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Existence and uniqueness of classical solutions

to certain nonlinear integro-differential

Fokker-Planck type equations ∗

Denis R. Akhmetov, Mikhail M. Lavrentiev, Jr., & Renato Spigler

Abstract

A nonlinear Fokker-Planck type ultraparabolic integro-differential equa-
tion is studied. It arises from the statistical description of the dynamical
behavior of populations of infinitely many (nonlinearly coupled) random
oscillators subject to “mean-field” interaction. A regularized parabolic
equation with bounded coefficients is first considered, where a small spa-
tial diffusion is incorporated in the model equation and the unbounded
coefficients of the original equation are replaced by a special “bounding”
function. Estimates, uniform in the regularization parameters, allow pass-
ing to the limit, which identifies a classical solution to the original problem.
Existence and uniqueness of classical solutions are then established in a
special class of functions decaying in the velocity variable.

Introduction

In this paper, we establish the existence and uniqueness of classical solutions to
a certain nonlinear Fokker-Planck type ultraparabolic integro-differential equa-
tion which is encountered in the statistical description of the dynamical behav-
ior of populations of infinitely many (nonlinearly coupled) random oscillators
subject to “mean-field” interaction (the space-integral term in the equation ac-
counts for this). Such a model generalizes somehow and improves the results
obtained by the celebrated Kuramoto model [10, 11, 17], which describes a va-
riety of phenomena, in particular self-synchronization, in subject areas ranging
from biology and medicine to physics and neural networks. Space-degenerate
diffusion suggests to consider a regularized equation, where a small spatial dif-
fusion is incorporated into the model equation. The peculiarities of the problem
are numerous and include (besides degeneracy) unbounded coefficients, space-
periodicity of the sought solution, and a nonlinear space-integral term. Esti-
mates, uniform in regularization parameters, allow passing to the limit, which
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identifies a classical solution to the original problem. Existence and uniqueness
of classical solutions are then established in a certain class of functions decaying
in the velocity variable. Below, precise estimates, established in [12] for the de-
cay of convolutions of continuous functions with fundamental solutions to linear
parabolic equations on unbounded domains, are used repeatedly as an essential
tool for general linear parabolic equations in Rn.

Motivation for studying such equations can be provided as follows. Nu-
merous phenomena, pertaining to physics, biology, medicine, and neural net-
works, are reasonably described in terms of large populations of nonlinearly
coupled, often noisy, oscillators. A mathematical model for all these problems
is given by a large system of possibly stochastic nonlinearly coupled ordinary
differential equations. In the limiting case of infinitely many random oscilla-
tors, when the interaction is of the so-called “mean-field” type, a single non-
linear parabolic integro-differential equation, containing an integral term, was
derived by Kuramoto [10] (see also [17]). However, an improvement of the finite-
dimensional model, accounting for certain observed features, led to the intro-
duction of second-order derivatives on the left-hand side of the above-mentioned
system of stochastic differential equations [1, 2, 8, 18, 19]. This suggested that
a nonlinear partial integro-differential equation, more general than Kuramoto’s
equation, could be derived by a similar limiting procedure [2].

Such a new model equation is a Fokker-Planck type equation which, with
normalized parameters, takes the form

∂ρ

∂t
=
∂2ρ

∂ω2
+

∂

∂ω
[(ω − Ω−Kρ(θ, t)) ρ]− ω∂ρ

∂θ
,

where we set, for short,

Kρ(θ, t) := K

G∫
−G

+∞∫
−∞

2π∫
0

g(Ω′) sin(θ′ − θ)ρ(θ′, ω′, t,Ω′) dθ′dω′dΩ′,

with a given “frequency distribution density” function g(Ω) ∈ L1[−G,G], and
a “coupling strength” constant K > 0. This terminology refers to the physical
meaning of g(Ω) and K, cf. [1, 2]. We look for a classical solution, ρ(θ, ω, t,Ω),
to this equation, in the unbounded slab QT := {(θ, ω, t,Ω) ∈ [0, 2π]×R×[0, T ]×
[−G,G]}, which should be 2π-periodic in θ (θ being an angle), nonnegative, and
normalized, i.e.,

2π∫
0

+∞∫
−∞

ρ(θ, ω, t,Ω) dωdθ = 1,

for every t ∈ [0, T ] and every Ω ∈ [−G,G]. These properties are related to the
physical meaning referred to above.

In [12, 13], the present authors have proved existence of strong solutions
to such a problem. In this paper, we address the problem of existence and
uniqueness of classical solutions in a natural class of functions, under additional
requirements on the initial data.
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Apart from the underlying physical meaning, this problem is interesting
from the mathematical point of view for the following sensible reasons, which,
occurring all at the same time, make the problem highly nonstandard (even
from the point of view of the qualitative theory of linear partial differential
equations):

(1) The governing equation is of the second order with respect to ω, but only
of the first order with respect to θ and t. Therefore (disregarding the
integral term, Kρ), this equation is neither of the parabolic nor of the
hyperbolic type.

(2) The equation is considered in the slab QT , which is unbounded. The
variable ω appears twice in the equation as a coefficient, and is unbounded
in QT . This fact gives rise to typical singularity phenomena.

(3) The coefficient ω, multiplying the time-like derivative ρθ, changes its sign
in QT .

(4) The equation contains the integral term Kρ extended over an unbounded
domain.

(5) There is a variable, Ω, the natural frequency of oscillators, with respect
to which no derivative appears, but which plays the role of a coefficient of
the equation and of an integration variable at the same time.

(6) We are interested only in solutions periodic in θ, while the governing equa-
tion contains only the first (time-like) derivative with respect to θ.

Therefore, the results available in the literature concerning parabolic equations
[3, 4, 5, 9, 14], or even integro-parabolic equations [16], cannot be applied to this
case. The idea here is to “regularize” the equation, introducing an additional
diffusive term with respect to θ (with a small parameter ε in front of it), since
such an equation should be considered fully degenerate in θ. We also replace
the two unbounded coefficients ω with a special “bounding” function, FN (ω), in
order to face, rather, families of parabolic equations with bounded coefficients.

Here is the plan of the paper. In Section 1, we formulate precisely the prob-
lem for both the original and the regularized equation. An existence theorem of
classical solutions for the regularized problem, which has been established earlier
by the authors, is then recalled, and a new basic lemma is proved. In Section 2,
existence of classical solutions to the original problem is established. Finally, in
Section 3, we prove the uniqueness of classical solutions. The article ends with
a short summary, which highlights the main results of the paper, i.e., existence
and uniqueness of classical solutions in certain classes of decaying functions.
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1 The statement of the problem and its regular-
ization

The problem considered here is the following. Find a function ρ(θ, ω, t,Ω),
satisfying, in the classical sense, the equation

∂ρ

∂t
=
∂2ρ

∂ω2
+

∂

∂ω
[(ω − Ω−Kρ(θ, t)) ρ]− ω∂ρ

∂θ
, (1.1)

in the unbounded slab QT , subject to the boundary and initial data

ρ|θ=0 = ρ|θ=2π, (1.2)

ρ|t=0 = ρ0(θ, ω,Ω). (1.3)

The function Kρ(θ, t) is that defined in the previous section.

Definition 1.1 By a “classical solution” to the problem (1.1)–(1.3) in QT , we
mean a function ρ(θ, ω, t,Ω) which:

(1) is continuous in QT and has the continuous partial derivatives ρθ, ρω, ρωω,
and ρt in QT ∩ {t > 0};

(2) is such that the integral Kρ(θ, t) defined on the set [0, 2π]×(0, T ] converges
as a Lebesque integral;

(3) satisfies equation (1.1) in QT ∩{t > 0} as well as the periodicity boundary
condition (1.2) and the initial data (1.3) in QT , as a function possessing
the properties of items (1) and (2) above.

Let l0 ≥ 0 be an integer and α0 ∈ (0, 1) a real constant. We shall make the
following

Assumption 1.2 The initial profile ρ0(θ, ω,Ω) is a function: (a1) belonging to
the Hölder space Cl0+α0(Q), where Q := {(θ, ω,Ω) ∈ R × R × [−G,G]}; (a2)
2π-periodic in θ; (a3) nonnegative, ρ0(θ, ω,Ω) ≥ 0 in Q; (a4) normalized for
every Ω ∈ [−G,G], i.e.,

2π∫
0

+∞∫
−∞

ρ0(θ, ω,Ω) dωdθ = 1;

and (a5) with exponential decay in ω at infinity (along with some of its partial
derivatives), according to the following estimate: For a given integer l0 ≥ 0, the
inequalities

sup
θ∈R,Ω∈[−G,G]

|Dl1,l2,l3
θ,ω,Ω ρ0(θ, ω,Ω)| ≤ C0 e−M0ω

2

hold for ω ∈ R and l1 + l2 + l3 ≤ l0, with C0,M0 > 0 constants and li ≥ 0
(i = 1, 2, 3) integers. Here and in the sequel, Dl

ξ (l and ξ being multi-indices)
stands for the differential operator of order li with respect to the variable ξi, for
all i’s.
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As mentioned above, to study (1.1)–(1.3) we perform a parabolic regular-
ization of the governing equation (1.1). Moreover, to overcome the problem
of facing unbounded coefficients in QT (cf. ω, appearing twice in (1.1)), we
replace ω in (1.1) with an arbitrary fixed bounded (“bounding”) function,
FN (ω) ∈ C5+α0(R), with α0 ∈ (0, 1) (see property (a1) of ρ0), such that

FN (ω) =
{
ω for |ω| ≤ N,
sgn(ω)(N + 1) for |ω| ≥ N + 1, sup

N>0
‖F ′N (ω)‖C3(R) <∞.

Instead of (1.1) we therefore study first its parabolic regularization, i.e., the
(ε,N)-family of equations

∂ρε,N

∂t
=
∂2ρε,N

∂ω2
+ε

∂2ρε,N

∂θ2
+
∂

∂ω
(FNρε,N )−(Ω+Kρε,N )

∂ρε,N

∂ω
−FN

∂ρε,N

∂θ
(1.4)

satisfied by ρε,N (θ, ω, t,Ω) in QT ∩{t > 0}. We consider as initial data for ρε,N ,
for every ε > 0 and every N > 0, the initial profile in (1.3). Having added a
term with the second-order derivative with respect to θ, we modify the periodic
boundary condition (1.2) as

(ρε,N , ρε,Nθ )|θ=0 = (ρε,N , ρε,Nθ )|θ=2π (1.5)

for ω ∈ R, t ∈ (0, T ], and Ω ∈ [−G,G].
The regularized problem (1.4), (1.5), (1.3) has been analyzed in [12, 13].

More precisely, the following existence theorem was proved:

Theorem 1.3 Suppose the data of problem (1.4), (1.5), (1.3) satisfy Assump-
tion 1.2 with l0 = 2. Then, for each ε > 0 and each N > 0, there exists a
classical solution ρε,N (θ, ω, t,Ω) to the problem (1.4), (1.5), (1.3) in QT . Such
a solution

(1) is a continuous function of all variables in QT , along with its partial
derivatives Dl1,l2,l3,l4

θ,ω,t,Ω ρε,N in QT , for l1+l2+2l3+l4 ≤ 2, and Dl1,l2,l3,l4
θ,ω,t,Ω ρε,N

in QT ∩ {t > 0} for l1 + l2 + 2l3 + l4 ≤ 4;

(2) satisfies, in the classical sense, equation (1.4) in QT , the boundary data
(1.5) in QT , along with the additional requirement ρε,Nθθ |θ=0 = ρε,Nθθ |θ=2π,
and the initial data (1.3) in QT ∩ {t = 0};

(3) is nonnegative in QT , and normalized as

2π∫
0

+∞∫
−∞

ρε,N (θ, ω, t,Ω) dωdθ = 1

for t ∈ [0, T ] and Ω ∈ [−G,G];
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(4) has an exponential decay at infinity in ω, according to

sup
θ∈[0,2π],t∈[0,T ],Ω∈[−G,G]

|Dl1,l2,l3,l4
θ,ω,t,Ω ρε,N (θ, ω, t,Ω)| ≤ Cε e−Mεω

2

for l1 + l2 +2l3 + l4 ≤ 2 and ω ∈ R, where the constants Cε,Mε > 0 depend
on ε, N , G, T , K‖g‖L1[−G,G], C0, and M0; moreover,

sup
θ∈[0,2π],Ω∈[−G,G]

|Dl1,l2,l3,l4
θ,ω,t,Ω ρε,N (θ, ω, t,Ω)| ≤ Cε√

t
e−Mεω

2

for l1 + l2 + 2l3 + l4 = 3, ω ∈ R, and t ∈ (0, T ], with the same constants
Cε,Mε > 0 given above; and

sup
θ∈[0,2π],Ω∈[−G,G]

|Dl1,l2,l3,l4
θ,ω,t,Ω ρε,N (θ, ω, t,Ω)| ≤ Cε

t

for l1 + l2 + 2l3 + l4 = 4, ω ∈ R, and t ∈ (0, T ], with the same Cε given
above;

(5) is such that the function Kρε,N (θ, t) is continuous in Π := [0, 2π] × [0, T ]
along with the partial derivatives Dk,l

t,θKρε,N with k ≤ 1, l ≥ 0, and the
estimate

‖Kρε,N ‖C1(Π) + sup
k≤1,l≥0

‖Dk,l
t,θKρε,N ‖C(Π) ≤ C

holds, where the constant C is independent of ε ∈ (0, 1) and N > 0.

Remark 1.4 From now on, we use for short the notation D for any derivative
Dl1,l2,l3,l4
θ,ω,t,Ω with l1 + l2 + 2l3 + l4 ≤ 2.

We first prove the following basic lemma, using the additional properties of
the initial data, that is l0 = 4 rather than l0 = 2 in Assumption 1.2, cf. [13]:

Lemma 1.5 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4. Then

(1) for arbitrary fixed values of the parameters t ∈ [0, T ] and Ω ∈ [−G,G], the
functions Dρε,N can be estimated uniformly as

‖Dρε,N‖W 2,2
2
≤ C̃

on the set {(θ, ω) ∈ [0, 2π] × R}, where the constant C̃ is independent of
ε ∈ (0, 1), N > 0, t ∈ [0, T ], and Ω ∈ [−G,G];

(2) for every fixed t ∈ [0, T ], the functions Dρε,N satisfy the uniform estimates

‖Dρε,N‖W 2,2,2
2
≤ C

on the set {(θ, ω,Ω) ∈ [0, 2π] × R × [−G,G]}, where the constant C is
independent of ε ∈ (0, 1), N > 0, and t ∈ [0, T ];
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(3) for every fixed Ω ∈ [−G,G], the functions Dρε,N are estimated uniformly
as

‖Dρε,N‖W 2,3,1
2
≤ C

on the set {(θ, ω, t) ∈ [0, 2π] × R × [0, T ]}, where the constant C is inde-
pendent of ε ∈ (0, 1), N > 0, and Ω ∈ [−G,G].

Proof. Define Q∗T := {(θ, ω, t,Ω) ∈ R×R×(0, T ]× [−G,G]}, and consider the
functions ρε,N in Q∗T as 2π-periodic functions of θ. In view of Theorem 1.3, the
so-extended functions ρε,N are bounded classical solutions to the corresponding
Cauchy problem (1.4), (1.3) in Q∗T , with Ω a fixed parameter in [−G,G]. We
then consider the corresponding Cauchy problems for the derivatives Dρε,N

in Q∗T . The equations satisfied by every derivative Dρε,N differ from (1.4)
only by low-order terms and right-hand sides. Moreover, these additional low-
order terms have uniformly bounded coefficients, and the right-hand sides have
already been uniformly estimated in some spaces. Therefore, we obtain for
Dρε,N the same estimates as those established in [13] for ρε,N . The method
is based on differentiating both sides of the equations, multiplying by certain
functions, integrating, and using Gronwall’s lemma. The proof of Lemma 1.5 is
thus similar to that of Theorems 2.2, 2.4, and 3.2 in [13], and hence is omitted
here. �

Corollary 1.6 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4. Then, the functions Dρε,N can be estimated uniformly as

‖Dρε,N‖W 2,3,1,2
2 (QT ) ≤ C,

where the constant C is independent of ε ∈ (0, 1) and N > 0.

The proof follows from items (2) and (3) of Lemma 1.5, by the definition of
the anisotropic Sobolev spaces, see [6].

2 The existence theorem

In this section we prove one of the main results of the paper, that is existence
of “decaying” classical solutions. The proof can be given using the additional
properties of the initial data, determined by the choice l0 = 4 instead of l0 = 2
in the Assumption 1.2, cf. [13].

We now introduce some auxiliary notation and facts. Let Q be a domain in
R
n (in particular, Q may be unbounded), λ = (λ1, λ2, . . . , λn) be a multi-index

with λi ∈ (0, 1] for i = 1, 2, . . . , n, and [x, y] the straight-line segment joining
the points x, y ∈ Rn. Let ei be the unit vector in Rn with the ith component
equal to 1. For every function u(x) and every parameter value h ∈ R, set

∆i(h)u(x) :=
{
u(x+ hei)− u(x) if [x, x+ hei] ⊂ Q,
0 if [x, x+ hei] 6⊂ Q.
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Let Cλ(Q) denote the set of functions u(x) ∈ C(Q) with the finite norm

‖u‖Cλ(Q) := ‖u‖C(Q) +
n∑
i=1

sup
x∈Q,h>0

|∆i(h)u(x)|
hλi

.

The following two embedding results are well known, cf. [6, 7, 20]:

Lemma 2.1 Let 1 < p < ∞, and let Q be a bounded domain satisfying the
strong l-horn condition [6] with the multi-index l = (l1, l2, . . . , ln), where li > 0,
i = 1, 2, . . . , n, are integers. If the constant

Θ := 1− 1
p

(
1
l1

+
1
l2

+ · · ·+ 1
ln

)
(2.1)

is positive, then the anisotropic Sobolev space W l
p(Q) is embedded in the aniso-

tropic Hölder space Cλ(Q) with the multi-index λ = (λ1, λ2, . . . , λn), where
λi = Θli for Θli < 1 and λi < 1 for Θli ≥ 1. Moreover, every function
u(x) ∈W l

p(Q) satisfies the inequality

‖u‖Cλ(Q) ≤ C‖u‖W l
p(Q),

where the constant C is independent of u(x).

Lemma 2.2 Let 1 ≤ p <∞ and Q be a domain satisfying the l-horn condition
[6] (in particular, Q may be unbounded). If Θ > 0 in (2.1), then the anisotropic
Sobolev space W l

p(Q) is embedded in C(Q). Moreover, every function u(x) ∈
W l
p(Q) satisfies the inequality

‖u‖C(Q) ≤ C‖u‖W l
p(Q),

where the constant C is independent of u(x).

Note that, by the extension theorem in [6] and Corollary 1.6, for l1 + l2 +
2l3 + l4 ≤ 2 there exist functions uε,Nl1,l2,l3,l4(θ, ω, t,Ω) ∈W 2,3,1,2

2 (R4) such that

uε,Nl1,l2,l3,l4(θ, ω, t,Ω) = Dl1,l2,l3,l4
θ,ω,t,Ω ρε,N (θ, ω, t,Ω) in QT ,

‖uε,Nl1,l2,l3,l4‖W 2,3,1,2
2 (R4) ≤ C,

where the constant C is independent of ε ∈ (0, 1) and N > 0. The following
statement is a special case of [15, Theorem 7.7].

Lemma 2.3 Suppose that a sequence {un}∞n=1 is such that

‖un‖W 2,3,1,2
2 (R4) ≤ C

for all n = 1, 2, . . ., where the constant C is independent of n. Then there exist
a subsequence {unk}∞k=1 and a function u ∈W 2,3,1,2

2 (R4) such that

lim
k→∞

‖unk − u‖W 1,2,0,1
2 (Q) = 0

for every bounded domain Q ⊂ R4.
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At this point, a uniform decay property of the derivatives Dρε,N can be
established.

Lemma 2.4 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4, and let a(ω) be any fixed positive twice-differentiable function, such
that

a(ω) = M |ω| for |ω| ≥ 1,

‖a′‖C1(R) <∞, ωa′(ω) ≥ 0 and a′′(ω) ≥ 0 for ω ∈ R,

where M > 0 is a parameter. Then, for arbitrary fixed values of the parameters
t ∈ [0, T ], Ω ∈ [−G,G], and M > 0, the functions Dρε,N can be estimated
uniformly as

‖ea(ω)Dρε,N‖W 2,2
2
≤ C(M)

on the set {(θ, ω) ∈ [0, 2π] × R}. The constant C(M) does not depend on
ε ∈ (0, 1), N > 0, t ∈ [0, T ], nor Ω ∈ [−G,G].

Proof. We only show how to establish the estimate for ‖ea(ω)ρε,N‖L2 on the
set {(θ, ω) ∈ [0, 2π] × R}. All the other derivatives are estimated in a similar
way, cf. [13].

Multiplying both sides of (1.4) by e2a(ω)ρ(θ, ω, t,Ω), where we have set
ρ(θ, ω, t,Ω) := ρε,N (θ, ω, t,Ω), in order to simplify the notation, and integrating
with respect to ω and θ, we conclude after simple transformations that

1
2
∂

∂t

2π∫
0

+∞∫
−∞

e2a(ω)ρ2 dωdθ +

2π∫
0

+∞∫
−∞

e2a(ω)(ρ2
ω + ερ2

θ) dωdθ

=

2π∫
0

+∞∫
−∞

[a′′ + 2a′2 − ωa′ + (Ω +Kρ)a′ + 1/2] e2a(ω)ρ2 dωdθ

≤
2π∫
0

+∞∫
−∞

[
‖a′′‖C(R) + 2‖a′‖2C(R)

+(G+K‖g‖L1[−G,G])‖a′‖C(R) + 1
]

e2a(ω)ρ2 dωdθ.

By Gronwall’s lemma we obtain

2π∫
0

+∞∫
−∞

e2a(ω)ρ2 dωdθ + 2

t∫
0

2π∫
0

+∞∫
−∞

e2a(ω)(ρ2
ω + ερ2

θ) dωdθdt ≤ C,

where the constant C is independent of ε > 0, N > 0, t ∈ [0, T ], and Ω ∈
[−G,G]. The lemma is thus proved. �

We are now ready to establish the following existence result:
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Theorem 2.5 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4. Then, there exists a classical solution, ρ(θ, ω, t,Ω), to the problem
(1.1)–(1.3) in QT , such that:

(1) ρ(θ, ω, t,Ω) is a continuous bounded function in QT along with its partial
derivatives Dl1,l2,l3,l4

θ,ω,t,Ω ρ(θ, ω, t,Ω) for l1 + l2 + 2l3 + l4 ≤ 2; moreover, the
derivatives Dl1,l2,l3,l4

θ,ω,t,Ω ρ with l1 + l2 + 2l3 + l4 ≤ 2 belong to the anisotropic
Sobolev space W 2,3,1,2

2 (QT ) and to the Hölder spaces Cλ,λ,
1
12 ,

1
2 (QR) for all

λ ∈ (0, 1) and R > 0, where QR := QT ∩ {ω ∈ [−R,R]};

(2) ρ(θ, ω, t,Ω) satisfies equation (1.1) in the classical sense in QT , and satis-
fies the boundary data in (1.2) and the initial data in (1.3) as a continuous
function in QT ; moreover, (ρθ, ρθθ)|θ=0 = (ρθ, ρθθ)|θ=2π in QT ;

(3) ρ(θ, ω, t,Ω) ≥ 0 in QT and is normalized as

2π∫
0

+∞∫
−∞

ρ(θ, ω, t,Ω) dωdθ = 1

for all t ∈ [0, T ] and Ω ∈ [−G,G];

(4) for any value of the parameter M > 0, there exists a constant C =
C(M) > 0 such that the estimate

|Dl1,l2,l3,l4
θ,ω,t,Ω ρ(θ, ω, t,Ω)| ≤ Ce−M |ω|

holds in QT for l1 + l2 + 2l3 + l4 ≤ 2.

A classical solution to the problem (1.1)–(1.3) in QT , satisfying the item (4), is
unique.

Proof. Consider the subdomain QR,T0,Ω0 := QT ∩ {ω ∈ [−R,R]} ∩ {t =
T0}∩{Ω = Ω0}. In view of item (1) of Lemma 1.5 and Lemma 2.1, for arbitrary
fixed values of the parameters T0 ∈ [0, T ] and Ω0 ∈ [−G,G], the functions
Dρε,N (θ, ω, T0,Ω0) can be estimated uniformly as

‖Dρε,N‖Cλ1,λ2 (QR,T0,Ω0 ) ≤ C,

for any fixed λ1, λ2 ∈ (0, 1), where the constant C is independent of ε ∈ (0, 1),
N > 0, T0, and Ω0. The constant C depends only on λ1, λ2, R, and the constant
C̃ of Lemma 1.5. In particular, this implies that

‖Dρε,N‖C(QR) ≤ C,
|Dρε,N (θ1, ω, t,Ω)−Dρε,N (θ2, ω, t,Ω)|

|θ1 − θ2|λ1
≤ C, (2.2)

|Dρε,N (θ, ω1, t,Ω)−Dρε,N (θ, ω2, t,Ω)|
|ω1 − ω2|λ2

≤ C (2.3)
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for all (θi, ω, t,Ω), (θ, ωi, t,Ω) ∈ QR, i = 1, 2, where QR = QT ∩ {ω ∈ [−R,R]}
and the constant C is independent of ε ∈ (0, 1) and N > 0.

In view of item (2) of Lemma 1.5 and Lemma 2.1, we obtain similarly

|Dρε,N (θ, ω, t,Ω1)−Dρε,N (θ, ω, t,Ω2)|
|Ω1 − Ω2|1/2

≤ C (2.4)

for all (θ, ω, t,Ωi) ∈ QR, i = 1, 2, for some constant C independent of ε ∈ (0, 1)
and N > 0. Then, item (3) of Lemma 1.5 and Lemma 2.1 imply that

|Dρε,N (θ, ω, t1,Ω)−Dρε,N (θ, ω, t2,Ω)|
|t1 − t2|1/12

≤ C (2.5)

for all (θ, ω, ti,Ω) ∈ QR, i = 1, 2, with a constant C independent of ε ∈ (0, 1)
and N > 0.

Summing up the estimates in (2.2)–(2.5), we conclude that

‖Dρε,N‖
Cλ,λ,

1
12 ,

1
2 (QR)

≤ C (2.6)

for any fixed λ ∈ (0, 1) and R > 0, where the constant C is independent of
ε ∈ (0, 1) and N > 0, but it depends, in general, on λ and R.

Lemmas 2.2 and 2.4 mean that, for any value of the parameter M > 0, there
exists a constant C = C(M) > 0 such that the estimate

|Dρε,N (θ, ω, t,Ω)| ≤ Ce−M |ω| (2.7)

holds in QT , for all ε ∈ (0, 1) and N > 0.
Therefore, there exist a sequence ρn(θ, ω, t,Ω) := ρεn,Nn(θ, ω, t,Ω) with

lim
n→∞

εn = 0 and lim
n→∞

Nn = +∞, and a function ρ(θ, ω, t,Ω) ∈ C2,2,1,2
θ,ω,t,Ω(QT ),

such that

lim
n→∞

‖Dρn −Dρ‖C(QR) = 0, lim
n→∞

‖Dρn −Dρ‖W 1,2,0,1
2 (QR) = 0,

Dρ ∈W 2,3,1,2
2 (QT ),

for every R > 0 (see (2.6) and Lemma 2.3). Taking the limit for n → ∞ in
equation (1.4) and in the initial-boundary conditions (1.5) and (1.3), at any
fixed point of the slab QT , we infer that the limiting function ρ(θ, ω, t,Ω) :=
lim
n→∞

ρn(θ, ω, t,Ω) is a classical solution to problem (1.1)–(1.3) in QT . Passage
to the limit in Kρn is permissible since there exists a summable majorant as
shown in (2.7).

We omit here the proof of uniqueness of the solution, as a stronger result
will be established in the next section. The theorem is thus proved. �

3 Uniqueness of solutions

In this section we establish the second main result of the paper, namely a
uniqueness theorem. The proof is based on a version of the maximum principle,
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properly adapted to the case under investigation (see [14], e.g.). We first identify
a certain class of functions, to be denoted by f(ω).

Assumption 3.1 The function f(ω) belongs to C2(R)∩L1(R), is positive, and
the estimate

F(A) := sup
ω∈R,α∈[−A,A]

f ′′(ω) + (ω + α)f ′(ω)
f(ω)

< +∞

holds for every A > 0.

Definition 3.2 Correspondingly to a given function f(ω) satisfying Assump-
tion 3.1, denote by Df (QT ) the set of functions ρ(θ, ω, t,Ω) defined in QT , such
that

sup
θ∈[0,2π],t∈[0,T ],Ω∈[−G,G]

|ρ(θ, ω, t,Ω)| = o(f(ω)) as ω → ±∞.

We can then prove the following uniqueness result:

Theorem 3.3 Suppose that

(1) ρ1(θ, ω, t,Ω) and ρ2(θ, ω, t,Ω) are any two classical solutions to problem
(1.1)–(1.3) in QT , belonging to the class Df (QT );

(2) the function ρ2(θ, ω, t,Ω), in addition, is such that ‖f−1 ∂ρ2
∂ω ‖C(QT ) <∞.

Then, ρ1(θ, ω, t,Ω) ≡ ρ2(θ, ω, t,Ω) in QT .

Proof. Consider the quantity

ρ̃(θ, ω, t,Ω) :=
ρ1(θ, ω, t,Ω)− ρ2(θ, ω, t,Ω)

f(ω)
e−λt,

with

λ := 2 + 2πK‖g‖L1[−G,G]‖f‖L1(R)

∥∥∥∥ 1
f(ω)

∂ρ2

∂ω

∥∥∥∥
C(QT )

+ F(A), (3.1)

where A := G+ ‖Kρ1‖C(QT ). The parameters A and λ have finite values by the
assumptions of the theorem.

The function ρ̃(θ, ω, t,Ω) solves, in the classical sense (in QT ), the problem

∂ρ̃

∂t
=
∂2ρ̃

∂ω2
+
[
2
f ′

f
+ ω − Ω−Kρ1

]
∂ρ̃

∂ω
− ω∂ρ̃

∂θ

+
[
f ′′

f
+ (ω − Ω−Kρ1)

f ′

f
+ 1− λ

]
ρ̃−
K(ρ̃f)

f

∂ρ2

∂ω
,

ρ̃|θ=0 = ρ̃|θ=2π, ρ̃|t=0 ≡ 0.
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Note that Definition 1.1 and equation (1.1) imply the relation ωρθ|θ=0 =
ωρθ|θ=2π in QT ∩ {t > 0}, for any classical solution ρ(θ, ω, t,Ω) to problem
(1.1)–(1.3). In view of the continuity of ρθ, the equality ρθ|θ=0 = ρθ|θ=2π in
QT ∩ {t > 0} follows, and thus the same additional property for ρ̃(θ, ω, t,Ω),

ρ̃θ|θ=0 = ρ̃θ|θ=2π, (3.2)

holds in QT ∩ {t > 0}.
According to Definition 3.2 and assumption (1) of the theorem, the function

ρ̃(θ, ω, t,Ω) possesses a decay as |ω| → ∞, that is there exists a function ϕ(δ),
defined for δ ≥ 0, such that

|ρ̃(θ, ω, t,Ω)| ≤ ϕ(|ω|) in QT , lim
δ→∞

ϕ(δ) = 0.

Therefore, there exists a point M = (θ∗, ω∗, t∗,Ω∗), with t∗ > 0, such that

|ρ̃(M)| = ‖ρ̃‖C(QT ). (3.3)

Consider now two possible occurrences.
Case 1: M is the point of the nonnegative maximum of the function ρ̃(θ, ω, t,Ω),
i.e.,

ρ̃(M) = ‖ρ̃‖C(QT ). (3.4)

In this case, the relations

ρ̃t(M) ≥ 0, ρ̃ω(M) = 0, ρ̃ωω(M) ≤ 0 (3.5)

hold. If θ∗ ∈ (0, 2π), then, obviously, ρ̃θ(M) = 0. If θ∗ = 0 or θ∗ = 2π, then,
using (3.2), we get ρ̃θ(M) = 0. Therefore, we obtain in any case

ρ̃θ(M) = 0. (3.6)

Relations (3.5), (3.6), and the equation for ρ̃(θ, ω, t,Ω) imply that

0 ≤
[
f ′′

f
+ (ω − Ω−Kρ1)

f ′

f
+ 1− λ

]
ρ̃−
K(ρ̃f)

f

∂ρ2

∂ω
(3.7)

at the point M . In view of assumption (1) of the theorem, the estimate

‖K(ρ̃f)‖C(QT ) ≤ 2πK‖g‖L1[−G,G]‖f‖L1(R)‖ρ̃‖C(QT ) <∞ (3.8)

holds. Using (3.1), (3.4), (3.7), and (3.8), we conclude that ‖ρ̃‖C(QT ) ≤ 0.
Case 2: M is the point of the nonpositive minimum of the function ρ̃(θ, ω, t,Ω),
i.e., −ρ̃(M) = ‖ρ̃‖C(QT ). Then we obtain, similarly, that ‖ρ̃‖C(QT ) ≤ 0, using
the relation

0 ≥
[
f ′′

f
+ (ω − Ω−Kρ1)

f ′

f
+ 1− λ

]
ρ̃−
K(ρ̃f)

f

∂ρ2

∂ω

at the point M . It follows that ‖ρ̃‖C(QT ) = 0 (see (3.3) and Cases 1 and 2).
The theorem is thus proved. �
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4 Summary of results

The solutions to the nonlinear partial integro-differential equation (1.1) with
the periodic boundary condition (1.2) and the initial data (1.3) have been in-
vestigated. Equation (1.1) possesses a number of peculiarities. In particular,
it could be treated as a parabolic equation fully degenerate in one of the space
variables (as the Fokker-Planck equation in transport theory is). Moreover, it is
considered over an unbounded domain and has unbounded coefficients. A regu-
larized integroparabolic equation for which existence and regularity of solutions
were studied in [12, 13] has been first considered. In this paper, the passage
to the limit on the regularization parameters has been first justified, and thus
existence of decaying classical solutions to the original problem (1.1)–(1.3) has
been established. Uniqueness of classical solutions in a special class of functions
has also been proved. The high points of the paper can be summarized in the
following

Theorem 4.1 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4. Then, there exists a unique classical solution, ρ(θ, ω, t,Ω), to
the problem (1.1)–(1.3) in QT , belonging to the set Df (QT ) introduced in the
Definition 3.2, with f(ω) such that e−M |ω| = o(f(ω)) as ω → ±∞, where M > 0
is a fixed constant.

Proof. By Theorem 2.5, there exists a classical solution ρ(θ, ω, t,Ω) to prob-
lem (1.1)–(1.3) in QT , which belongs to Df (QT ) (see item (4) of Theorem 2.5
and the assumptions of the theorem). This solution also satisfies the estimate
‖f−1ρω‖C(QT ) <∞. Uniqueness of the solution ρ(θ, ω, t,Ω) in the class Df (QT )
therefore follows from Theorem 3.3, with ρ2(θ, ω, t,Ω) := ρ(θ, ω, t,Ω). This com-
pletes the proof. �

Assumption 3.1 on the function f(ω) is an important condition for the
uniqueness result above. This assumption is used defining the class Df (QT )
and is necessary to establish a “decay” property of the function f . In fact, the
limits of f(ω) as ω → ±∞ may not exist, in general, but f ∈ L1(R), and this
property somehow characterizes the behavior of f(ω) at infinity. Integrability
of the function f , along with the inequality in Assumption 3.1, make it possible
to prove the uniqueness theorem in Section 3, namely Theorem 3.3.

Here we give some examples of functions f , satisfying Assumption 3.1. Con-
sider all positive functions f(ω) ∈ C2(R) such that:

f(ω) = |ω|−β for |ω| ≥M,

or
f(ω) = |ω|−1(log |ω|)−β for |ω| ≥M,

or
f(ω) = (|ω| log |ω|)−1(log log |ω|)−β for |ω| ≥M,

and so on, where β ∈ R and M > e2 are fixed constants. Then, if β > 1,
the function f(ω) satisfies Assumption 3.1; if β ≤ 1, f(ω) does not satisfy
Assumption 3.1, as f /∈ L1(R).
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Thus, Theorem 4.1 could be reformulated in the following weaker form:

Corollary 4.2 Suppose the data of problem (1.1)–(1.3) satisfy Assumption 1.2
with l0 = 4, and β > 1 is a fixed constant. Then, there exists a unique classical
solution, ρ(θ, ω, t,Ω), to the problem (1.1)–(1.3) in QT , belonging to the set of
functions satisfying the condition

sup
θ∈[0,2π],t∈[0,T ],Ω∈[−G,G]

|ρ(θ, ω, t,Ω)| = O
( 1
|ω|β

)
as ω → ±∞.

On the other hand, if f(ω) is merely a rapidly decaying function, then, in
general, a classical solution ρ(θ, ω, t,Ω) belonging to the class Df (QT ) does not
exist. The condition e−M |ω| = o(f(ω)) as ω → ±∞ guarantees that, in the class
Df (QT ), there exists at least one classical solution to the problem (1.1)–(1.3)
in QT (Theorem 2.5). Assumption 1.2 (with l0 = 4) guarantees the fulfilment
of the condition in item (2) of Theorem 3.3 and thus uniqueness in the classes
described above.

In closing, here are some remarks concerning Assumption 1.2.

(1) Item (a4) of Assumption 1.2, which has the physical meaning of being the
probability integral over all space of the distribution function ρ, is not
necessary for all mathematical constructions. Existence and uniqueness
results are true regardless to this condition.

(2) Items (a1)–(a3) of Assumption 1.2, in contrast, are essential and cannot
be generalized in the framework of the technique used here.

(3) The exponential function in item (a5) of Assumption 1.2 has been consid-
ered here because this function is natural in transport theory and, more-
over, it respects the decay properties enjoyed by the fundamental solutions
to linear parabolic partial differential equations. Such assumption, how-
ever, is not optimal and can be relaxed.
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