {\bf75}, (1996), 343--366.} \bibitem{P3} {M. Pa\v {s}i\'{c}, Nonexistence of spherically symmetric solutions for }$p${ - Laplacian in the ball, {\em C. R. Math. Rep. Acad. Sci. Canada}, {\bf21}, (1999), 16--22.} \bibitem{RT} {J. -M. Rakotoson and R. Temam, Relative rearrangement in quasilinear elliptic variational inequalities, {\em Indiana Univ.\ Math.\ J.}, {\bf36}, (1987), 757--810.} \bibitem{Tal} {G. Talenti, Elliptic equations and rearrangements, {\em Ann. Scuola Norm. Sup. Pisa}, {\bf3}, (1976), 697--718.} \bibitem{Tu} {J. Tuomela, A geometric analysis of a singular ODE related to the study of a quasilinear PDE, {\em Electron. J. Diff. Eqns.}, Vol. {\bf2000}(2000), No. 62, 1--6.} \bibitem{dz-sing} \v Zubrini\'c D., {Generating singularities of solutions of quasilinear elliptic equations, {\em J.\ Math.\ Anal.\ Appl.}, {\bf244} (2000), 10--16.} \end{thebibliography} \noindent{\sc Luka Korkut} (e-mail: luka.korkut@fer.hr) \\ {\sc Mervan Pa\v si\'c} (e-mail: mervan.pasic@fer.hr) \\ {\sc Darko \v Zubrini\'c} (e-mail: darko.zubrinic@fer.hr) \\[2pt] Department of mathematics \\ Faculty of Electrical Engineering and Computing \\ University of Zagreb\\ Unska 3, 10000 Zagreb, Croatia \end{document}