\documentclass[twoside]{article} \usepackage{amssymb, amsmath} \pagestyle{myheadings} \markboth{\hfil Hardy-Sobolev operator with indefinite weights \hfil EJDE--2002/33}{EJDE--2002/33\hfil K. Sreenadh \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 33, pp. 1--12. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights % \thanks{ {\em Mathematics Subject Classifications:} 35J20, 35J70, 35P05, 35P30. \hfil\break\indent {\em Key words:} $p$-Laplcean, Hardy-Sobolev operator, Fu\v{c}ik spectrum, Indefinite weight. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted October 23, 2001. Published April 2, 2002.} } \date{} % \author{K. Sreenadh} \maketitle \begin{abstract} In this paper we study the eigenvalue problem $$ -\Delta_{p}u-a(x)|u|^{p-2}u=\lambda |u|^{p-2}u, \quad u\in W^{1,p}_{0}(\Omega), $$ where $1e^{2/N}\sup_{\Omega}|x|$. Subsequently it was shown in \cite{AS} that $(\frac{N-1}{N})^N$ is the best constant in (\ref{eq:a2}). In view of the above two inequalities we define the Hardy-Sobolev Operator $L_{\mu}$ on $W^{1,p}_{0}(\Omega)$ as \[ L_{\mu}u:=-\Delta_{p}u-\mu a(x)|u|^{p-2}u \] where $$ a(x)=\begin{cases} 1/|x|^p & 1\frac{N}{p}$ and a closed subset $S$ of measure zero in $\mathbb{R}^N$ such that $\Omega\backslash S$ is connected and $V\in L^{r}_\text{loc}(\Omega\backslash S)$. \end{enumerate} We define the functional $J_{\mu}$ on $W^{1,p}_{0}(\Omega)$ as $$ J_{\mu}(u):=\int_{\Omega}|\nabla u|^p-\mu \int_{\Omega}a(x)|u|^{p-2}u. $$ Then $J_{\mu}$ is $C^{1}$ on $W^{1,p}_{0}(\Omega)$. Our goal here is to study the eigenvalue problem and some main properties (simplicity, isolatedness) of \[\lambda_{1}:=\inf\left\{J_{\mu}(u); u\in W^{1,p}_{0}(\Omega) \quad\text{and } \int_{\Omega}V|u|^pdx=1\right\}\] We use the following results in Section 2. \begin{proposition}[\cite{BM}] \label{prop1.1} Let $\Omega \subset \mathbb{R}^{n}$ is bounded domain and suppose $(u_{n}) \in W^{1,p}(\Omega)$ such that $u_{n}\to u$ weakly in $W^{1,p}_{0}(\Omega)$satisfies \[-\Delta_{p} u_{n}=f_{n}+g_{n} \;\text{in} \;{\mathcal{D}}^{\prime}(\Omega)\] where $f_{n} \to f$ in $W^{-1,p'}$ and $g_{n}$ is a bounded sequence of Radon measures, i.e., \[\left \le C_{K} \;\|\phi\|_{\infty}\; \; \] for all $\phi$ in $C_{c}^{\infty}(\Omega)$ with support in $K$. Then there exists a subsequence $(u_{n})$ of $(u_{n})$ such that $\nabla u_{n}(x) \to \nabla u(x)$ a.e. in $\Omega$. \end{proposition} \begin{proposition}[(Brezis-Lieb\cite{BL})] \label{prop1.2} Suppose $f_{n}\to f $ a.e. and $\|f_{n}\|_{p} \le C <\infty $ for all n and for some $0\frac{N}{p}$. \par We now provide a brief account of what is known about the problems of type (\ref{eq:a3}). In case of $\mu=0,$ the above properties are well known when $V$ is bounded(see\cite{A}). For indefinite weights with different integrability conditions see\cite{AH} and \cite{SW}. In \cite{SW} the problem of simplicity and sign changing nature of other eigen functions are left open. In Theorem \ref{thm2.1} below we prove the above properties. In a recent work Cuesta \cite{C} proved above properties with stronger assumption that $V\in L^{s}(\Omega)$ for some $s>\frac{N}{p}$. When $\mu\ne 0$ and $V=1$ the above properties are studied in \cite{S},\cite{Sr}. \section{Eigenvalue Problem} In this section we show that the first eigenvalue is simple and the eigenfunctions corresponding to other eigenvalues changes sign. We prove the following theorem. \begin{theorem} \label{thm2.1} The first eigenvalue, $\lambda_{1}$, is simple and the eigenfunctions corresponding to the other eigenvalues changes sign. \end{theorem} The next theorem is proven with the help of a deformation lemma for $C^{1}$ manifolds. \begin{theorem} \label{thm2.2} There exists a sequence $\{\lambda_{n}\}$ of eigenvalues of $L_{\mu}$ such that $\lambda_{n}\to \infty$. \end{theorem} Let us define the operators \begin{gather*} L(u,v):=|\nabla u|^p-(p-1)\frac{u^p}{v^p}|\nabla v|^p -p\frac{u^{p-1}}{v^{p-1}}\nabla u |\nabla v|^{p-2} \nabla v \\ R(u,v):=|\nabla u|^p-|\nabla v|^{p-2}\nabla v.\nabla \big(\frac{u^p}{v^{p-1}} \big) \end{gather*} Then $R(u,v)=L(u,v)\ge 0$ for all $u,v \in C^{1}(\Omega\backslash\{0\}) \cap W^{1,p}(\Omega)$ with $u\ge 0, v>0$ and equal to 0 if and only if $u=kv$ for some constant $k$ \cite[Theorem 1.1]{AH}. We need following lemmas to prove our results. \begin{lemma} \label{lm2.3} The mapping $u\longrightarrow \int_{\Omega}V^{+}|u|^pdx $ is weakly continuous. \end{lemma} \paragraph{Proof:} In case the $10$ such that, for $1\le i\le k,$ \[|x-x_{i}|\le r \implies |x-x_{j}|^N(\log\frac{R}{|x-x_{i}|})^NV_{2}(x)\le \epsilon/k.\] Define $A:=\cup_{j=1}^{k} B(x_{j},r)$. Then by inequality (\ref{eq:a2}) \begin{equation} \label{eq:b2} \int_{A}V_{2}|u_{n}|^Ndx\le \epsilon c^N,\quad \int_{A}V_{2}|u|^Ndx\le \epsilon c^N \end{equation} where $c=\frac{N}{N-1}\sup_{n} \|u_{n}\|$. It follows from (\ref{eq:b1}) that $V_{2}\in L^{1}(\Omega\backslash A)$ so that \begin{equation} \label{eq:b3} \int_{\Omega\backslash A} V_{2} |u_{n}|^N dx \longrightarrow \int_{\Omega\backslash A} V_{2} |u|^Ndx \end{equation} Now the conclusion follows from (\ref{eq:b2}) and (\ref{eq:b3}). \hfill$\Box$\smallskip Define $M:=\left\{ u\in W^{1,p}_{0}(\Omega); \;\;\int_{\Omega}V|u|^p=1\right\}$ \begin{lemma} \label{lm2.4} The eigenvalue $\lambda_{1}$ is attained. \end{lemma} \paragraph{Proof:} Let $u_{n}$ be a sequence in $M$ such that $J_{\mu}(u_{n})\to \lambda_{1}$. Since $W^{1,p}_{0}(\Omega)$ is reflexive, there exists a subsequence $\{u_{n}\}$ of $\{u_{n}\}$ such that $u_{n}\to u$ weakly in $W^{1,p}_{0}$ and a.e. in $\Omega$. Now for $n\in \mathbb{N} $ choose $u_{n}$ such that $J_{\mu}(u_{n}) \le \inf_{M}J_{\mu}+\frac{1}{n^{2}}$. Now by The Ekeland Variational Principle, there exists a sequence $\{v_{n}\}$ such that \begin{gather*} J_{\mu}(v_{n})\le J_{\mu}(u_{n})\\ \|u_{n}-v_{n}\|\le \frac{1}{n}\\ J_{\mu}(v_{n})\le J_{\mu}(u)+\frac{1}{n} \|v_{n}-u\| \quad \forall u\in M \end{gather*} Now standard calculations from above three equations, as in \cite{De}, gives \begin{equation} \label{eq:b4} \big| J_{\mu}'(v_{n})w-J_{\mu}(v_{n})\int_{\Omega}V |v_{n}|^{p-2}v_{n}w \big|\le C \frac{1}{n} \|w\|. \end{equation} By Proposition \ref{prop1.1}, there exists a subsequence of $\{v_{n}\}$, which we still denote by $\{v_{n}\}$ such that $v_{n} \to v $ weakly in $W^{1,p}_{0}(\Omega)$ and $\nabla v_{n}\to \nabla v $ a.e. in $\Omega$. Since $|\nabla v_{n}|^{p-2}\nabla v_{n}$ is bounded in $(L^{p'}(\Omega))^N, 1/p+1/p'=1$, and $\nabla v_{n}\to \nabla v$ a.e. in $\Omega$, we have \begin{align*} &|\nabla v_{n}|^{p-2}\nabla v_{n} \to |\nabla v|^{p-2}\nabla v \quad \text{a.e. in }\; \Omega\\ &|\nabla v_{n}|^{p-2}\nabla v_{n} \to |\nabla v|^{p-2}\nabla v \quad \text{weakly in}\; (L^{p'}(\Omega))^N \end{align*} which allows us to pass the limit as $n\to \infty$ in (\ref{eq:b4}), obtaining \[-\Delta_{p}v-a(x)|v|^{p-2}v-\lambda_{1}|v|^{p-2}v=0 \quad \text{in} \;\;{\cal{D}}'(\Omega).\] Observe that \[\int_{\Omega}V^{-}|v_{n}|^pdx=\int_{\Omega}V^{+}|v_{n}|^pdx -1 \to \int_{\Omega}V^{+} |v|^pdx-1\] as $n\to \infty$. Now using Fatau's lemma we can conclude that $v\ncong 0$. \hfill$\Box$ \begin{lemma} \label{lm2.5} The eigenvalue $\lambda_{1}$ is simple. \end{lemma} \paragraph{Proof:} This is an adaptation from a proof in \cite{AH}. Let $\{\psi_{n}\}$ be a sequence of functions such that $\psi_{n}\in C_{c}^{\infty}(\Omega), \psi_{n}\ge 0, \psi_{n}\to \phi_{1}$ in $W^{1,p},$ a.e. in $\Omega $ and $\nabla \psi_{n} \to \nabla \phi_{1}$ a.e. in $\Omega$. Then we have \begin{equation} \label{eq:b5} \begin{aligned} 0=&\int_{\Omega} \left( |\nabla \phi_{1}|^p-(\mu a(x)+\lambda_{1}V) \phi_{1}^p\right)dx\\ =&\lim_{n \to \infty} \int_{\Omega} \left( |\nabla \psi_{n}|^p-(\mu a(x)+V\lambda_{1})\psi_{n}^p\right)dx. \end{aligned}\end{equation} Consider the function $w_{1}:=\psi_{n}^p/(u_{2}+\frac{1}{n})^{p-1}$. Then $w_{1}\in W^{1,p}_{0}(\Omega)$. So testing the equation satisfied by $u_{2}$ with $w_{1}$ we get, \begin{equation} \label{eq:b6} \int_{\Omega}(\lambda_{1}V+\mu a(x)) \psi_{n}^p \big(\frac{u_{2}}{u_{2}+\frac{1}{n}}\big)^{p-1}=\int_{\Omega} |\nabla u_{2}|^{p-2}\nabla u_{2}.\nabla \big(\frac{\psi_{n}^p}{(u_{2}+\frac{1}{n})^{p-1}}\big) \end{equation} Now from (\ref{eq:b5}) and (\ref{eq:b6}) we obtain \begin{equation*} \begin{split} 0&=\lim_{n\to \infty}\int_{\Omega}\left(|\nabla \psi_{n}|^p-|\nabla u_{2}|^{p-2} \nabla u_{2}.\nabla \big(\frac{\psi_{n}^p}{(u_{2}+\frac{1}{n})^{p-1}}\big)\right)\\ &=\lim_{n\to \infty}\int_{\Omega} L(\psi_{n},u_{2})\ge \int_{\Omega}L(\phi_{1},u_{2})\ge 0 \end{split} \end{equation*} by Fatau's lemma. Now by assumption (H), $\phi_{1},u_{2}$ are in $C^{1}(\Omega\backslash S\cup \{0\})$ \cite{D,T}. Therefore $\phi_{1}=k u_{2}$ for some constant $k$. \hfill$\Box$ \paragraph{Proof of Theorem \ref{thm2.1}, completed:} Let $\phi_{1}, u$ be the eigenfunctions corresponding to $\lambda_{1}$ and $\lambda$ respectively. Then $\phi_{1}, u$ satisfies \begin{gather} \label{eq:b7} -\Delta_{p}\phi_{1}-\mu a(x)\phi_{1}^{p-1}=\lambda_{1}V(x)\phi_{1}^{p-1} \quad \text{in}\;\; {\mathcal{D}}^{\prime}(\Omega),\\ \label{eq:b8} -\Delta_{p}u-\mu a(x) |u|^{p-2}u=\lambda V(x)|u|^{p-2}u\quad \text{in}\;\; {\mathcal{D}}^{\prime}(\Omega) \end{gather} respectively. Suppose $u$ does not change sign. We may assume $u\ge 0$ in $\Omega$. Let $\{\psi_{n}\}$ be a sequence in $C_{c}^{\infty}$ such that $\psi_{n}\to \phi_{1}$ as $n\to \infty$. Now consider the test functions $w_{1}=\phi_{1}, w_{2}=\frac{\psi_{n}^p}{(u+\frac{1}{n})^{p-1}}$. Then $w_{1}, w_{2}\in W^{1,p}_{0}(\Omega)$. Testing (\ref{eq:b7}) with $w_{1}$ and (\ref{eq:b8}) with $w_{2}$ we get \begin{equation} \label{eq:b9} \int_{\Omega}|\nabla \phi_{1}|^pdx-\int_{\Omega}(\lambda_{1}V(x)+\mu a(x))\phi_{1}^pdx=0 \end{equation} \[\int_{\Omega}|\nabla u|^{p-2}\nabla u.\nabla \Big(\frac{\psi_{n}^p} {(u+\frac{1}{n})^{p-1}}\Big)dx-\int_{\Omega}(\lambda V(x)+\mu a(x))\psi_{n}^p \big(\frac{u}{u+\frac{1}{n}}\big)^{p-1}dx=0 \] Since $R(u,v)\ge0$, we get \begin{equation} \label{eq:b10} \int_{\Omega}|\nabla \psi_{n}|^pdx-\int_{\Omega}(\lambda V(x)+\mu a(x) \psi_{n}^p \Big(\frac{u}{u+\frac{1}{n}}\Big)^{p-1}dx\ge 0. \end{equation} Subtracting (\ref{eq:b9}) from (\ref{eq:b10}) and taking the limit as $n\to \infty$ we get, \[(\lambda-\lambda_{1})\int_{\Omega}V(x)\phi_{1}^p\le 0\] This is a contradiction to the fact that $\lambda>\lambda_{1}$. \hfill $\Box$ \paragraph{Proof of Theorem \ref{thm2.2}:} Let $\tilde{J}_{\mu}$ be the restriction of $J_{\mu}$ to the set $M$. Define \[\lambda_{k}=\inf_{\gamma(A)\ge n} \sup_{u\in A} J_{\mu}(u) \] where $A$ is a closed subset of $M$ such that $A=-A$, and $\gamma(A)$ is the {\it {Krasnosel'ski\v{i} genus}} of $A$. Now we show that $\tilde{J_{\mu}}$ satisfies (P.S.) condition at level $\lambda_{k}$. Let $\{u_{n}\}$ be a sequence in $M$ such that $J_{\mu}(u_{n})\to \lambda_{k}$ and \begin{equation} \label{eq:II1} \langle J_{\mu}(u_{n}),\phi\rangle -J_{\mu}(u_{n})\int_{\Omega}|u_{n}|^{p-2}u_{n}\phi Vdx =o(1). \end{equation} Since $u_{n}$ is bounded, there exists a subsequence $\{u_{n}\} ,u$ such that $u_{n}\to u$ weakly in $W^{1,p}_{0}(\Omega)$. Since $\lambda_{k}>0$ we may assume that $J_{\mu}(u_{n})\ge 0$. Using Lemma \ref{lm2.3} and (\ref{eq:II1}), we get \[\langle J_{\mu}(u_{n})-J_{\mu}(u), u_{n}-u\rangle +J_{\mu}(u_{n}) \int_{\Omega}\left[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u\right](u_{n}-u) V^{-}dx =o(1).\] But \[\int_{\Omega} \left[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u\right][u_{n}-u]V^{-}\ge 0.\] By Propositions \ref{prop1.1} and \ref{prop1.2}, we have \begin{gather*} \|u_{n}-u\|_{1,p}=\|u_{n}\|_{1,p}-\|u\|_{1,p}+o(1)\\ \|\frac{u_{n}-u}{|x|}\|_{0,p}=\|\frac{u_{n}}{|x|}\|_{0,p}-\|\frac{u}{|x|} \|_{0,p}+o(1) \end{gather*} Therefore \begin{align*} o(1)=& \langle J_{\mu}(u_{n})-J_{\mu}(u), (u_{n}-u)\rangle \\ &+J_{\mu}(u_{n})\int_{\Omega}[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u](u_{n}-u) V^{-}dx\\ \ge& \int_{\Omega}|\nabla u_{n}-\nabla u|^p-\int_{\Omega}\mu a(x)|u_{n}-u|^p +o(1)\\ \ge& C \|u_{n}-u\|_{1,p}+o(1). \end{align*} Now by the classical critical point theory for $C^{1}$ manifolds \cite{Sz}, it follows that $\lambda_{k}$'s are critical points of $J_{\mu}$ on $M$. Since $\lambda_{k}\ge c \lambda_{k}^{0}$, where $\lambda_{k}^{0}$ are eigenvalues of $L_{0}$, we have $\lambda_{k}\to \infty$. \hfill$\Box$ \section{Fu\v{c}ik Spectrum} In this section we study the existence of a non-trivial curve in the Fu\v{c}ik spectrum $\sum_{p,\mu }$ of $L_{\mu}$. The Fu\v{c}ik spectrum of $L_{\mu}$ is defined as the set of $(\alpha,\beta)\in \mathbb{R}^{2}$ such that \begin{gather*} L_{\mu}u=\alpha V (u^{+})^{p-1}+\beta V (u^{-})^{p-1}\quad \text{in } \Omega, \\ u=0\quad \text{on }\partial \Omega, \end{gather*} has a nontrivial solution $u \in W^{1,p}_{0}(\Omega)$. The variational approach that we follow here is same as that of \cite{CDG,Sr}. We prove the following statement. \begin{theorem} \label{thm3.1} There exists a nontrivial curve ${\mathcal{C}}$ in $\sum_{p,\mu}$. \end{theorem} Let us consider the functional \[J_{s}(u)=\int_{\Omega} |\nabla u|^p - \int_{\Omega} \mu a(x)|u|^p-s \int_{\Omega} Vu^{+^p} \] $J_{s}$ is a $C^{1}$functional on $W^{1,p}_{0}(\Omega)$. We are interested in the critical points of the restriction $\tilde{J_{s}}$ of $J_{s}$ to $M$. By Lagrange multiplier rule, $u\in M$ is a critical point of $\tilde{J_{s}}$ if and only if there exist $t \in \mathbb{R}$ such that $J_{s}'(u)=t.I'(u),$ i.e., for all $v \in W^{1,p}_{0}$ we have \begin{equation} \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v -\int_{\Omega}\mu a(x)|u|^{p-2} uv -s\int_{\Omega} Vu^{+^{p-1}}v= t \int_{\Omega} V|u|^{p-2} uv\,. (\Omega) \end{equation} This implies that \begin{gather*} -\Delta_{p}u-\mu a(x) |u|^{p-2}u=(s+t)V(x)(u^{+})^{p-1}-tV(x) (u^{-})^{p-1} \quad \text{in }\Omega \\ u=0\quad \text{on } \partial \Omega \end{gather*} holds in the weak sense. i.e., $(s+t,t) \in \sum_{p,\mu}$, taking $v=u$ in (3.1), we get $t$ as a critical value of $\tilde{J_{s}}$. Thus the points in $\sum_{p,\mu}$ on the parallel to the diagonal passing through (s,0) are exactly of the form $(s+\tilde{J_{s}} (u), \tilde{J_{s}}(u))$ with $u$ a critical point of $\tilde{J_{s}}$. A first critical point of $\tilde{J_{s}}$ comes from global minimization . Indeed \[\tilde{J_{s}}(u) \ge \lambda_{1} \int_{\Omega} |u|^p-s \int_{\Omega} u^{+^p} \ge \lambda_{1}-s \] for all u $\in M$, and $\tilde{J_{s}}(u)= \lambda_{1}-s $ for $u=\phi_{1}$. \begin{proposition} \label{prop3.2} The function $\phi_{1}$ is a global minimum of $\tilde{J_{s}}$ with $ \tilde{J_{s}}(\phi_{1})=\lambda_{1}-s$, the corresponding point in $\sum_{p,\mu}$ is $(\lambda_{1}, \lambda_{1}-s)$ which lies on the vertical line through $(\lambda_{1}, \lambda_{1})$. \end{proposition} \begin{lemma} \label{lm3.3} Let 0$\ne v_{n} \in W^{1,p}_{0}$ satisfy $v_{n}\ge 0$ a.e and $|v_{n}>0| \to 0$, then $\int_{\Omega}[|\nabla v_{n}|^p-\mu a(x) |v_{n}|^p]dx/ \int_{\Omega}V |v_{n}|^p \to +\infty$. \end{lemma} \paragraph{Proof:} Let $w_{n}=v_{n}/ \|v_{n}\|_{V,p}$ and assume by contradiction that $\int_{\Omega} |\nabla w_{n} |^p-\int_{\Omega} \mu a(x)|w_{n}|^p$ has a bounded subsequence. By (1.1) or (1.2), we get $w_{n}$ bounded in $W^{1,p}_{0}(\Omega)$. Then for a further subsequence, $w_{n}\to w $ in $L^p(\Omega,V^{+})$. Now observe that \[\int_{\Omega}V^{-}(x) |w|^p\le \lim_{n\to \infty}\int_{\Omega} V^{-}|w_{n}|^p=\lim_{n\to \infty}\int_{\Omega}V^{+}|w_{n}|^p-1 =\int_{\Omega}V^{+}|w|^p-1.\] Then $w\ge 0$ and $\int_{\Omega} V^{+}(x)w^p\ge 1$. So for some $\epsilon >0, \delta =|w>\epsilon|>0$, we deduce that $|w_{n}> \epsilon/2|> \frac{\delta}{2}$ for $n$ sufficiently large, which contradicts the assumption $|v_{n}>0|\to 0$. \hfill$\Box$ A second critical point of $\tilde{J}_{s}$ comes next. \begin{proposition} \label{prop3.4} $- \phi_{1}$ is a strict local minimum of $\tilde{J_{s}}$, and $ \tilde{J_{s}}(-\phi_{1})=\lambda_{1} $, the corresponding point in $\sum_{p}$ is $(\lambda_{1}+s,\lambda_{1})$. \end{proposition} \paragraph{Proof:} We follow the ideas in \cite[Prop. 2.3]{CDG}. Assume by contradiction that there exist a sequence $u_{n} \in M$ with $u_{n} \ne -\phi_{1},\; u_{n} \to -\phi_{1}$ in $W^{1,p}_{0}(\Omega)$ and $\tilde{J_{s}}(u_{n})\le \lambda_{1}$. Claim: $u_{n}$ changes sign for $n$ sufficiently large. Since $u_{n} \to -\phi_{1}, u_{n}$, it must follow that $u_n\le 0 $ some where. If $u_{n} \le 0$ a.e., in $\Omega$, then \[ \tilde{J_{s}}(u_{n})=\int_{\Omega} |\nabla u_{n}|^p- \int_{\Omega}\mu a(x) |u_{n}|^p > \lambda_{1} \] since $u_{n} \ne \pm\phi_{1}$, and this contradicts $ \tilde{J_{s}}(u_{n})\le \lambda_{1}$. This completes the proof of claim. Let $r_{n}=[ \int_{\Omega} |\nabla u_{n}^{+}|^p-\int_{\Omega} \mu a(x) |u_{n}^{+}|^p]/ \int_{\Omega} Vu_{n}^{+{p}},$ we have \begin{align*} \tilde{J_{s}}(u_{n})=&\int_{\Omega} |\nabla u_{n}^{+}|^p +\int_{\Omega} |\nabla u_{n}^{-}|^p-\int_{\Omega} \mu a(x) |u_{n}^{+}|^p \\ &-\int_{\Omega} \mu a(x) |u_{n}^{-}|^p-s \int_{\Omega} V|u_{n}^{+}|^p \\ \ge& (r_{n}-s) \int_{\Omega}V u_{n}^{+^p}+ \lambda_{1} \int_{\Omega}V u_{n}^{-^p} \end{align*} on the other hand \[\tilde{J_{s}}(u_{n})\le \lambda_{1}=\lambda_{1} \int_{\Omega} Vu_{n}^{+^p} +\int_{\Omega}V u_{n}^{-^p} \] combining the two inequalities, we get $r_{n} \le \lambda_{1}+s$. Now since, $u_{n} \to -\phi_{1} $ in $L^p(\Omega),\; |u_{n}>0|\to 0$. The Lemma \ref{lm3.3} then implies $r_{n}\to +\infty$ , which contradicts $r_{n} \le \lambda_{1}+s$. \hfill$\Box$ \smallskip Now as in the proof of Theorem \ref{thm2.2}, one can show that $\tilde{J}_{s}$ satisfies the P.S. condition at any positive level. \begin{lemma} \label{lm3.5} Let $\epsilon_{0}>0 $ be such that \begin{equation} \tilde{J_{s}}(u)>\tilde{J_{s}}(-\phi_{1}) \quad \forall u\in B(-\phi_{1},\epsilon_{0}) \cap M \end{equation} with $u \ne -\phi_{1}, B \subset W^{1,p}_{0}$. Then for any $0<\epsilon <\epsilon_{0}$ \begin{equation} \inf \{ \tilde{J_{s}}(u); u\in M \quad\text{and}\quad \|u-(-\phi_{1})\|_{1,p}=\epsilon \} > \tilde{J_{s}}(-\phi_{1}). \end{equation} \end{lemma} The proof of this lemma follows from the Ekeland variational principle. Therefore, we omit it. For details we refer the reader to \cite{CDG}. Let \[\Gamma=\{ \gamma\in C([-1,1];M) :\gamma(-1)=-\phi_{1}, \gamma(1)=\phi_{1}\} \ne \varnothing \] and the geometric assumptions of Mountain-pass Lemma are satisfied by previous Lemma. Therefore, there exists $u\in W^{1,p}_{0}$ such that $\tilde{J}_{s}'(u) =0$ and $J_{s}(u)=c$, where $c$ is given by \begin{equation} c(s)=\inf_{\Gamma} \sup_{\gamma} J_{s}(u). \end{equation} Proceeding in this manner for each $s\ge 0$ we get a non-trivial curve ${\mathcal{C}}$: $s\in \mathbb{R}^{+}\to (s+c(s),c(s)) \in \mathbb{R}^{2}$ in $\sum_{p,\mu}$, which completes the proof of Theorem \ref{thm3.1}. \section{Nodal Domain Properties} In this section we show that $\lambda_{1}$ is isolated in the spectrum under the assumption on $V$ that $V\in L^{s}(\Omega)$ for some $s>\frac{N}{p}$. By the regularity results in \cite{T,D} the solutions of (\ref{eq:a3}) are $C^{1}(\Omega\backslash\{0\})$. In \cite{S} it is shown that the positive solutions of (\ref{eq:a3}) when $V=1$ tends to $+\infty$ as $|x| \to 0$. We prove the following theorem. \begin{theorem} \label{thm4.1} The eigenvalue $\lambda_{1}$ is isolated in the spectrum provided that $V\in L^{s}(\Omega)$ for some $s>\frac{N}{p}$. Moreover, for $v$ an eigenfunction corresponding to an eigenvalue $\lambda \ne \lambda_{1}$ and $O$ be a nodal domain of $v$, then \begin{equation} \label{eq:t2} |O|\ge (C\lambda \|V\|_{s})^{-\gamma} \end{equation} where $\gamma=\frac{sN}{sp-N}$ and $C$ is a constant depending only on $N$ and $p$. \end{theorem} \begin{lemma} \label{lm4.2} Let $u\in C(\Omega\backslash\{0\})\cap W^{1,p}_{0}(\Omega)$ and let $O$ be a component of $\{x\in \Omega; u(x)>0\}$. Then $u \vline_{O} \in W^{1,p}_{0}(O)$ \end{lemma} \paragraph{Proof:} case (i): $1\lambda_{1} $ and $\mu_{n}\to \lambda_{1}$. Let the corresponding eigenfunctions $u_{n}$ converge to $\phi_{1}$. such that $\|u_{n}\|_{L^p(V)}=1$. i.e., $u_{n}$ satisfies \begin{equation} \label{eq:b11} -\Delta_{p}u_{n}-\mu a(x)|u_{n}|^{p-2}u_{n} =\lambda_{n}V(x)|u_{n}|^{p-2}u_{n}. \end{equation} Testing (\ref{eq:b11}) with $u_{n}$ and applying weighted Hardy-Sobolev inequallity we get $u_{n}$ to be bounded. Therefore by Proposition \ref{prop1.1}, there exists a subsequence $(u_{n})$ of $(u_{n})$ such that $u_{n}\to u $ weakly in $W^{1,p}_{0}(\Omega)$, strongly in $L^p(\Omega)$ and $\nabla u_{n} \to \nabla u $ a.e in $\Omega$. Taking limit $n\to \infty$ in (\ref{eq:b11}) we get \[-\Delta_{p}u-\mu a(x)|u|^{p-2}u=\lambda_{1}V(x)|u|^{p-2}u \quad \text{in}\;\; {\mathcal{D}}^{\prime}(\Omega).\] Therefore $u=\pm \phi_{1}$. By Theorem \ref{thm2.1}, $u_{n}$ changes sign. Without loss of generality, we can assume that $u=+\phi_{1}$, then \begin{equation} \label{eq:b12} |\{x;u_{n}<0\}|\to 0. \end{equation} Testing (\ref{eq:b11}) with $u_{n}^{-}$, we get \[\int_{\Omega} |\nabla u_{n}^{-}|^p -\int_{\Omega}\mu a(x) u_{n}^{-^p}=\int_{\Omega}\lambda_{n} V(x)u_{n}^{-^p}\] By Hardy-Sobolev and Sobolev inequalities, we get \[C_{1}\|u_{n}\|_{1,p}^p\le C \int_{\Omega^{-}}V(x)|u_{n}|^p\le C\|V\|_{s} \|u_{n}\|_{p^{*}}^p |\Omega_{n}^{-}|^{\gamma}\le C_{3}\|u_{n}\|_{1,p}^p |\Omega_{n}^{-}|^{\gamma}\|V\|_{s},\] for some positive $\gamma >0$. This implies that \[ |\Omega_{n}^{-}|\ge C_{4}^{1/\gamma}, \quad \Omega_{n}^{-}=\{x\in \Omega; u_{n}<0\}.\] This contradicts (\ref{eq:b12}). Next we prove the estimate (\ref{eq:t2}). Assume that $v>0$ in $O$, the case $v<0$ being treated similarly. We observe by Lemma \ref{lm4.2}, that $v\vline_{O}\in W^{1,p}_{0}(O)$. Hence the function defined as $w(x)=v(x)$ if $x\in O$ and $w(x)=0$ if $x\in \Omega\backslash O$ belongs to $W^{1,p}_{0}(\Omega)$. Using $w$ as test function in the equation satisfied by $v$, we find \[\int_{O}|\nabla v|^pdx-\int_{\Omega}\mu a(x)|v|^pdx =\lambda \int_{O}V|v|^pdx \le \lambda \|V\|_{s}\|v\|_{p^{*},O}|O|^{\frac{p^{*}-s'p}{s'p^{*}}} \] by Holder inequality. On the other hand by Sobolev and Hardy-Sobolev inequalities we have that $\int_{O}|\nabla v|^pdx \ge C \|v\|_{p^{*},O}^p$ for some constant $C=C(N,p)$. Hence \[C\le \lambda \|V\|_{s}|O|^{\frac{p^{*}-s'p}{s'p^{*}}}\] \quad\hfill$\Box$ \begin{corollary} Each eigenfunction has a finite number of nodal domains. \end{corollary} \paragraph{Proof:} Let $O_{j}$ be a nodal domain of an eigenfunction associated to some positive eigenvalue $\lambda$. It follows from (\ref{eq:t2}) that \[|\Omega|\ge \sum_{j}|O_{j}|\ge (C\lambda \|V\|_{s})^{-\gamma}\sum_{j} 1 \] and the proof follows. \begin{thebibliography}{00} \frenchspacing \bibitem{A} A. Anane, \textit{Etude des valeurs propres et de la resonnance pour l'operateur $p$-laplacian}, C.R. Ac. Sc. Paris, Vol. 305, 725-728, 1987. \bibitem{ACM} Adimurthi, Nirmalendu Choudhuri, Mythily Ramaswamy, \textit{Improved Hardy-Sobolev inequality and its applications}, Proc. AMS, to appear. \bibitem{AH} W. Allegretto and Y.X. Hang, \textit{A picone identity for the $p$-Laplacian and applications}, Nonlinear Analysis TMA, Vol. 32, 819-830, 1998. \bibitem{AS} Adimurthi and K. Sandeep, \textit{Existence and Non-existence of first eigenvalue of perturbed Hardy-Sobolev Operator}, Proc. Royal. Soc. Edinberg, to appear. \bibitem{BM} L. Boccardo and F. Murat, \textit{Almost convergence of gradients of solutions to elliptic and parabolic equations}, Nonlinear Analysis TMA Vol. 19, no. 6581-597, 1992. \bibitem{BL} H. Brezis and E. Lieb, \textit{A Relation between Point Convergence of Functions and Convergence of Functionals}, Proc. AMS, vol. 88, 486-490, 1983. \bibitem{C} M. Cuesta, \textit{Eigenvalue problems for the $p$-Laplacian with indefinite weights,} Electronic J. of Diff. Equations, Vol. 2001 No. 33, 1-9, 2001. \bibitem{CDG} M. Cuesta, D. Defigueredo and J.P. Gossez, \textit{The beginning of Fu\v{c}ik spectrum for $p$-Laplacean}, Journal of Differential Equations, Vol. 2001, No. 33, 1-9, 2001. \bibitem{D} E. Dibendetto, \textit{$C^{1,\alpha}$ local regularity of weak solutionsof degenerate elliptic equations}, Nonlinear Analysis TMA Vol. 7, 827-850, 1983. \bibitem{De} D. DeFigueredo, \textit{Lectures on the Ekeland variational principle with applications and Detours}, TATA Institute, Springer-Verlog, New york 1989. \bibitem{S} K. Sandeep, \textit{On the first Eigenfunction of perturbed Hardy-Sobolev Operator}, Preprint. \bibitem{Sr}K. Sreenadh, \textit{On the Fu\v{c}ik spectrum of Hardy-Sobolev Operator}, Nonlinear Analysis TMA, to appear. \bibitem{Sz} A. Szulkin, \textit{Ljusternik-Schnirelmann theory on $C^{1}$-manifolds}, Ann. Inst. H. Poincare Anal. Non Lineaire vol. 5, 119-139, 1988. \bibitem{SW} A. Szulkin and M. Wilem, \textit{Eigenvalue problems with indefinite weights}, Stud. Math, Vol. 135, No. 2, 199-201, 1999. \bibitem{T} P. Tolksdorf, \textit{Regularity for a more general class of quasilinear elliptic equations}, Journal of Differential equations, Vol. 51, 126-150, 1984. \end{thebibliography} \noindent\textsc{Konijeti Sreenadh}\\ Department of Mathematics\\ Indian Institute of Technology\\ Kanpur 208016, India.\\ e-mail: snadh@iitk.ac.in \end{document}