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ON SOME ANALYTICAL INDEX FORMULAS RELATED TO
OPERATOR-VALUED SYMBOLS

GRIGORI ROZENBLUM

Abstract. For several classes of pseudodifferential operators with operator-
valued symbol analytic index formulas are found. The common feature is that

usual index formulas are not valid for these operators. Applications are given
to pseudodifferential operators on singular manifolds.

1. Introduction

Analytical index formulas play an important part in the study of topological
characteristics of elliptic operators. They complement index formulas expressed in
topological and algebraical terms, and often enter in these formulas as an ingredi-
ent. For elliptic pseudodifferential operators on compact manifolds, such formulas
were found by Fedosov [6]; for topologically simple manifolds, i.e. having trivial
Todd class, they reduce to the co-homological Atiyah-Singer formula. Later, an-
alytical index formulas for elliptic boundary value problems were obtained in [7].
These formulas have a common feature: they involve an integral, with integrand
containing analytical expressions for the classical characteristic classes entering into
the co-homological formulas.

In 90-s a systematic study started of topological characteristics of operators on
singular manifolds - [20, 21, 22, 27, 28, 16, 17, 31, 9, 37] etc. Even before these
papers had appeared, it became clear that analysis of operators on singular man-
ifolds must involve many-level symbolic structure, where the leading symbol of
the operator is the same as in the regular case, but here a hierarchy of operator-
valued symbols arises, responsible for the singularities (see [19, 23, 32, 5], and later
[24, 33, 34, 35, 29, 30, 4], etc.). Each of these symbols contributes to the index for-
mulas. In some, topologically simple, cases, such contributions can be separated,
and thus the problem arises of calculation of the index for pseudodifferential oper-
ators with operator-valued symbol. However, even one-dimensional examples show
that the usual formulas, originating from the scalar or matrix situation, may be
unsuitable in the operator-valued case. Consider the simplest situation. Let A be
the Toeplitz operator on the real line R, with symbol a(x), i.e. it acts in the Hardy
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space H2(R) by the formula
Au = Pau

where P : L2 → H2 is the Riesz projection. Under the condition that the symbol
a(x) is smooth, invertible and stabilises to 1 at infinity, the operator A is Fredholm
and its index equals

indA = −(2πi)−1

∫
a(x)−1a′(x)dx.

If we consider a Toeplitz operator in the space of vector-functions, so that the sym-
bol is a matrix, the same formula for the index holds, with a natural modification:

indA = −(2πi)−1

∫
tr(a(x)−1a′(x))dx, (1.1)

where tr is the usual matrix trace. However, when we move to an even more general
case, the one of Toeplitz operators acting in the space of functions on R1 with values
in an infinite-dimensional Hilbert space, so that a(x) is an operator in this space,
the formula (1.1) makes sense only under the condition that a−1a′ belongs to the
trace class. If this is not the case, (1.1) makes no sense, so even if the Toeplitz
operator happens to be Fredholm, one needs another formula for the index to be
found (and justified).

A similar situation was considered by Connes [3, Sect. III. 2α]. It was noticed
that (1.1) (in the matrix case) requires certain smoothness of the symbol a(x) with
respect to x variable, e.g. a ∈ H1/2

loc . On the other hand, for the Toeplitz operator
to be Fredholm it is sufficient that the symbol is continuous and has equal limit
values at ±∞. The cyclic cohomology technics was used to find a series of formulas
assuming less and less smoothness of the symbol.

Earlier, the same approach was used by B.Plamenevsky and the author in [22] for
the above problem of finding analytical index formulas for Toeplitz operators with
operator-valued symbols. This became an important step in the study of topological
characteristics of pseudodifferential operators with isolated singularities in symbols.
The cyclic cohomology methods were used there as well.

In the present paper we consider a class of pseudodifferential operators with op-
erator symbols and find analytical index formulas for elliptic operators in this class.
The expressions have different form, depending on the quality of the symbol, and
are derived by means of cyclic co-homology approach. Some operators arising in
analysis on singular manifolds fit into the abstract scheme. Applying our general
approach, we find index formulas for Toeplitz operators with operator-valued sym-
bols and, extending results of [8, 28], of cone Mellin operators. In the last section
we consider edge pseudodifferential operators arising in analysis on manifolds with
edge-type singularities. Our abstract approach to the index formulas requires less
structure from the operator symbols compared with the traditional one (see, e.g.,
[32, 33, 34, 31, 9]), therefore we present here a new version of the edge calculus.

The problem of regularising formulas of the type (1.1) was attacked from different
points of view also in [20, 10, 16, 17, 9, 37]. In all these papers, some specific
information on the nature of the symbol a was essentially used - actually, the
fact that it is a parameter dependent pseudodifferential operator on a compact
manifold. Our approach is more abstract, it does not use any special form of
the symbol but rather describes its properties in the terms of Shatten classes.
The pseudodifferential calculus for such operator-valued symbols was first proposed
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by the author in [26] and then used in [28]. Here we present this calculus more
systematically.

The results presented in the paper were obtained as a part of the Swedish Royal
Academy of Sciences project. The author is grateful to the Departments of Math-
ematics of the University of Nantes and the University of Potsdam (the group of
Partial Differential Equations and Complex Analysis), where in 1999 a part of the
results were obtained and a useful discussion took place, and, especially, to Profes-
sors D.Robert, B.-W. Schulze, and B.Fedosov.

2. The algebraic scheme

In this section we describe the abstract setting enabling one to derive new index
formulas from the existing ones. We recall some constructions from the K-theory
for operator algebras and cyclic cohomologies; proofs and details can be found in
[1, 14, 2, 3].

Let S be a Banach *-algebra with unit, M(S) be the set of matrices over S. The
groups Kj(S), j = 0, 1 are the usual K-groups in the theory of Banach *-algebras.
Thus K0(S) is the group of equivalence classes of (formal differences of) projections
with entries in S. The group K1(S) consists of equivalence classes of invertible
matrices in M(S), i.e., elements in GL(S). If S does not have a unit, one attaches
it and thus replaces M(S) by M(S)+ in the latter definition. (We use boldface
K in order to distinguish operator algebras K-groups from topological ones.) The
notion of these K-groups carries over to local *-subalgebras of S, i.e. subalgebras
closed with respect to the holomorph functional calculus in S. Important here is
the fact that the K-groups of a dense local subalgebra in S are isomorphic to the
ones of S (see, e.g., [1]).

The K-cohomological group K1(S) consists of equivalence classes of ’quanti-
sations’, i.e. unital homomorphisms of the algebra of matrices over S to the
Calkin algebra in some Hilbert space H, or, what is equivalent, *-linear mappings
τ : M(S)→ B(H), multiplicative up to a compact error. Each element [τ ] ∈ K1(S)
defines the index homomorphism ind[τ ] : K1(S) → Z, associating to the matrix
a ∈ GL(S) the index of the operator τ(a). Thus we have the integer index cou-
pling between K1(S) and K1(S): [τ ] × [a] = ind τ(a). Again, if S is non-unital,
the unit is attached.

For a normed *-algebra S, the group Ckλ(S) of cyclic cochains consists of (k+1)-
linear continuous functionals ϕ(a0, a1, . . . , ak), cyclic in the sense ϕ(a0, a1, . . . , ak) =
(−1)kϕ(a1, a2, . . . , a0). The Hochschild co-boundary operator b : Ckλ(S)→ Ck+1

λ (S)
generates, in a usual way, co-homology groups HCkλ(S).

There is also a coupling of HC2k+1
λ (S) and K1(S) (see [3, Ch.III.3]):

[ϕ]×k [a] = γk(ϕ⊗ tr)(a−1 − 1, a− 1, a−1 − 1, a− 1, . . . ., a−1 − 1, a− 1), (2.1)

where tr is the matrix trace and γk is the normalisation constant, chosen in [3] to
be equal to (2i)−1/22−2k−1Γ(k + 3

2 ), for functoriality reasons.
An important role in the paper is played by the suspension homomorphism S :

HCkλ(S)→ HCk+2
λ (S). This operation is not, in general, an isomorphism. In fact,

it is a monomorphism, with range isomorphic to the kernel of the homomorphism
I associating to every cyclic cocycle representing a class in HCk+2

λ , the class of the
same cocycle in the Hochschild cohomology group Hk+2(S) (see [3, III.1.γ]. The
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suspension homomorphism is consistent with the coupling (2.1):

[ϕ]×k [a] = S[ϕ]×k+1 [a], [a] ∈ K1(S), [ϕ] ∈ H2k+1
λ (S). (2.2)

In this context, the problem of finding an analytic index formula for a given
’quantisation’ [τ ] ∈ K1(S) consists in determining a proper element [ϕ] = [ϕ[τ ]] in
the cohomology group of some order, [ϕ] ∈ HC2k+1

λ (S) such that

[τ ]× [a] = [ϕ]×k [a], [a] ∈ K1(S), (2.3)

or even a cyclic cocycle ϕ ∈ C2k+1
λ (S) such that (2.3) holds.

In [2, 3] such problem, for different situations was handled by constructing
a Chern character Ch, the homomorphism from K- co-homologies to cyclic co-
homologies, so that [ϕ] = Ch([τ ]). However, it is not always possible to use this
construction directly. The reason for this is that for ∗-algebras arising in concrete
analytical problems, the cyclic co-homology groups are often not rich enough to
carry the index classes one needs. For example, in a simple case, S = C0(R1) and
τ being the Toeplitz quantisation, associating the Toeplitz operator with symbol
a(x) to the continuous (matrix-)function a(x) stabilizing at infinity, the index is
well defined on the K-theoretical level, but there are no analytical index formulas,
since all odd cyclic cohomology groups are trivial (see [12, 2]). This means that
one has to chose some ’natural’ dense local subalgebra S0 ⊂ S, equipped with a
norm, stronger than the initial norm in S, having rich enough cyclic co-homologies.
On the level of K-groups this substitution is not felt, since the natural inclusion
ι : S0 → S generates isomorphism ι∗ : K1(S) → K1(S0), but in co-homologies
this may produce analytical index formulas. Moreover, the choice of the dimension
2k + 1 of the target cyclic cohomology group may depend on the properties of the
subalgebra S0. An example of this can be found in [3, II.2.α, III.6.β]. There,
for the dense local subalgebra S1 = C1

0 (R1) in the C∗-algebra S = C0(R1), one
associates to the Toeplitz quantisation [τ ] the class [ϕ[τ ]

1 ] ∈ HC1
λ(S1) generated by

the cocycle

ϕ
[τ ]
1 (a0, a1) = −(2πi)−1

∫
tr(a0da1). (2.4)

In fact, coupling with this class gives the standard formula (1.1) for the index of the
Toeplitz operator. However, the cocycle (2.4) is not defined on larger subalgebras
in S, for example on Sγ = Cγ0 (R1), 0 < γ < 1, consisting of functions satisfying
Lipshitz condition with exponent γ, and this prevents one from using (1.1) for
calculating the index. To deal with this situation, it is proposed in [3] to consider
the image of [ϕ[τ ]

1 ] in HC2l+1
λ (S1) under l times iterated suspension homomorphism

S, with properly chosen l. This produces cocycles ϕ[τ ]
2l+1 on S1, functionals in 2l+2

variables, which give new analytical index formulas for the Toeplitz operators with
differentiable symbols - see the formula on p. 209 in [3]. However, these cocycles,
for 2l+1 > γ admit continuous extension to the algebra Sγ , thus defining elements
in HC2l+1

λ (Sγ) and giving index formulas for less and less smooth functions.
One must note here, that, although the suspension homomorphism S in cyclic

co-homology groups is defined uniquely, in a canonical way, it can be realised in
different ways on cocycle level. Several types of methods representing suspension of
cocycles were proposed in [2, 3]. It may happen that these methods applied to one
and the same cocycle produce cocycles in the smaller algebra of which not all can
be extended to the larger algebra. This, in particular, happens in [3] and [22] where
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different methods applied to the same initial one-dimensional cocycle produce quite
different suspended cocycles, with different properties.

Now let us describe this situation in a more abstract setting.
Let S be a Banach *-algebra and

S1 ⊃ S2 ⊃ · · · ⊃ Sm ⊃ . . . (2.5)

be a sequence of local *-subalgebras, being Banach spaces with respect to the norms
‖ · ‖m such that embeddings in (2.5) are dense. Let [τ ] be an element in K1(S) and
[τ ]m the corresponding element in K1(Sm) obtained by restriction of τ . Suppose
that for some m and k, the index class for [τ ]m is found in HC2k+1

λ (Sm), i.e some
cyclic cocycle ϕ ∈ C2k+1(Sm) such that

[τ ]m × [a] = [ϕ]×k [a], a ∈ GL(Sm). (2.6)

Consider the sequence of suspended classes:

[ϕ]l = Sl[ϕ] ∈ HC2l+2k+1
λ (Sm). (2.7)

Now assume that for some l, in the cohomology class [ϕ]l, one can choose an
element ϕl ∈ C2l+2k+1

λ (Sm) which, as a multi-linear functional, admits continuous
extension ϕl onto S1, thus defining a class [ϕl] ∈ HC2l+2k+1

λ (S1).
Proposition 2.1. In the above situation, for a ∈ GL(S1),

[τ ]1 × [a] = [ϕl]×k+l [a]. (2.8)

Proof. Due to the properties of the suspension homomorphism (2.2) the equality
(2.8) holds for a ∈ GL(Sm). Now, it remains to remember that Sm is dense in S1

and both parts in (2.8) are continuous in the norm of S1.•

3. Operator-valued symbols

In this paper we deal only with operators acting on functions defined on the
Euclidean space. For this situation, we describe here algebras of operator-valued
symbols and develop the corresponding calculus of pseudodifferential operators.

In the literature, starting, probably, from [15], there exist several versions of
operator-valued pseudodifferential calculi, each adopted to some particular, more
or less general, situation (see, e.g., [32, 29, 4]). Each time, one has to establish
some abstract setting, modelling the most obvious (and sought for) application -
the operator-valued symbol being a pseudodifferential operator of a proper class
in ’transversal’ variables. For particular cases, this ’proper class’ may consist of
usual pseudodifferential operators, Wiener-Hopf operators, Mellin operators, with,
probably, attachment of trace and co-trace ones, operators on singular manifolds,
etc. Each time, in the calculus, the problem arises, of finding a convenient descrip-
tion for the property of improvement of the symbol under the differentiation in
co-variables.

Let us, in the simplest case, in L2(Rn) = L2(Rm × Rk), consider the pseudodif-
ferential operator a(x,Dx) with a symbol a(x, ξ) = a(y, z, η, ζ), zero order homo-
geneous and smooth in ξ, ξ 6= 0, which we treat as an operator in L2(Rm, L2(Rk))
with operator valued symbol a(y, η) = a(y, z, η,Dz). Then the differentiation in
η, η 6= 0, produces the operator symbol ∂ηa of order −1, next η-differentiation gives
the symbol ∂2

ηa of order −2, etc. We refer to this effect by saying that the quality
of the operator symbol is improved under η-differentiation. (Strictly speaking, this
improvement, actually, may take place not under each differentiation, in the case



6 GRIGORI ROZENBLUM EJDE–2002/17

when the order of the transversal operator is already low from the very beginning,
like, say, for a(x, ξ) = ψ(x)|η|l|ξ|−l.) Usually, in concrete situations, this prop-
erty is described by introducing proper scales of ’smooth’ spaces, like, as in the
leading example, weighted Sobolev spaces in Rk, and describing the spaces where
the differentiated operator symbol acts. Such approach is used, in particular, in
[32, 33, 34, 31, 9, 4] etc. This, however, requires a rather detailed analysis of action
of ’transversal operators’ a(y, z, η,Dz) in these scales and becomes fairly trouble-
some in singular cases. At the same time, these extra spaces are in no way reflected
in index formulas and are superfluous in this context. Thus, it seems to be useful
to introduce a calculus of pseudodifferential operators not using extra spaces but
at the same time possessing the above improvement property. Our approach is
based on describing the property of improvement of operator valued symbol under
differentiation not by improvement of smoothness but by improvement of compact-
ness. So, in the above example, suppose that the symbol a has compact support
in z variable. Then, if the differential order γ of the operator is negative, the op-
erator symbol a(y, η) is a compact operator, and its singular numbers sj(a(y, η))
decay as O(jγ/k). Each differentiation in η variable, lowering the differential order,
leads to improvement of the decay rate of these s-numbers; after N differentiations,
the s-numbers of the differentiated symbol decay as O(j(γ−N)/k). At the same
time, the decay rate as |η| → ∞ of the operator norm of the differentiated symbol
also improves under the differentiation. This justifies the introduction of classes of
symbols in the abstract situation.

So, let K be a Hilbert space. By sp = sp(K), 0 < p <∞ we denote the Shatten
class of operators T in K for which the sequence of singular numbers (s-numbers)
sj(T ) = (λj(T ∗T ))1/2 belongs to lp. The most important are the trace class s1 and
the Hilbert-Schmidt class s2. The lp-norm |T |p of this sequence defines for p ≥ 1
a norm in sp, otherwise, it is a quasi-norm. The norm property enables one to
integrate families of sp-operators for p ≥ 1: if T (y, η) is a family of operators in sp,
and |T (y, η)|p ≤ f(y)g(η) then |

∫
T (y, η)dy|p ≤ (

∫
f(y)pdy)1/pg(η).

In the definition below, as well as in the formulations, N is some sufficiently
large integer. We do not specify the particular choice of N in each case, as long as
it is of no importance.

Definition 3.1. Let γ ≤ 0, q > 0. The class Sγq = Sγq (Rm × Rm′ ,K) consists of
functions a(y, η), (y, η) ∈ Rm × Rm′ , such that for any (y, η), a(y, η) is a bounded
operator in K and, moreover,

‖Dα
ηD

β
ya(y, η)‖ ≤ Cα,β(1 + |η|)−|α|+γ , (3.1)

|Dα
ηD

β
ya(y, η)| q

−γ+|α|
≤ Cα,β . (3.2)

for |α|, |β| ≤ N .

Note here that for the case when M is a k-dimensional compact manifold and
a(y, z, η, ζ) is a classical pseudodifferential symbol of order less than γ on Rm×M ,
the operator valued symbol a(y, η) = a(y, z, η,Dz) acting in K = L2(M) belongs
to Sγk for any N . A more involved example arises in the study of operators with
discontinuous symbols.

Suppose that the symbol a(y, z, η, ζ) has compact support in z, order γ ≤ 0
positively homogeneous in (η, ζ) (with a certain smoothening near the point (η, ζ) =
0), but near the subspace z = 0 it is positively homogeneous of order γ in z variable,
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thus having a singularity at the subspace z = 0. The operator symbol a(y, η) is a
bounded operator in K = L2(Rk), differentiation in η lowers the homogeneity order
in (η, ζ), but the singularity in z prevents it from acting into usual Sobolev spaces
(it is here the need for weighted Sobolev spaces arises). However, in the terms of
the Definition 3.1, the properties of the operator symbol are easily described: it
belongs to Sγq for any q > k. This example will be the basic one in considerations
in Sect. 7.

The interpolation inequality |a|qq ≤ |a|pp‖a‖q−p for p < q implies that for −γ +
|α|−q > 0 the derivatives in (3.1), (3.2) belong to trace class and for−γ+|α|−q > m
the integral of its trace class norm with respect to η converges. The same holds for
any sp - norm, provided |α| is big enough. On the other hand, since

|ab|(p−1+q−1)−1 ≤ |a|p|b|q, (3.3)

the product of symbols a ∈ Sγq and b ∈ Sδq belongs to Sγ+δ
q .

For a symbol in a ∈ Sγq and a function f(λ) analytical in a sufficiently large
domain in the complex plain, the symbol f(a) can be defined by means of the usual
analytical functional calculus for bounded operators. One can check directly that
for any such f , the symbol f(a) belongs to S0

q ; if, additionally, f(0) = 0, then f(a) ∈
Sγq , moreover, if f(0) = f ′(0) = · · · = f (ν)(0) = 0 then f(a) ∈ S(ν+1)γ

q . Thus, Sγq
becomes a local ∗-subalgebra in the algebra of bounded continuous operator-valued
functions on Rm × Rm′ .

We are going to sketch the operator-valued version of the usual pseudodifferential
calculus. The main difference of this calculus from the usual one is the notion of
’negligible’ operators. In the scalar case, one considers as negligible the infinitely
smoothing operators. In our case, we take trace class operators as negligible, and
it is up to a trace class error, that the classical relations of the pseudodifferential
calculus will be shown to hold. This is sufficient for the needs of index theory.

Having a symbol a(y, y′, η) ∈ Sγq (R2m×Rm,K), we define the pseudodifferential
operator with this symbol as

(OPS(a)u)(y) = (a(y, y′, Dy)u)(y) = (2π)−m
∫ ∫

ei(y−y
′)ηa(y, y′, η)u(y′)dηdy′,

(3.4)
where u(y) is a function on Rm with values in K. In particular, if a does not depend
on y′, this is the usual formula involving the Fourier transform:

a(y,Dy)u = OPS(a) = F−1a(y, η)Fu, (3.5)

Without any changes, on the base of (3.1), the standard reasoning applied in the
scalar case to give precise meaning to (3.4), (3.5) defines the action of the operator
a(y,Dy) on rapidly decaying smooth functions u and establishes its boundedness
in L2. We are going to show now is that the property (3.2) produces trace class
estimates.

The following proposition gives a sufficient condition for a pseudodifferential
operator to belong to trace class.
Proposition 3.2. Let the operator-valued symbol a(y, y′, η) in R2m×Rm be smooth
with respect to y, y′, let all y, y′-derivatives Dβ

yD
β′

y′ a up to some (sufficiently large)
order N be trace class operators with trace class norm bounded uniformly in y, y′.
Suppose that g(y), h(y) = O((1+ |y|)−2m). Then the operator ha(y, y′, Dy)g belongs
to s1(L2(Rm; K)).
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Proof. Suppose first that the functions h, g have compact support in some unit
cubes Q,Q′. Take smooth functions f, f ′ compactly supported in concentric cubes
with twice as large side such that hf = h, gf ′ = g. We can represent our operator
hfa(y, y′, Dy)f ′g = ha(y, y′, Dy)g in the form

hfa(y, y′, Dy)f ′g = (2π)−2m

∫ ∫
eiyζ+iy

′ζ′haζ,ζ′(Dy)gdζdζ ′g, (3.6)

where aζ,ζ′(η) =
∫ ∫

e−i(yζ+y
′ζ′)f(y)a(y, y′, η)f ′(y′)dydy′. The conditions imposed

on the symbol a guarantee that the symbol aζ,ζ′(η) is a trace class operator for all
η, ζ, ζ ′, its trace class norm is in L1 with respect to η variable and decays rapidly at
infinity in ζ, ζ ′. We will use this to prove that for all ζ, ζ ′ the operator haζ,ζ′(Dy)g
belongs to the trace class and its trace class norm decreases sufficiently fast as
ζ, ζ ′ tend to ∞. In order to do this, we factorize this operator into the product
of two Hilbert-Schmidt operators with rapidly decreasing Hilbert-Schmidt norm.
Recall that for a pseudodifferential operator with operator-valued symbol k(y, η),
one has |k(y,Dy)|22 = (2π)−m

∫ ∫
|k(y, η)|22dydη, and, similarly for an operator with

symbol k(y′, η). Represent the symbol aζ,ζ′(η) as the product bζ,ζ′(η)cζ,ζ′(η) where
bζ,ζ′(η) = |aζ,ζ′(η)|1/2. The symbol h(y)bζ,ζ′(η) belongs to the Hilbert-Schmidt
class s2(K) at any point (y, η), the Hilbert-Schmidt norm belongs to L2 in (y, η)
variables and decays fast as as (ζ, ζ ′) tend to infinity. Therefore, the operator
h(y)bζ,ζ′(Dy) belongs to the Hilbert-Schmidt class, with norm fast decaying in
(ζ, ζ ′). The same reasoning takes care of cζ,ζ′g. Thus the trace class norm of
the integrand on the right-hand side in (3.6) decays fast in (ζ, ζ ′), and this, after
integration in ζ, ζ ′, establishes the required property of ha(y, y′, Dy)g. Note here,
that the trace norm of the operator ha(y, y′, Dy)g is estimated by the L2-norms of
the functions h, g over the cubes Q,Q′. To dispose of the condition of h, g to have
compact support, we take a covering of the space by a lattice of unit cubes Qj and
define hj , gj as restrictions of h, g to the corresponding cube. Then the reasoning
above can be applied to each of the operators hja(y, y′, Dy)gj′ , and the series of
trace class norms of these operators converges. �

Remark 3.3. Note that we do not impose on the operator-valued symbol any
smoothness conditions in η variable. This proves to be useful later, especially, in
Sect.7. A somewhat unusual presence of both functions g, h (instead of just one of
them, as one might expect comparing with the scalar theory) is explained by the
fact that without smoothness conditions with respect to η, our pseudodifferential
operators are not necessarily pseudo-local in any reasonable sense.

Remark 3.4. A special case where Proposition 3.2 can be used for establishing trace
class properties is the one of the symbol a decaying sufficiently fast in y, y′, together
with derivatives, without factors g, h. In fact, consider a = (1 + |y|2)−Nb(1 +
|y′|2)−N , with N large enough, and apply Proposition 3.2 to the symbol b.

If symbols belong to the classes Sγq , the usual properties and formulas in the
pseudodifferential calculus hold, with our modification of the notion of negligible
operators.

Theorem 3.5 (Pseudo-locality). Let the symbol a(y, y′, η) belong to Sγq (R2n×Rn)
for some q > 0, γ ≤ 0, let h, g be bounded functions with disjoint supports, at least
one of them being compactly supported. Then (for N large enough) the operator
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ha(y, y′, D)g belongs to s1(L2(Rm; K)), moreover,

|ha(y, y′, D)g|s1 ≤ C||g||∞||h||∞(1 + d−N ) max{Cα,β ; |α|, |β| ≤ N},
where Cα,β are constants in (3.1), (3.2) and d = dist(supp(g), supp(h)).
Proof. First, let h have compact support. Take two more bounded functions h′, g′ ∈
C∞ with disjoint supports such that supph′ is compact, hh′ = h, gg′ = g. Again
represent the operator in question in the form

ha(y, y′, Dy)g = (2π)−m
∫
eiyζh(y)aζ(y′, D)g(y′)dζ, (3.7)

where aζ(y′, η) =
∫
eiyζh′(y)a(y, y′, η)g′(y′)dy. We will show that the integrand in

(3.7) belongs to the trace class and its trace norm is integrable with respect to ζ.
We have

(aζ(y′, D)u)(y) = (2π)−m
∫ ∫

eiη(y−y′)h′(y)aζ(y′, η)g′(y′)u(y′)dy′dη. (3.8)

The first order partial differential operator L = L(Dη) = −i|y−y′|−2(y−y′)Dη has
the property Leiη(y−y′) = eiη(y−y′), so we can insert LN into (3.8) for any N . After
integration by parts (first formal, but then justified in the usual way), we obtain
that (3.7) equals

(2π)−m
∫ ∫

eiη(y−y′)h′(y)|y − y′|−2N ((y − y′)Dη)Naζ(y′, η)g′(y′)u(y′)dy′dη.

Since the supports of h′, g′ are disjoint, the function

h′(y)|y − y′|−2N ((y − y′)Dη)Naζ(y′, η)g′(y′)

is smooth with respect to y, y′. By choosing N large enough, we can, using (3.1),
(3.2), arrange it to belong to trace class and have trace class norm decaying fast in
y′, η, ζ, together with as many derivatives as we wish. Now, according to Proposition
3.2 (see Remark 3.4), this implies that the trace class norm of the operator (3.8)
decays fast in ζ, and the result follows, together with the estimate.

The same reasoning works if not h but g has a compact support, one just makes
the representation similar to (3.7), making Fourier transform in y′ variable. �

The usual formula expressing the symbol of the composition of operators via the
symbols of the factors also holds in the operator-valued situation.
Theorem 3.6. Let the symbols a(y, η),b(y, η) belong to Sγq (R2m × Rm) for some
q > 0, γ ≤ 0 and h(y) = O((1 + |y|)−m−1). Then, for N large enough, the operator
hOPS(a)OPS(b) −hOPS(cN ) belongs to trace class, where, as usual,

cN = a ◦N b =
∑
|α|<N

(α!)−1∂αη aDα
y b. (3.9)

Proof. We follow the standard way of proving the composition formula, however
the remainder term will be estimated by means of Proposition 3.2.

Suppose first that h has a compact support in a unit cube Q. Take a function
g ∈ C∞0 which is equal to 1 in the concentric cube with side 2 and vanishes outside
the concentric cube with side 3. Set b = gb + (1− g)b = b′ + b′′. For the symbol
b′′, we have ha ◦N b′′ = 0, at the same time, hOPS(a)OPS(b′′) is trace class
due to the pseudo-locality property. Thus, hOPS(a)OPS(b′′) − hOPS(a ◦N b′′)
belongs to s1, with trace class norm controlled by the L∞ norm of h in Q. Next,
since ha = hga, we can assume that a has a compact support in y.
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We represent the operator b′(y,D) as the integral similar to (3.6):

b′(y′, D) =
∫
eizy

′
b′ζ(D)dz,

where

b′ζ(η) = (2π)−m
∫
e−iy

′ζb′(y′, η)dy′. (3.10)

Then the difference hOPS(a)OPS(b′)− hOPS(cN ) can be written as∫
h(a(y,D)eizy

′
b′ζ(D)−

∑
|α|<N

(α!)−1aα(y,D)bαζ′(D))dζ, (3.11)

where b′α is defined by the formula similar to (3.10), with Dα
y′b
′ instead of b′ and

aα = ∂αη a. We will show that for N large enough, the integrand in (3.11) is a trace
class operator, with trace norm decaying sufficiently fast as ζ →∞. To do this, we
write the action of the operator a(y,D)eizy

′
b′ζ(Dy′) on some function u by means

of the Fourier transform, as in (3.4):

(a(y,D)eiζy
′
b′ζ(Dy′)u)(y) =

∫
a(y, η)eiη(y−y′)eiζy

′
b′ζ(η)û(η)dη. (3.12)

Now, as it is usually done in the scalar case, we write a finite section of the Taylor
expansion of a(y, η) at the point (y, η − ζ) in powers of ζ, with a remainder term.
Taking into account that ζαbζ(η) = bαζ , only the remainder term survives in (3.11)
and one can express the integrand in (3.11) as a pseudodifferential operator with
symbol

eiζy
∑
|α|=N

∫ 1

0

ζαaα(y, (η − ζ) + tζ)b′ζ
α(η)dt. (3.13)

Now, if N is large enough, aα(y, (η−ζ)+tζ) is trace class, with trace class norm fast
decaying in η variable; at the same time, smoothness of the symbol b′ guarantees
fast norm decay of b′αζ in ζ variable (these estimates just repeat the scalar ones in
[13]). This, according to Proposition 3.2, leads to a fast trace norm decay in ζ vari-
able of the integrand in (3.13), and therefore (3.11) is a trace class operator, again
with trace norm controlled by L∞-norm of h. To deal with general h, represent it
as a sum of functions hj supported in disjoint cubes, apply the above reasoning to
each hj and sum the resulting estimates. �

A version of Theorem 3.6 will be used, where the function h is not present, but
instead of this, as y →∞, the symbol a tends, sufficiently fast, to a symbol a0 ∈ Sγq
not depending on η: there exists a (smooth) function h(y) = O((1+ |y|)−m−1) such
that h(y)−1(a(y, η)− a0(y)) ∈ Sγq . In the course of the paper, it is in this sense we
will mean that the symbol stabilises at infinity.

Corollary 3.7. Suppose that the conditions of the Theorem 3.6 are fulfilled, and,
additionally, a stabilises at infinity. Then

OPS(a)OPS(b)−OPS(cN ) ∈ s1(L2(Rm; K)).
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Proof. The symbol a′(y, η) = h(y)−1(a(y, η) − a0(y)) satisfies the conditions of
Theorem 3.6, and thus the difference h(y)(OPS(a′)OPS(b) − OPS(c′N )) belongs
to the trace class where c′N is constructed similarly to cN , with a replaced by
a′. As for the remaining term, generated by a0, it makes no contribution into the
remainder term in the composition formula. �

We note here, although we do not use it in the present paper, that in the same
way, the usual formulas for the change of variables in a pseudodifferential operator
and for the adjoint operator are carried over to the operator-valued case in our
trace class setting, again, with essential use of the Proposition 3.2. Taking into ac-
count the pseudo-locality property, this enables one to introduce pseudodifferential
operators with operator-valued symbols on compact manifolds.

Now we introduce the notion of ellipticity for our operators.

Definition 3.8. The symbol a(y, η) ∈ S0
q (Rm × Rm) stabilizing in y at infinity is

called elliptic if for |y|+ |η| large, a(y, η) is invertible and ‖a−1‖ ≤ C.

For small |η| + |y|, the symbol a(y, η)−1 is not necessarily defined. As usual,
one often needs a regularising symbol defined everywhere and coinciding with a−1

for large η. This can also be done in our calculus, however the cut-off and gluing
operations, used freely in the standard situation, are not so harmless now: even the
multiplication by a nice function of η variable may throw us out of the class S0

q .
Therefore we have to be rather delicate when operating with cut-offs.

Proposition 3.9. Suppose that the symbol a ∈ S0
q (Rm × Rm) is elliptic. Then

there exists a symbol r0(y, η) ∈ S0
q (Rm × Rm), such that r0(y, η) = a(y, η)−1 for

large |y|2 + |η|2 and the symbols r0a− 1 and ar0 − 1 belong to S−1
q .

Proof. Suppose that a is invertible for |y|2 + |η|2 ≥ R2. The inequalities of the form
(3.1), (3.2) hold for a(y, η)−1 for such η. Thus we have to take care of small |y|2+|η|2
only. Fix some η0, |η0| ≥ R. Due to (3.2), the symbol s(y, η) = 1−a(y, η0)−1a(y, η)
belongs to sq for |η| ≤ R, with sq–norms bounded uniformly. Set

r′0(y, η) = a(y, η0)−1 exp(s(y, η) + s(y, η)2/2 + · · ·+ s(y, η)N/N), (3.14)

where the expression under the exponent is the starting section of the Taylor series
for − log(1 − s). From (3.14) it follows that r′0 belongs to S0

q , is invertible, and,
moreover, r′0(y, η)−a−1(y, η) ∈ s q

N
for |y|2 + |η|2 ≥ R2. Now take a cut-off function

χ ∈ C∞0 ({|ρ| < 2R}) which equals 1 for |ρ| ≤ R and set

r0(y, η) = χ((|y|2 + |η|2)1/2)r′0(y, η) + (1− χ((|y|2 + |η|2)1/2))a(y, η)−1.

According to our construction, r0a−1 and ar0−1 have compact support. They do
not improve their properties under η–differentiation, since the cut-off function pre-
vents this, but they already belong to s q

N
for all (y, η), together with all derivatives,

and therefore (3.2) holds, for given N . �

Remark 3.10. Proposition 3.9 illustrates usefulness of our introduction of symbol
classes with only a finite number of derivatives subject to estimates of the form
(3.1), (3.2). Even if for the symbol a in Definition 3.8, estimates (3.1), (3.2) hold
for all α, β, they hold only for derivatives of order up to N for our regularizer r0.

The notion of ellipticity is justified by the following construction of a more exact
regularizer, inverting the given pseudodifferential operator up to a trace class error.
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Theorem 3.11. Let the symbol a ∈ S0
q stabilize in y at infinity and be elliptic.

Then there exists a symbol r(y, η) ∈ S0
q such that

OPS(a)OPS(r)− 1, OPS(r)OPS(a)− 1 ∈ s1(L2(Rm,K)). (3.15)

Proof. Taking into account Theorem 3.6, Corollary 3.7 and just established prop-
erties of our symbol calculus, the construction follows the usual one. There is,
however, an important difference. As usual, one sets, for N large enough,

r = [r0 ◦N
N∑
j=0

(1− a ◦N r0)◦N
j

]N , (3.16)

where ◦N denotes the composition rule (3.9) for symbols, and the expression [·]N
means that one leaves only the terms containing derivatives of the a, r0 up to the
order N . However, in the scalar calculus, the number N determining the quantity
of terms retained in the composition formula depends only on the dimension m
of the space while in our operator-valued calculus it depends additionally on the
number q involved in the definition of the symbol class. �

Note that the explicit expression (3.16) guarantees, just like in the usual situa-
tion, that the symbols [a ◦N r− 1]N , [r ◦N a− 1]N have compact support in (y, η)
- variables.

Remark 3.12. Analysing the proofs in this section, one can note that the condi-
tions in the definition 3.1 may be relaxed, without changing the properties of the
above pseudodifferential calculus. In fact, the ’better-than-trace-class’ properties
of the η-derivatives of the symbols are nowhere used. What is actually used is
that the trace class norm of these derivatives decays fast, for derivatives of suffi-
ciently high order. More exactly, it is sufficient to require (3.2) only for such α that
q/(−γ + |α|) ≤ 1. If |α| > γ + q, (3.2) can be replaced by

|Dα
ηD

β
ya(y, η)|1 ≤ Cα,β(1 + |η|)q+γ−|α|, |α| > γ + q. (3.17)

In this form, the conditions are much easier to check, since one does not need any
criteria for an operator to be ’better-than-trace-class’.

4. Preliminary index formulas and K1-theoretical invariants.

As it follows from Theorem 3.11 in a usual way, a pseudodifferential operator
with elliptic symbol in the class S0

q is Fredholm. In fact, it is already well known
for a long time (see, e.g., [15]) that this is the case even for a much wider class of
operator-valued symbols. Under our conditions, we will be able to investigate what
the index of such operators can depend on. Note, first of all, that due to Theorem
3.11, the index of the operator is preserved under homotopy in the class of elliptic
symbols. However, the notion of elliptic symbol does not have (at least direct) K1-
theoretical meaning: it does not define an invertible element in a local ∗-algebra.
This problem does not arise in the usual pseudodifferential calculus since, at least
for classical poly-homogeneous symbols, the notion of the principal symbol of an
operator saves the game. In the operator case, the homogeneous symbols are not
interesting for applications, and therefore there is no natural notion of the leading
symbol. For non-homogeneous symbols, in the scalar (matrix) case, the index was
studied by L. Hörmander ([11]). There, a procedure was used of approximating a
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non-homogeneous symbol by homogeneous ones. A possibility of applying analytical
index formulas based on (4.2) in the topological study is indicated in [11] as well.

We start by establishing an analytical index formulas for elliptic symbols in our
classes. Here, under an analytical formula we mean one which involves an expression
containing integrals of some finite combinations of the symbol, its regularizer and
their derivatives. The first formula is rather rough, preliminary, and it will be
improved later. This is the abstract operator-valued version of the ’algebraic index
formula’ obtained for the matrix situation in [6] and later for some concrete operator
symbols in [9].

In what follows, the symbols are supposed to belong to classes S0
q . The def-

inition of these classes involves a certain finite number N of derivatives. In our
constructions, this N may vary from stage to stage. It is supposed that from the
very beginning, N is chosen large enough, so on all later stages, it is still sufficiently
large, so that the results of Sect.3 hold.

Proposition 4.1. Let a(y, η) ∈ S0
q (Rm×Rm; K) be an elliptic operator symbol sta-

bilizing in y at infinity in the sense of Sect. 3, r(y, η) is the regularizer constructed
in Theorem 3.11, A,R be the corresponding operators in L2(Rm,K). Then, for M
large enough,

indA =
1

(2π)m

∫
Rm×Rm

tr[(a ◦M r− r ◦M a)]Mdydη, (4.1)

where tr denotes the trace in the Hilbert space K.

Proof. We modify the reasoning in [6] to fit into the operator-valued situation. In
the classical Calderon formula

indA = Tr(AR−RA) (4.2)

we calculate the right-hand side in the terms of the symbols a, r. Introduce the
regularized trace for the product of two pseudodifferential operators. For symbols
a,b ∈ Sγq , stabilising at infinity, A = OPS(a), B = OPS(b) and fixed M , we set

TrM (AB) = Tr(AB −OPS([a ◦M b]M )). (4.3)

As it follows from Theorem 3.6, for M large enough, (4.3) is well defined and
finite. Next we include a,b in the families of symbols depending analytically on a
parameter.

Fix a positive self-adjoint operator Z ∈ sq(K) and introduce the families of
symbols

aκ(y, η) = (1 + |y|2)−κa(y, η)((1 + |η|2)1/2 + Z−1)−κ,<κ ≥ 0

and, similarly, bκ(y, η). For any fixed κ,<κ ≥ 0, the symbols aκ,bκ belong to
S−<κq (Rm×Rm; K) and, additionally, decay as |y|−2<κ, together with derivatives, as
y →∞. According to Proposition 3.2, Remark 3.4, the operators Aκ = OPS(aκ),
Bκ = OPS(bκ), depending on κ analytically, belong to the trace class as soon as
<κ is large enough. Therefore, for such κ the usual equality

TrAκBκ = TrBκAκ (4.4)

holds. Next, again due to Proposition 3.2, the operators Cκ = OPS([aκ ◦M bκ]M ),
Dκ = OPS([bκ ◦M aκ]M ) belong to trace class for <κ large enough. Calculating
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the trace of the operator Ck in the usual way, we come to the expression

TrCκ = (2π)−m
∫

Rm×Rm

∑
|α|≤M

1
α!

tr(∂αη aκDα
y bκ)dydη. (4.5)

For <κ large enough, the operators under the trace sign in (4.5) belong to trace
class and therefore can be commuted, preserving the trace of their product. After
this, exactly like in [6], we can, by integration by parts, move y-derivatives in
the integrand in (4.5) from b to a and η-derivatives – from a to b. This gives
TrCκ = TrDκ. Together with (4.4), this produces

TrM (AκBκ)− TrM (BκAκ) = 0, <κ >> 0. (4.6)

Since both parts in (4.6) are analytical for <κ > 0 and continuous for <κ ≥ 0, this
implies TrM (AB)−TrM (BA) = 0. Setting now B = R and using (4.2) we come to
(4.1). �

Analysing this preliminary index formula, we find out now, on which character-
istics of the symbol the index actually depends.
Proposition 4.2. Let a,a′ ∈ S0

q be elliptic symbols stabilizing at infinity, A,A′

be corresponding pseudodifferential operators in L2(Rm,K) and suppose that for
some R ≥ 0, both symbols a(y, η),a′(y, η) are invertible for |y|2 + |η|2 ≥ R2. Let
the symbols a,a′ coincide on the sphere SR = {(y, η) : |y|2 + |η|2 = R2}, Then
indA = indA′.
Proof. We start by performing a special homotopy of the symbol a′. Since a(y, η) =
a′(y, η) on SR, and their η- derivatives belong to sq, the difference a(y, η)−a′(y, η)
belongs to sq for all (y, η) (this, however, does not imply a− a′ ∈ S−1

q since a− a′

does not necessarily decay as η tends to infinity.) Let r′0 be the rough regularizer for
a′ existing according to Proposition 3.9. Therefore, we have ar′0 = 1+s, s(y, η) ∈ sq.
Consider the family

at = exp(t(s− s2/2− · · · − (−1)NsN/N))a′, (4.7)

where, similarly to (3.14), the starting section of the Taylor series for log(1 + s)
is present under the exponent. In (4.7), for t = 0, we have a0 = a′, and for
t = 1, a1 = a + w,w(y, η) ∈ s q

N
. All symbols at are elliptic (since the exponent of

everything is invertible) and thus

indOPS(a1) = indOPS(a′).

Since s = 0 on the sphere SR, it follows from (4.7) that a1 = a on this sphere,
moreover, a1 is invertible outside it.

Now take a cut-off function χ ∈ C∞0 which equals 1 inside SR and has sufficiently
small support, so that for (y, η) ∈ supp∇χ, the inequality ‖a1(y, η) − a(y, η)‖ ≤
1
2‖a(y, η)‖−1 holds. Define the new symbol a2 = χa + (1 − χ)a1. The symbol a2

belongs to S0
q and is elliptic. The difference a1 − a2 = χ(a1 − a) has compact

support and belongs to s q
N

for all (y, η), therefore a1 − b ∈ S−Nq . This all gives

ind(OPS(a2)) = ind(OPS(a1)) = ind(OPS(a′)).

Moreover, a2 is invertible outside SR and coincides with a inside SR.
Finally, we construct regularising symbols r, r2 for a,a2 as in Theorem 3.11, in

such way that a◦M r−1, a2◦M r2−1, r◦M a−1, r2◦M a2−1, vanish outside this ball.
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Then the integrand in formulas (4.1) written for both a and a2 vanishes outside
the sphere SR and is the same inside SR, thus ind(OPS(a2)) = ind(OPS(a)). �

Now we will see that the index is the same for two symbols if, in the conditions
of Proposition 4.2, we replace equality of symbols on the sphere by their homotopy.
Proposition 4.3. Denote by Eq = Eq(SR) the class of norm-continuous inver-
tible operator-valued functions on the sphere SR having first order η-derivatives
in sq. Let a,a′ ∈ S0

q be elliptic symbols stabilizing at infinity and invertible for
|y|2 + |η|2 ≥ R2. Suppose that the restrictions b and b′ of these symbols to the
sphere SR are homotopic in Eq. Then indOPS(a) = indOPS(a′).
Proof. The situation is reduced to the one in Proposition 4.2. First, performing a
standard smoothing, we can assume that the given homotopy bt, b0 = b,b1 = b′,
consists of functions possessing η-derivatives in sq and bounded y-derivatives up
to some high enough order, additionally, it depends smoothly on the parameter
of homotopy t. Then, by replacing a(y, η) by a(y, η0)−1a(y, η) and similarly with
a′,bt, we reduce the problem to the one where all symbols differ by terms in sq
from the unit one. Next, applying the homotopy as in (4.7), we further arrive at
the situation when all symbols differ from the unit operator by terms in s q

N
. After

this preparatory reduction, we construct the final homotopy. Take a real function
ρ(λ), smooth on (0,∞), supported in (1

2 , 2), 0 ≤ ρ(`) ≤ 1, such th at ρ(1) = 1.
Denote s = ((|y|2 + |η|2)

1
2R)−1 and define the homotopy in the following way.

at(y, η) = a(y, η)b((Ry,Rη)/s)−1btρ(s)((Ry,Rη)/s). (4.8)

It is clear, that, for N large enough, the symbol at belongs to S0
q , is invertible as

long as a is, in particular, outside SR, coincides with a for t = 0, while for t = 1,
(y, η) ∈ SR, we have a1(y, η) = b′(y, η). Now we are in conditions of Proposition
4.2, and therefore indices coincide. �

As a result of our considerations, we can see that the index of the pseudodifferen-
tial operator with operator-valued symbol depends only on the class of the symbol
in K1(Eq(SR)).
Theorem 4.4. The index of a pseudodifferential operator defines a homomorphism

IND : K1(E(SR))→ Z. (4.9)

Proof. We will show that for any element v ∈ Eq, there exists an elliptic symbol
b ∈ S0

q invertible outside and on the sphere SR, such that the restriction w of b
to the sphere is homotopic to v in Eq. Provided such extension exists, Proposition
4.3 guarantees that the index of the operator with the above symbol b does not
depend on the choice of the symbol b and therefore depends only on the homotopy
class of the initial symbol v. The homomorphism property and invariance under
stabilisation are obvious.

So, for the given v, choose, for any y, |y| ≤ R, a η0(y), |y|2 + |η0(y)|2 = R2,
depending smoothly on y. The function v0(y, η) = v(y, η0(y)) does not in fact
depend on η, is smooth in y, |y| ≤ R and invertible. It therefore admits a smooth
bounded invertible continuation b0 to the whole R2m, again not depending on
η. The operator with this symbol is just a multiplication operator and therefore
it has zero index. Consider now u(y, η) = v(y, η)v0(y, η)−1 ∈ Eq. Due to the
definition of the class Eq, the symbol u has the form 1 + k with some continuous
once differentiable function k ∈ S0

q having values in sq. Performing the homotopy
as in (4.7), we reduce the situation to the case k(y, η) ∈ sq/N , with prescribed
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N . Next, smoothen k, to get a function z on SR, with the prescribed number
of η- derivatives in sq/N . Let c be the extension of this function z to the whole
R

2m \{0} by homogeneity of order 0. Finally, the required symbol b is constructed
as b(y, η) = (1 + (1 − χ(|y|2 + |η|2))c)b0 with a smooth cut-off function χ ∈ C∞0 ,
χ = 1 near the origin. �

5. Reduction of index formulas

The analytical index formula (4.1) has a preliminary character; it involves higher
order derivatives of the symbol and its regularizer. Moreover, it does not reflect the
algebraic nature of the index. In fact, (4.1) contains integration over the ball, while
we already know (see Theorem 4.4) that the index depends only on the homotopy
class of the symbol on the (large enough) sphere. In other words, (4.1) does not
correspond to a homomorphism (4.9) from K1 for the symbol algebra to Z. Thus
a reduction of the formula is needed.

The starting point in this reduction is the result of Fedosov [6] establishing the
formula of required nature for the case of the space K of finite dimension.
Theorem 5.1. Let the Hilbert space K have finite dimension. Then (4.1) takes the
form

indA = cm

∫
SR

tr((a−1da)2m−1), cm = − (m− 1)!
(2πi)m(2m− 1)!

, (5.1)

where, in the integrand, taking to power is understood in the sense of exterior
product.

Taking into account Theorem 4.4, we can consider (5.1) not as the expression
for the index of operator but as a functional on symbols defined on the sphere. To
use the strategy outlined in Sect.2, we represent (5.1) by means of a proper cyclic
cocycle in a local C∗-algebra.

We define several algebras where the cocycles will reside. All of them consist of
operator-valued functions on the sphere S = SR, continuous in the norm operator
topology on the (now, infinite-dimensional) Hilbert space K. Moreover, when deal-
ing with derivatives of the symbols, we suppose that they are continued zero order
homogeneously in η in some neighbourhood of S, and it is for this continuation we
consider η-derivatives.

First, the largest is the C∗-algebra B of all continuous operator-valued functions
on S. The closed ideal C in B is formed by functions with values being compact
operators in K. Next, for 1 ≤ q <∞, we define the subalgebra Sq consisting of once
differentiable functions with η-derivative belonging to the class sq(K). An ideal S0

q

in Sq is formed by the functions having values in sq(K). The smallest subalgebra
S0

0 consists of functions with finite rank values, with rank uniformly bounded over
S. It is clear that Sq,S

0
q are local C∗-algebras, moreover, S0

q are dense in C while
Sq are dense in the C∗-algebra of functions in B having compact η-variation.

Now we introduce our initial cyclic cocycle.
For a0,a1, . . . ,a2m−1 ∈ S0

0 we set

τ2m−1(a0,a1, . . . ,a2m−1) = (−1)m−1cm

∫
S

tr(a0da1 . . . da2m−1). (5.2)

The trace in (5.2) always exists, since at least one factor under the trace sign is a
finite rank operator. The fact that the functional τ2m−1 is cyclic follows from the
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cyclic property of the trace and the fact that

tr(a0da1 . . . da2m−1) + tr(da0a1 . . . da2m−1) = d tr(a0a1 . . . da2m−1),

the latter being thus an exact form on S. The Hochshild cocycle property is also
checked directly.

Next, the cocycle (5.2) extends to the algebra S0 obtained by attaching a unit
to S0

0: for ãj = λj1 + aj , λj ∈ C,aj ∈ S0
0, we have

τm(ã0, . . . , ã2m−1) = τm(a0, . . . ,a2m−1). (5.3)

Proposition 5.2. The cocycle τm in (5.3) extends by continuity to the algebra S0
q,

for any q < 2m− 1. Moreover, for an element ã ∈ GL(S0
q),

IND([ã]) = τm(ã−1 − 1, ã− 1, . . . , ã− 1). (5.4)

Proof. Due to compactness of the sphere, a continuous operator-valued function
with values in the ideal sq can be approximated in the metric of S0

q by finite rank
functions, moreover, having, for all (y, η), range in the same finite-dimensional
subspace in K . We approximate in this way all symbols aj , and due to the inequality
(3.3), the functional τm depends on finite rank symbols continuously in the sense
of S0

q and this enables us to extend the functional to the whole of S0
q. As for the

formula (5.4), it follows from the above continuity and Theorem 4.4. �

The next step consists in finding an index formula for the algebra Sq, q < 2m−1.
Take some a ∈ GL(Sq). For any y, |y| ≤ 1, fix some η0(y) so that |y|2+|η0(y)|2 = 1,
so that η0(y) depends continuously on y. For the symbol a0(y, η) = a(y, η0(y)), the
index vanishes, since, after the natural continuation to the whole of R2m, it defines
an invertible multiplication operator. Thus, for

ã(y, η) = a(y, η)a−1
0 (y, η), (5.5)

we have IND([ã]) = IND([a]). This gives us
Proposition 5.3. For a ∈ GL(Sq),

IND([a]) = τm(ã−1 − 1, ã− 1, . . . , ã− 1), (5.6)

with ã defined in (5.5).
Now we apply the strategy depicted in Sect.2, to construct index formulas for

even wider classes of symbols. For doing this, we will use a specific algebraical
realisation of the periodicity homomorphism in cyclic co-homologies, introduced in
[2, 3] (see also [14]).

For an algebra S, not necessarily with unit, the universal graded differential
algebra Ω∗(S) is defined in the following way. Denote by S̃ the algebra obtained
by adjoining a unit 1 to S. For each n ∈ N, n ≤ 1, let Ωn be the linear space

Ωn = Ωn(S) = S̃⊗S S⊗n; Ω = ⊕Ωn.

The differential d : Ωn → Ωn+1 is given by

d((a0 + λ1)⊗a1⊗ . . .⊗an) = λ1⊗a0⊗ . . .⊗an ∈ Ωn+1

By construction, one has d2 = 0. One defines a right S−module structure on Ωn

by setting

(ã0⊗a1⊗ . . .⊗an)a =
n∑
j=0

(−1)n−j ã0⊗ . . .⊗ajaj+1⊗ . . .⊗a.
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This right action of S extends to a unital right action of S̃. Then the product
Ωi × Ωj → Ωi+j is defined by

ω(b̃0⊗b1⊗ . . .⊗bj) = (ωb̃0)⊗b1⊗ . . .⊗bj , ω ∈ Ωi.

This product satisfies

ã0da1 . . . dan = ã0⊗a1⊗ . . .⊗an, aj ∈ S

and gives Ω the structure of a graded differential algebra. This algebra is universal
in the sense that any homomorphism ρ of S into some differential graded algebra
(Ω′, d′) extends to a homomorphism of (Ω, d) to (Ω′, d′) respecting the product of
differentials.

We make this construction concrete, taking as S the algebra S0
q and as differ-

ential algebra Ω′(Sq) the algebra of operator-valued differential forms on S2m−1

ω′ = ã0d
′a1 . . . d

′aj , j = 0, 1, . . . 2m− 1,

where in the product, for the terms of the form

d′a =
∑

(aνdyν + a′νdην),

the usual product of operators and the exterior product of differentials is used. We
take identity as the homomorphism ρ involved in the definition of the universality
property. We will omit the prime symbol in the sequel.

According to [3, Proposition 4, Ch.III.1], any cyclic cocycle τ ∈ Cnλ (S) of di-
mension n can be represented as

τ(a0, . . .an) = τ̂(a0da1 . . .an),

where τ̂ is a closed graded trace of dimension n on Ω(S). In our particular case,
this representation is generated by

τ̂(ω) = (−1)m−1cm

∫
S

trω, ω = ã0da1 . . . da2m−1.

For q ≤ 2m, τ̂ is, in fact, a graded closed trace of dimension 2m − 1 on Ω(S0
q).

Moreover, for q ≤ 2m − 1 the trace τ̂ , together with the cocycle τ , extends to the
unitalisation Sq of S0

q.
We consider the representation of the homomorphism S on the cocycle level, in

the terms of the above model. For the algebra of complex numbers C, we consider
the graded differential algebra Ω(S)⊗Ω(C), with elements having the form

(a0⊗w0)d(a1⊗w1) . . . d(an⊗wn), w0, . . . , wn ∈ C̃,
with differential

d(a⊗w) = (da)⊗w + a⊗dw. (5.7)
For a cyclic cocycle τ ∈ Cnλ (S) and cyclic cocycle σ ∈ CP1

λ (C), following [3], we
define the cup product τ]σ ∈ Cn+p

λ (S⊗C) = Cn+p
λ (S) by setting

τ]σ(a0, . . . ,an+p) = (τ̂⊗σ̂)((a0⊗e)d(a1⊗e) . . . d(an+p⊗e)), (5.8)

Here, e is the unit in C, i.e. the element 1+01 ∈ C̃, τ̂ , σ̂ are graded closed traces of
degree, respectively, n and p in Ω(S),Ω(C) representing τ, σ and thus only terms
of bidegree (n, p) survive in (5.8). It is shown in [3] that τ]σ is a cyclic cocycle. In
particular, take σ = σ1 ∈ C2

λ(C), σ1(e, e, e) = 1. Cup product with σ1 generates
the homomorphism S in cyclic co-homologies.
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Now we consider iterations of S. For an even integer p = 2l, we consider σl = σ]l1
where ]l denotes taking to the power l in the sense of ] operation. According to [3,
Corollary 13, Ch.III.1], σl(e, e, . . . , e) = l!. To the cocycle σl, there corresponds the
graded closed trace σ̂l of degree p on Ω∗(C), moreover

σ̂l(ede . . . de) = l!.

Cup multiplication with the cocycle σl generates the iterated homomorphism Sl

in cyclic cohomologies of the algebra S. We will study the structure of Slτ , for
τ ∈ Cnλ (S). According to (5.8) and (5.7),

Slτ(a0,a1 . . .an+2l) = Ŝlτ((a0⊗e)d(a1⊗e) . . . d(an+p⊗e))
= (τ̂⊗σ̂)((a0⊗e)(da1⊗e+ a1⊗de) . . . (dan+p⊗e+ an+p⊗de). (5.9)

Since τ̂ is a graded trace of degree n and σ̂l is a graded trace of degree p = 2l,
only the terms of bidegree (n, p) contribute to (5.9). There are a lot of such terms,
and each of them involves the value of τ̂ on a certain product of aj and daj , where
exactly n + 1 factors are of the form aj , including a0, and the value of σ̂l on the
product of the elements e and de, with n+ 1 factors e, including the first one, and
p factors de. Quite a lot of these terms vanish. In fact, since e is an idempotent,
e = e2, we have

de = ede+ dee, edee = 0, edede = dedee. (5.10)

Therefore, if some term contains the product of an odd number of de surrounded
by e, the corresponding term vanishes. Thus only those terms survive where each
group of consecutive de in the product contains an even number of de. For any such
product, using (5.10), we can rearrange the factors e, de and come to the expression
σ̂l(ede . . . de) which equals l!. This leaves us with the contribution to (5.9) involving
aj and daj . In these terms, the variables aj enter in a very special way. Since,
for j 6= 0, aj stand on the places where we had de in (5.9), and daj stand on the
places where we had e, only those terms survive in (5.9), where an even number
of variables aj stand in succession, not counting a0. This gives us the following
characterisation of Slτ .
Proposition 5.4. The image Slτ in Cn+2l

λ of a cyclic cocycle τn ∈ Cnλ under the
iterated homomorphism Sl equals

τn+pS
lτn(a0, . . . ,an+p) = l!

∑
µj ,νj

τ̂(a0

∏
j

AjBj), (5.11)

where the summation is performed over collections of µj , νj such that 1 = ν0 ≤
µ1 < ν1 < µ2 < · · · < µs ≤ νs = n+p+ 1, νj −mj are even, Aj = aνj−1 . . .aµj−1,
Bj = daµj . . . daνj−1,

∑
(νj − µj) = n.

Getting an explicit analytical description of (5.11) might be quite troublesome.
We, however, are interested only in the value of Slτ on a very special collection
of variables aj . In fact, when calculating index, according to (2.1), we evaluate
τ2m−1+2l(a0, . . . ,a2m−1+2l), for a0 = a−1, a2k−1 = (a− 1), a2k = (a−1 − 1). This
enables us to give the following analytical expression for the index.
Theorem 5.5. For a ∈ Eq = GL(Sq), by α2l(a), denote

α2l(a) = (l!)−1

∫
SR

tr
[
(
d

dt
)l(b−1(1− tc)−1db)2m−1|t=0

]
, (5.12)
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and

α′2l(a) = tr
∫
SR

(c + b−1db)2m−1+l, (5.13)

where b(y, η) = a(y, η)a(y, η0(y))−1, c = (b − 1)(b−1 − 1) and in (5.13) only the
term of degree 2m− 1 is naturally preserved under integration.

Then for 2l+ 2m− 1 > q the form in the integrand in (5.12) and the integral in
(5.13) belong to trace class and

IND[a] = cm,lα2l(a) = cm,lα
′
2l(a), cm,l = −(2πi)−m

l!(m+ l − 1)!
(2m+ 2l − 1)!

. (5.14)

Proof. Note first that, as it was done in the proof of Theorem 4.4, passing from
a ∈ GL(Sq) to b ∈ GL(S0

q) does not change the index. We can therefore restrict
ourselves to the case of a ∈ GL(S0

q) and b = a. Our task now is to show that for
our specific choice of variables, the expression (5.11) takes the form (5.12),(5.13).
This, according to Proposition 5.4 and the relation (2.2) between index pairing and
suspension in cyclic co-homology, will mean that for the symbol a ∈ GL(S0

q) = Eq,
q ≤ 2m−1, the index formula (5.13) holds. Then after showing that the functionals
α2l, α

′
2l depend continuously on a − 1 ∈ S0

q, q ≤ 2m + 2l − 1 we extend the index
formula to Eq with such q, as in Proposition 2.1.

So, let us transform (5.11). For our particular choice of variables, each term

Aj equals c
(νj−µj)

2 . This means that all terms in (5.11) can be obtained in the
following way. Write down the expression a−1dad(a−1) . . . da, with m factors da
and m − 1 factors d(a−1). Before each da, d(a−1) insert several terms c, so that
there are l of them altogether. Summing all such products and taking into account
that d(a−1) = −a−1daa−1 and that c and a commute, we come to the formula

τ2l(a−1 − 1, . . . ,a− 1) = cm

∫
S

∑
∑
κj=l

2m−1∏
j=1

(cκja−1da). (5.15)

To describe (5.15) more explicitly, introduce an extra variable t and consider the
expression depending on t:

ψ(t,a) = cm

∫
S

((1− tc)−1a−1da)2m−1. (5.16)

For t small enough, 1− tc is invertible, and therefore (5.16) can be rewritten as

ψ(t,a) = cm

∫
S

((1 + tc + t2c2 + . . . )a−1da)2m−1. (5.17)

Now we can see that (5.15) equals the coefficient at tl in (5.17), and this gives us
(5.12). Since in each term in the sum in (5.12), there are 2m−1 factors da belonging
to sq and l factors c belonging to s q

2
, the form (5.12) extends by continuity to

GL(S0
q), thus giving the index formula. As for (5.13), it is clear that the term of

degree 2m − 1 in the integrand, the only one that survives under the integration,
exactly equals the integrand in (5.15). �

6. Applications I. Toeplitz and cone operators

In this section we show how the results of Sect.5 enable one to derive, in an
uniform way, index formulas for some concrete situations.
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6.1. Toeplitz operators. We start by considering the case of Toeplitz operators
on the line (or, what is equivalent, on the circle) with operator-valued symbols.
Such operators form an important ingredient in the study of pseudodifferential
operators on manifolds with cone- and edge-type singularities (see, e.g., [20, 22]).
The results of this subsection present an abstract version of the analysis given in
[22].

Let b(y) be a function on the real line R1, with values being operators in the
Hilbert space K. We suppose that b(y) = 1 + k(y) is differentiable and stabilises
sufficiently fast at infinity:

k(y),k′(y) ∈ sq(K); ‖k(y)‖ = O((1 + |y|)−q); ||k′(y)||, |k(y)|q = O(1). (6.1)

We consider the Toeplitz operator Tb in the Hardy space H2(R1,K) acting as

Tbu = Pbu,

where P is the Riesz projection P : L2 → H2. This operator does not directly
fit into the scheme of Sect. 3, however the considerations of Sect.5 can be easily
adapted to it. In fact, consider the algebra P0

q consisting of symbols k satisfying
(6.1); Pq is obtained by attaching the unit to P0

q. Additionally, for q = 0, P0
0

consists of (uniformly) finite rank functions k(y) with compact support in R1. The
classical formula (1.1) for the index of Toeplitz operator gives us the cyclic cocycle

τ ∈ C1
λ(P0

0); τ(k0,k1) = − 1
2πi

∫
tr(k0dk1), (6.2)

such that

ind(Tb) = τ(b−1 − 1,b− 1)

for the invertible symbol b = 1 + k, k ∈ P0. This cocycle of dimension 1 has
exactly the same form as the one in Sect. 5 for m = 1, the only (and non-essential)
difference being non-compactness of the integration domain. Thus we can apply
Theorem 5.5, having only to check that for the given q, the suspended cocycle
extends continuously to the algebra Pq. Due to one-dimensionality of the problem,
we can give an explicit expression to the cocycle (5.11). In fact, in our case m = 1
and we have

τl(k0,k1, . . . ,k2l+1) = c1,l

2l∑
j=0

∫
tr(k0 . . .kjdkj+1kj+2 . . .k2l+1). (6.3)

According to (3.3), the cocycle (6.3) is continuous on P0
q for l > 2q. This gives

us the index formula for Tb.

Theorem 6.1. If l > 2q, b is an invertible symbol in Pq then the index of Tb

equals

indTb = (2l + 1)c1,l
∫

tr((b−1 − 1)l(b− 1)lb−1db). (6.4)

In particular, when b(y) is a parameter dependent elliptic pseudodifferential
operator on a compact k-dimensional manifold M , having the form b(y) = 1+k(y),
with k being an operator of negative order −s, the conditions of Theorem 6.1 are
satisfied with any q > k/s. This was the situation considered in [22].
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6.2. Cone Mellin operators. Cone Mellin operators (CMO) are involved into the
local representation for singular pseudodifferential operators near conical points and
edges. The were considered systematically in [19, 32, 33, 38] etc. The index formula
for elliptic CMO was proved in [8], another approach to index formulas for CMO
was proposed in [28]. Here we study CMO in a more abstract setting.

Let K be a Hilbert space. In L2(R+,K) we consider operators of the form

(Au)(t) =
1

2πi

∫
Γ

dz

∫ ∞
0

(t/t1)za(t, z)u(t1)
dt1
t1
, (6.5)

where a(t, ζ) is a function on R+×Γ with values being bounded operators in K. The
line Γ is any fixed vertical line Γ = Γβ = {<z = β} the choice of β determines the
choice of the weighted L2 space where the operator is considered, and the change
u(t) 7→ tβu(t) reduces the problem to the case β = 0 to which we therefore can
restrict our study. The Mellin symbol a(t, z) is supposed to be a bounded operator
in K for all (t, z) ∈ R+ × Γ. We say that it belongs to the class Mµ

q , µ ≥ 0, if the
following conditions are satisfied:

‖∂αt ∂νz a(t, z)‖ = O((1 + |z|)−ν+µ), (6.6)

|∂αt ∂νz a(t, z)| q
ν−µ

= O(1), (6.7)

uniformly in t; for t ∈ (0, c] and for t ∈ [C,∞) the symbol does not depend on t.
The change of variables y = log t, η = iz, transforms CMO to a pseudodifferen-

tial operator considered in Sect.3 with operator-valued symbol in the class Sµq . This,
in particular, means that for µ = 0 the elliptic symbols, i.e., those for which, for
(t, ζ) outside some compact in R+×Γ, a(t, z) is invertible, with uniformly bounded
inverse, give Fredholm operators. The index for such operators can be found by
any of formulas (5.12), (5.13), m = 1, with proper l. The explicit expression for
the suspended cocycle is found in Sect. 6.1. In the co-ordinates (t, z) this gives
Proposition 6.2. For the CMO with elliptic symbol α(t, z),

indA = (2l + 1)c1,l
∫
L

tr[((b(t, z)−1 − 1)(b(t, z)− 1))lb(t, z)−1db(t, z)], (6.8)

where L is a contour in R+×Γ such that on and outside it the symbol a is invertible,
b(t, z) = a(t, z)a(t, z0)−1, and z0 is large enough, so that a(t, z0) is invertible for
all t.

One can give a more topological index formula for CMO.
Theorem 6.3. Let a(t, z) ∈ M0

q be an elliptic Mellin symbol and r(t, z) be the
regularizer: ar − 1, ra − 1 belong to trace class for all (t, z) ∈ R+ × Γ and vanish
outside some compact set. Define the Chern character of the symbol a as

Ch(Ind a) = tr((dr + r(da)r)da). (6.9)

Then

indA =
1

2πi

∫
R+×Γ

Ch(Ind a). (6.10)

Proof. The sense of the formula (6.9) giving the analytic expression for the Chern
character for the Fredholm family a is explained, e.g., in [8]. There, the index for-
mula (6.10) was first proved for the particular case of a being a parameter dependent
elliptic pseudodifferential operator on a compact manifold, using the detailed anal-
ysis of Mellin operators. Another proof of (6.10) was given in [28]; it was based on
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the K-theoretical analysis of the algebra of Mellin symbols. Now, having Proposi-
tion 6.2, the proof of (6.10) is quite short. In fact, under the homotopy of elliptic
Mellin symbols, both parts of (6.8) and the left-hand side in (6.10) are invariant.
The same holds for the right-hand side of (6.10), as an easy calculation shows. Now,
having an elliptic symbol a, we set

as(t, z) = exp(s(−c(t, z) + c(t, z)2/2− · · ·+ (−1)Nc(t, z)N/N))a(t, z), 0 ≤ σ ≤ 1,
(6.11)

where c(t, z) = b(t, z) − 1 and, similar to (4.7), the starting section of the Taylor
expansion for −s log(1 + c) is present under the exponent sign. The homotopy
consists of elliptic symbols, all of them are invertible outside L, moreover, for
s = 1, the symbol b1(t, z) = a1(t, z)a1(t, z0)−1 differs from the identity by a trace
class operator, provided N > q. Therefore, for the index of A the expression (6.8)
with l = 0, holds, i.e. indA = − 1

2πi

∫
L tr(b−1

1 db1). In the latter expression, one
can now interchange trace and integration, and after applying Stokes formula, we
arrive at (6.10). �

Comparing Theorem 6.3 with results of [8], we can see that the condition of
analyticity of the symbol in z variable in no more needed. Moreover, a can be any
operator-valued symbol, not necessarily a parameter dependent elliptic operator.
In particular, it may be an operator on a compact singular manifold, which can
give index formulas for operators on corners (see, e.g., [38, 35]).

7. Applications II. Edge operators

In this section we apply our abstract results to the case of edge pseudodifferential
operators. Such operators arise in the study of pseudodifferential operators on
singular manifolds, see [32, 33, 34, 38, 4, 29, 5], etc. The usual way to introduce such
operators consists in prescribing an explicit representation, involving Mellin, Green
operators and some others. The index formulas for model operators of edge type
were obtained in [31] and in [9], on the base of such detailed edge calculus. Here we
show that these formulas, as well as some new ones of the type found in Sect. 5, hold
in a somewhat more general situation. We depict here a new version of calculus of
edge operators where one avoids using Mellin or Green representation and weighted
Sobolev spaces, thus defining operator symbols not by explicit formulas but rather
by their properties. We just note here that the leading term in our calculus is the
same as in the standard one. We present this calculus in just as general form as it is
needed for illustrating our approach to index formulas. A more extended exposition
of this version of edge calculus will be given elsewhere.

7.1. Discontinuous symbols. In the leading term, our edge operators will be
glued together from usual pseudodifferential operators in the Euclidean space, with
symbols having discontinuities at a subspace - see [19, 23, 25].

Let a(x, ξ) = a(y, z, η, ζ) be a (matrix) function in Rn × Rn = (Rm × Rk) ×
(Rm × Rk), zero order positively homogeneous in ξ = (η, ζ) variables. We suppose
that the function a has compact support in x variable and is smooth in all variables
unless ξ = 0 or z = 0. At the subspace z = 0 the function a has a discontinuity:
it has limits as z approaches 0, but these limits may depend on the direction of
approach:

Φ(y, ω, η, ζ) = lim
ρ→0

a(y, ρω, η, ζ), (7.1)
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moreover, (7.1) can be differentiated sufficiently many times in y, ω, η, ζ while in ρ
variable the symbol a can be expanded by Taylor formula, with sufficiently many
terms. (The reader may even suppose, for the sake of simplicity, that for small ρ, the
function α does not depend on ρ at all.) Such functions we will call discontinuous
scalar symbols.

To the symbol a we associate, in the usual way, the pseudodifferential operator
in Rn acting as

A = F−1
0 aF

0
, (7.2)

where F0 is the Fourier transform in Rn. It is often convenient to consider pseudo-
differential operators in weighted L2 spaces with weight ρσ, ρ = |z|. If |σ| < k/2,
the rule (7.2) defines a bounded operator in the weighted space. For remaining
σ, the definition requires a certain modification, see, e.g., [19, 25]; for the sake of
simplicity, we restrict ourselves to the case |γ| < k/2.

The operator A is bounded in L2(Rn) (with weight). We can represent it as
a pseudodifferential operator with operator-valued symbol. Denote by K0 the
(weighted) space L2(Rk) and set

a(y, η) = F−1a(y, z, η, ζ)F ,
where F is the Fourier transform in L2(Rk). This operator-valued symbol is a
bounded operator for any (y, η), moreover it is differentiable in y, η for η 6= 0,

∂βη ∂
α
y a = F−1∂βη ∂

α
y aF .

This shows that ∂αy ∂
β
η a is a pseudodifferential operator of order −|β| in K0. Since

such operators, with symbol compactly supported in z, belong to sq, q > k/|β|,
(3.2) holds. Homogeneity implies (3.1).

The operator symbol a, however, does not belong to our symbol class S0
q since

these estimates hold only for η outside some fixed neighbourhood of zero. At the
point η = 0 the η-derivatives of a have singularities and thus (3.1), (3.2) fail. In
order to satisfy them we have to introduce some corrections for the symbol.
Proposition 7.1. For any discontinuous symbol a, there exists an operator symbol
b(y, η) ∈ S0

q coinciding with a for η outside some neighbourhood of zero such that
the difference A − OPS(b) belongs to the trace class, and, moreover, the norm of
a(y, η)− b(y, η) can be made arbitrarily small for all (y, η).
Proof. Fix some (large enough) N and set

bN (y, z, η, ζ) = ψ(δ−1|η|)[a(y, z, 0, ζ) +
N∑
|α|=1

(α!)−1ηαDα
η a(y, z, 0, ζ)(1− ψ(|ζ|)]+

(1− ψ(δ−1|η|))a(y, z, η, ζ). (7.3)

Denote by bN (y, η) the operator symbol corresponding to the scalar symbol bN . It is
N times differentiable and differs from a only for small η, therefore (3.1) is satisfied
automatically and it is only for small η that we have to check (3.2). In the symbol
bN , the singularity of η-derivatives at ζ = 0 is cut away, at the same time, as ζ goes
to infinity, ∂βη bN decays as |ζ|−|β| for |β| ≤ N , which grants (3.2). The difference
a−bN is generated by a bounded scalar symbol having a compact support in η and
decaying as |ζ|−N−1 as ζ →∞ (since for large ζ this symbol equals the remainder
term in the Taylor expansion of a in η at the point η = 0). Therefore, forN > k, this
operator symbol belongs to trace class (together with y-derivatives). We can now
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apply Proposition 3.2, and thus A−OPS(bN ) belongs to trace class (note that at
this place it is essential that Proposition 3.2 does not require any smoothness of the
operator symbol in η.) Next we show that the symbol a, although not differentiable
at η = 0, is nevertheless norm-continuous at this point. Note that as η → 0, the
symbol a(x, η, ζ) converges to a(x, 0, ζ), but not uniformly in ζ: this non-uniformity
takes place in the neighbourhood of the point ζ = 0. Thus take a cut-off function
ψ(τ) ∈ C∞0 ([0,∞)) which equals one near zero. Then the symbol a(x, η, ζ)(1 −
ψ(|ζ|)) converges as η → 0 uniformly to a(x, 0, ζ)(1 − ψ(|ζ|)), together with all
derivatives, which grants norm convergence of corresponding operator symbols. On
the other hand, (a(y, z, η, ζ)−a(y, z, 0, ζ))ψ(|ζ|) converges as η → 0 to zero in L2 in
z, ζ variables (uniformly in y) which implies Hilbert-Schmidt, and, therefore, norm
convergence. As a result of this, we can achieve smallness of the norm of this latter
difference due to norm continuity of bN , by choosing a small enough δ in (7.3). �

In the sequel, when talking about the operator symbol associated to the dis-
continuous scalar symbol a, we will mean the symbol bN , with N large enough,
constructed as in Proposition 7.1. To simplify notations, it is this operator symbol
that we now denote by a = OS(a). This does not determine OS(a) in an unique
way, but this ambiguity, due to Proposition 7.1, is not essential for index formulas.

The operator symbols obtained by the above construction possess, in addition
to the general properties of the class S0

q , one more.

Proposition 7.2. Let a be an operator symbol associated to some discontinuous
scalar symbol a. Let ψ(τ) be a cut-off function on the semi-axis which equals 1 in
the neighbourhood of zero. Then

[Dβ
ηa, ψ(|z|)] ∈ S−|β|−1

q , q > k, (7.4)

for all |β| < N ′, where N ′ can be made arbitrarily large by choosing large enough
N in (7.3).

Proof. To show (7.4), it is sufficient to notice that the composition of the pseudodif-
ferential operator with discontinuous symbol with the multiplication by a smooth
function follows the same rules as for usual smooth symbols, since in this case no
z-differentiation is involved. �

We denote the set of operator symbols in S0
q satisfying additionally (7.4) by L0

q.
Up to the above ambiguity in the definition of OS(a), the mapping OS : a 7→

a ∈ L0
q is additive. It is, however, not multiplicative, even if one neglects compact

operator symbols. We introduce here the class of operator symbols arising as the
multiplicative error.

Definition 7.3. Let K be the Hilbert space L2(K) (with weight), where K is
a cone with base being a compact manifold. We say that the operator symbol
g(y, η) ∈ L0

q(R
m,K) belongs to I0

q if for any cut-off function ψ, as above,

(1− ψ(|z|))Dβ
ηg ∈ S−|β|−1

q (7.5)

for all |β| ≤ N ′.
It follows from Proposition 7.2 that one can commute terms in (7.5), moreover,

that I0
q is an ideal in L0

q. An example of operator symbol in I0
q , for K = R

k, is
given by

g(y, η) = F−1
0 g(y, z, ξ)F0,
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with function g(y, z, η, ζ) = |z|−µ(|ξ|−µ), µ > 0, smoothened as in (7.3). Symbols
in this ideal present an abstract generalisation of singular Green operators in the
traditional construction of the edge calculus (see, e.g., [32]).

Proposition 7.4. Let a, b be discontinuous scalar symbols in Rm × Rk, where Rk

is considered as a cone with base Sk−1. Then

OS(a)OS(b)−OS(ab) ∈ I0
q , (7.6)

OS(a∗)−OS(a)∗ ∈ I0
q . (7.7)

Proof. Let ψ be a cut-off function as in Definition 7.3 and ψ′ be another cut-off
function such that ψψ′ = ψ′. So we have

(1− ψ)(OS(a)OS(b)−OS(ab)) = (1− ψ)(1− ψ′)(OS(a)OS(b)−OS(ab))

= (OS((1−ψ)a)OS((1−ψ′)b)−OS((1−ψ′)ab))+[OS((1−ψ)a), (1−ψ′)]OS(b).
(7.8)

In (7.8), the first term to the right belongs to I0
q , since the operators involved

have smooth symbols; for the second term this holds due to Proposition 7.2. The
relation (7.7) is checked in a similar way. �

Definition 7.5. The class S0 = S0(Rm, L2(Rk)) consists of elements a ∈ L0
q for

which there exist a discontinuous scalar symbol a and a symbol c ∈ I0
q such that

a = OS(a) + c. (7.9)

In the sequel, we will refer to OS(a) as the pseudodifferential part and c as the
Green part of the symbol a ∈ S0. It follows from the above propositions that S0

is a *- algebra (without unit).
Now, in order to treat cones with an arbitrary base, we introduce directional

localisation. Let κ, κ′ be smooth functions on the sphere Sk−1. For a discontinuous
symbol a and corresponding operator symbol a, we introduce the localised symbol
aκκ′ = κ(ω)aκ′(ω), ω = z/|z|. Such operator symbol, obviously, belongs to L0

q.

Proposition 7.6 (directional pseudo-locality). If supports of κ, κ′ are disjoint then
aκκ′ ∈ I0

q .

Proof. For a cut-off function ψ as above, we have ψ2(|z|)aκκ′ = [κψ, ψa]κ′, and here
we have a pseudodifferential operator of order -1, as in Proposition 7.2. �

Now we consider homogeneous changes of variables. For an operator symbol
a ∈ Sγq (K0) and directional cut-offs κ, κ′, the symbol b = κ(ω)aκ′(ω) also belongs
to Sγq . Let κκ′ = κ and κ be a diffeomorphisms of a neighbourhood Ω of the
support of κ onto another domain Ω′ on the sphere Sk−1. Then we can define
the transformed symbol κ∗a = κ ◦ a ◦ κ−1, obtained by the homogeneous change
of variables. It is clear that the class Sγq is invariant under this transformation.
Since such change of variables commutes with multiplication by cut-off functions,
such invariance holds also for the classes L0

q and I0
q . At the same time, for any

discontinuous scalar symbol b, supported in the cone over Ω we can define a discon-
tinuous scalar symbol κ∗b obtained from β by the usual rule of change of variables
(κ∗b(z′, ζ ′) = b(κ̃−1(z′), (Dκ̃′)ζ ′) where κ̃(z) = κ(z/|z|)). For operator symbols
obtained by our procedure from discontinuous scalar symbols, the usual rule of
change of variables in the leading symbol is preserved.
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Proposition 7.7. Let a be a discontinuous symbol, a ∈ S0
q be the corresponding

operator symbol, b = κ(ω)a and b = aκκ′ , where κ, κ′ are directional cut-offs,
κκ′ = κ. Then for a diffeomorphism κ,

κ
∗b−OS(κ∗b) ∈ I0

q . (7.10)

Proof. Again, since the class I0
q is defined by the properties of operators cut-away

from the origin, and for such operators (7.8) is just the usual formula of change of
variables. �

7.2. Edge operator symbols. Now let M be a compact k − 1-dimensional man-
ifold, K be the cone over M and K = L2(K). Take a covering of M by co-ordinate
neighbourhoods Uj , but instead of usual co-ordinate mappings of Uj to domains
in the Euclidean space, we consider such mappings κj : Uj → Ωj , where Ωj are
domains on the unit k − 1-dimensional sphere in Rk. For an operator a in K and
cut-off functions κj , κ′j with support in Uj , one defines the operator κ∗j (κjaκ′j) in
L2(Rk) obtained by the change of variables.
Definition 7.8. The operator-function a(y, η), (y, η) ∈ Rm × Rm with values be-
ing operators in K, belongs to S0(Rm,K) if each of operator-functions κ∗j (κjaκ′j)
belongs to S0(Rm,K0).

The following theorem follows automatically from Propositions 7.2, 7.4, 7.6, 7.7.
Theorem 7.9. The class S0(Rm,K) is well-defined, i.e. its definition does not
depend on the choice made in the construction. This class is an *-algebra.

We denote by S = S(Rm,K) the algebra obtained by attaching the unit to S0.
Thus S consists of operator symbols of the form 1 + b, b ∈ S0.

Let us compare the algebra S with the algebra of edge operator symbols con-
sidered, e.g. in [32, 33, 34, 9]. By usual passing to polar co-ordinates (it was called
’conification of calculus’ in [32]) one can see that the main, pseudodifferential part
of our symbols is the same as the Mellin part in the usual edge symbol algebra.
This latter algebra is constructed in such way that it is the smallest possible *-
algebra containing Mellin symbols: thus Green operators arise. On the other hand,
our algebra S is constructed as the largest reasonable algebra containing Mellin
symbols. It, surely, contains Green operators since the latter belong to I0

q .
Now we can apply our index formulas to the operators with symbols in S, thus

generalyzing index theorems from [31, 8]
Theorem 7.10. Let a be a symbol in S, elliptic in the sense of Sect. 3, i.e. a(y, η)
is invertible for |η| large enough and this inverse is uniformly bounded for such η.
Then the pseudodifferential operator A with symbol a is Fredholm in L2(Rm; K) and

indA = cm,lαm,l(a) = cm,lα
′
m,l(a), (7.11)

where αm,l(a), α′m,l(a) are given in (5.12),(5.13), and l is any integer such that
2m+ 2l− 1 > k. Moreover, if r(y, η) is a regularizer for a such that ar− 1, ra− 1
belong to trace class and have a compact support in η, η then

indA = ((2πi)mm!)−1

∫
Rm×Rm

ch(ind a), (7.12)

where
ch(ind a) = tr((drda + (rda)2)m). (7.13)
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Proof. The formula (7.11) is a particular case of Theorem 5.5. As for (7.12), it is
obtained by the same way as (6.10), by a homotopy. In fact, both parts in (7.12)
are invariant under homotopy of elliptic symbols. The homotopy (6.11), with N
large enough, transforms the symbol a to such symbol to which the formula (7.11)
with l = 0 can be applied. For the latter symbol, (7.11) gives (7.13) by means of
Stokes formula, say, like in [6, 31]. �

7.3. Ellipticity. Uniform ellipticity (i.e., invertibility) of the scalar symbol of the
operator is, obviously, a necessary condition of ellipticity of the operator symbol
a. This condition is, as it is well known, not sufficient. In our abstract setting,
one cannot give explicit sufficient conditions of ellipticity of a without imposing
some extra structure on ’Green symbols’ in the class I0

q . We describe here one
of possibilities to arrange such structure, still without restricting oneselves to any
concrete analytical representation of Green symbols, however, modelling, on the
abstract level, the properties of Green symbols in analytical constructions. Con-
sider the one-parametric dilation group (µ(t)v)(z) = v(t−1z) in K = L2(K). Fix
a collection of co-ordinate neighbourhoods on the cone, corresponding diffeomor-
phisms κj and directional cut-offs κj , κ′j , as in Proposition 7.7, so that {kj} form
a partition of unity. Thus, each cj = κ

∗
j (κjaκ′j) is a pseudodifferential opera-

tor with discontinuous symbol cj(x, ξ) plus a symbol from I0
q . Let Φj(y, ω, η, ζ)

be limit values of the symbol cj , as in (7.1). Construct the operator symbol
acting in K0: aj(y, η) = OS(Φj(y, z/|z|, η, ζ)) (so this is a sort of freezing the
scalar symbol at the edge). This symbol possesses the skew-homogeneity property:
aj(y, tη) = µ(t)−1a0(y, η)µ(t), t > 0, |η| ≥ δ. Consider the Green part of the
symbol a: i.e., g(y, η) = a(y, η) −

∑
(κ∗j )−1OS(cj(y, z, η, ζ)). Suppose that there

exists a limit in norm operator topology limt→∞ µ(t)g(y, tη)µ(t−1) = g0(y, η). The
sum a0 + g0 possesses skew-homogeneity property and plays the same role as the
’indicial family’ in [18] or ’the edge symbol’ in [33].
Proposition 7.11. Invertibility of a0 + g0 for |η| > δ, together with ellipticity of
the scalar symbol, form necessary and sufficient conditions for ellipticity of a.
Proof. In more concrete situations, such results were established many times, see,
e.g., [23, 24, 33, 9, 39] etc. In our case, the reasoning goes quite similarly, so we
give just the skeleton of the proof. Take a cut-off function ψ which equals 1 near
the vertex of the cone and construct a regularizer to a in the form

r(y, η) = ψ(a0 + g0)−1 + (1− ψ)r0(y, η), (7.14)

where r0 = OS(a(x, ξ)−1). If the support of ψ is taken small enough, so that on
its support the pseudodifferential symbol aj are sufficiently close, together with
several derivatives, to their limit values as |z| → 0, then the operator symbols
ra − 1,ar − 1 have norm smaller that 1/2 for η large enough, which guarantees
invertibility. Necessity (which we do not need here) is established also in a standard
way. �

7.4. Manifolds with edge, boundary and co-boundary operators. The sym-
bols considered above act in the Hilbert space K of functions defined on a non-
compact cone K. A somewhat different situation one encounters when considering
a compact manifold with an edge.

Let N be a k–dimensional compact manifold with a cone singularity. This means
that N has the structure of a smooth manifold everywhere except the cone vertex z0.
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In other words, N is the union of a compact manifold N0 with boundary M, and the
finite cone with base M, K0 = (M× [0, 1)/(M×{0}) (which we consider as a part
of the infinite cone K, as above). These two parts are smoothly glued together over
M× ( 1

2 , 1). The manifold X with edge is Rm ×N. We consider operator symbols
a(y, η) acting in K = L2(N), glued together from a symbol in S0(Rm, L2(K))
supported in K0 and an operator symbol acting in L2(N0) corresponding to a
usual elliptic pseudodifferential operator on Rm ×N0, with symbol, stabilyzing in
y. Such symbols belong to the class S0

q (Rm × Rm, L2(N)) of Sect. 3, q > k, and
thus the results of Sect. 4, 5 apply. In particular, the index formulas (7.11), (7.12)
hold for elliptic operators in this class. The ellipticity conditions are the same as
in Proposition 7.11.

Finally, we show how operator symbols including boundary and co-boundary
operators fit into our abstract scheme.

In the above situation, let P1(y, η) be an operator acting from C
p to L2(N),

s(y, η) be an operator acting from C
s to L2(N), and δ(y, η) be a p × s matrix,

(y, η) ∈ (Rm × Rm). We suppose that the estimates of the form (3.1) holds for
P1,q,d, with γ = 0; due to finite rank of operators, the estimates of the form (3.2)
hold automatically, with any given q.

We construct the composite symbol ã(y, η) =
(

a(y, η) P1(y, η)
s(y, η) d(y, η).

)
acting from

L2(N)⊕Cp to L2(N)⊕Cs. In order to apply the results of Sect. 3-5 to this symbol,
fix an operator u which establishes an isometry of Hilbert spaces L2(N)⊕ Cs and
L2(N) ⊕ Cp. For the operator symbol b(y, η) = uã(y, η), the start and target
Hilbert spaces are now the same. Provided the symbol b is elliptic, the index
formulas of the form (7.11), (7.12) hold for the corresponding pseudodifferential
operator. Therefore, such formulas hold for the pseudodifferential operators with
elliptic symbols of the form ã.
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