\documentclass[twoside]{article} \usepackage{amsfonts, amsmath, amsthm} \pagestyle{myheadings} \markboth{\hfil Resonance problems \hfil EJDE--2002/36} {EJDE--2002/36\hfil Kanishka Perera \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 36, pp. 1--10. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Resonance problems with respect to the Fu\v c\'\i k spectrum of the $p$-Laplacian % \thanks{ {\em Mathematics Subject Classifications:} 35J20, 35P99, 47J30, 58E50. \hfil\break\indent {\em Key words:} $p$-Laplacian problems, Fu\v c\'\i k spectrum, resonance, variational methods, \hfil\break\indent linking. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted January 9, 2002. Published April 23, 2002.} } \date{} % \author{Kanishka Perera} \maketitle \begin{abstract} We solve resonance problems with respect to the Fu\v c\'\i k spectrum of the $p$-Laplacian using variational methods. \end{abstract} \newcommand{\bigip}[2]{\big(#1,#2\big)} \newcommand{\norm}[2]{\|#1\|_{#2}} \newcommand{\seq}[1]{\left(#1\right)} \newcommand{\set}[1]{\left\{#1\right\}} \newenvironment{enumeratepr}{\begin{enumerate} \renewcommand{\theenumi}{\roman{enumi}} \renewcommand{\labelenumi}{(\roman{enumi}).}}{\end{enumerate}} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \numberwithin{equation}{section} \section{Introduction} \label{S1} Consider the quasilinear elliptic boundary value problem \begin{equation} \label{101} - \Delta_p\, u = a\, (u^+)^{p-1} - b\, (u^-)^{p-1} + f(x,u), \quad u \in W^{1,\, p}_0(\Omega) \end{equation} where $\Omega$ is a bounded domain in $\mathbb {R}^n,\, n \ge 1$, $\Delta_p\, u = \mathop{\rm div} \big(|\nabla u|^{p-2}\, \nabla u\big)$ is the $p$-Laplacian, $1 < p < \infty$, $u^\pm = \max \set{\pm\, u, 0}$, and $f$ is a Carath\'{e}odory function on $\Omega \times \mathbb {R}$ satisfying a growth condition \begin{equation} \label{102} |f(x,t)| \le V(x)^{p-q}\, |t|^{q-1} + W(x)^{p-1} \end{equation} with $1 \le q < p$ and $V,\, W \in L^p(\Omega)$. The set $\Sigma_p$ of those points $(a,b) \in \mathbb {R}^2$ for which the asymptotic problem \begin{equation} \label{103} - \Delta_p\, u = a\, (u^+)^{p-1} - b\, (u^-)^{p-1}, \quad u \in W^{1,\, p}_0(\Omega) \end{equation} has a nontrivial solution is called the Fu\v c\'\i k spectrum of the $p$-Laplacian on $\Omega$. The nonresonance case for problem \eqref{101}, $(a,b) \notin \Sigma_p$, was recently studied by Cuesta, de Figueiredo, and Gossez \cite{CudeFiGo} and the author \cite{Pe6, Pe5}. The symmetric resonance case, $a = b \in \sigma(- \Delta_p)$, was considered by Dr{\'a}bek and Robinson \cite{DrRo}. The purpose of the present paper is to study the general resonance case $(a,b) \in \Sigma_p$. The Fu\v c\'\i k spectrum was introduced in the semilinear case, $p = 2$, by Dancer \cite{Da3} and Fu\v c\'\i k \cite{Fu1} who recognized its significance for the solvability of problems with jumping nonlinearities. In the semilinear ODE case $p = 2,\, n = 1$, Fu\v c\'\i k \cite{Fu1} showed that $\Sigma_2$ consists of a sequence of hyperbolic like curves passing through the points $(\lambda_l,\lambda_l)$, where $\set{\lambda_l}_{l \in \mathbb{N}}$ are the eigenvalues of $- \Delta$, with one or two curves going through each point. Dr{\'a}bek \cite{Dr} has recently shown that $\Sigma_p$ has this same general shape for all $p > 1$ in the ODE case. In the PDE case, $n \ge 2$, much of the work to date on $\Sigma_p$ has been for the semilinear case. It is now known that $\Sigma_2$ consists, at least locally, of curves emanating from the points $(\lambda_l,\lambda_l)$ (see, e.g., \cite{Ca, CuGo, Da3, deFiGo, Fu1, GaKa, La, LaMc1, LaMc2, Ma, MaMa}). Schechter \cite{Sc7} has shown that $\Sigma_2$ contains two continuous and strictly decreasing curves through $(\lambda_l,\lambda_l)$, which may coincide, such that the points in the square $(\lambda_{l-1},\lambda_{l+1})^2$ that are either below the lower curve or above the upper curve are not in $\Sigma_2$, while the points between them may or may not belong to $\Sigma_2$ when they do not coincide. In the quasilinear PDE case, $p \ne 2,\, n \ge 2$, it is known that the first eigenvalue $\lambda_1$ of $- \Delta_p$ is positive, simple, and admits a positive eigenfunction $\varphi_1$ (see Lindqvist \cite{Lin1}). Hence $\Sigma_p$ contains the two lines $\lambda_1 \times \mathbb {R}$ and $\mathbb {R} \times \lambda_1$. In addition, $\sigma(- \Delta_p)$ has an unbounded sequence of variational eigenvalues $\set{\lambda_l}$ satisfying a standard min-max characterization, and $\Sigma_p$ contains the corresponding sequence of points $\set{(\lambda_l,\lambda_l)}$. A first nontrivial curve in $\Sigma_p$ through $(\lambda_2,\lambda_2)$ asymptotic to $\lambda_1 \times \mathbb {R}$ and $\mathbb {R} \times \lambda_1$ at infinity was recently constructed and variationally characterized by a mountain-pass procedure by Cuesta, de Figueiredo, and Gossez \cite{CudeFiGo}. More recently, unbounded sequences of curves $\set{C^\pm_l}$ in $\Sigma_p$ (analogous to the lower and upper curves of Schechter) have been constructed and variationally characterized by min-max procedures by Micheletti and Pistoia \cite{MiPi} for $p \ge 2$ and by the author \cite{Pe5} for all $p > 1$. Let us also mention that some Morse theoretical aspects of the Fu\v c\'\i k spectrum have been studied in Dancer \cite{Da2}, Dancer and Perera \cite{DaPe}, Perera and Schechter \cite{PeSc8, PeSc2, PeSc3, PeSc6, PeSc5, PeSc9}, and Li, Perera, and Su \cite{LiPeSu2}. Denote by $N$ the set of nontrivial solutions of \eqref{103}, and set \begin{equation} \label{104} F(x,t) := \int_0^t f(x,s)\, ds, \quad H(x,t) := p\, F(x,t) - t f(x,t). \end{equation} The main result of this paper is: \begin{theorem} \label{T101} The problem \eqref{101} has a solution if \begin{enumeratepr} \item \label{H101} $(a,b) \in C^+_l$ and $\int_\Omega H(x,u_j) \to + \infty$, or \item \label{H102} $(a,b) \in C^-_l$ and $\int_\Omega H(x,u_j) \to - \infty$ \end{enumeratepr} for every sequence $\seq{u_j}$ in $W^{1,\, p}_0(\Omega)$ such that $\norm{u_j}{} \to \infty$ and $u_j/\norm{u_j}{}$ converges to some element of $N$. \end{theorem} As is usually the case in resonance problems, the main difficulty here is the lack of compactness of the associated variational functional. We will overcome this difficulty by constructing a sequence of approximating nonresonance problems, finding approximate solutions for them using linking and min-max type arguments, and passing to the limit. But first we give some corollaries. In what follows, $\seq{u_j}$ is as in the theorem, i.e., $\rho_j := \norm{u_j}{} \to \infty$ and $v_j := u_j/\rho_j \to v \in N$. First we give simple pointwise assumptions on $H$ that imply the limits in the theorem. \begin{corollary} \label{T102} Problem \eqref{101} has a solution in the following cases: \begin{enumeratepr} \item \label{H103} $(a,b) \in C^+_l$, $H(x,t) \to + \infty$ a.e. as $|t| \to \infty$, and $H(x,t) \ge - C(x)$, \item \label{H104} $(a,b) \in C^-_l$, $H(x,t) \to - \infty$ a.e. as $|t| \to \infty$, and $H(x,t) \le C(x)$ \end{enumeratepr} for some $C \in L^1(\Omega)$. \end{corollary} Note that this corollary makes no reference to $N$. \begin{proof} If \eqref{H103} holds, then $H(x,u_j(x)) = H(x,\rho_j\, v_j(x)) \to + \infty$ for a.e. $x$ such that $v(x) \ne 0$ and $H(x,u_j(x)) \ge - C(x)$, so \begin{equation} \label{105} \int_\Omega H(x,u_j) \ge \int_{v \ne 0} H(x,u_j) - \int_{v = 0} C(x) \to + \infty \end{equation} by Fatou's lemma. Similarly, $ \int_\Omega H(x,u_j) \to - \infty$ if \eqref{H104} holds. \end{proof} Note that the above argument goes through as long as the limits in \eqref{H103} and \eqref{H104} hold on subsets of $\set{x \in \Omega : v(x) \ne 0}$ with positive measure. Now, taking $w = v^+$ in \begin{equation} \label{106} \int_\Omega |\nabla v|^{p-2}\, \nabla v \cdot \nabla w = \int_\Omega \Big[a\, (v^+)^{p-1} - b\, (v^-)^{p-1}\Big] w \end{equation} gives \begin{align} \label{107} \norm{v^+}{}^p & = \int_{\Omega_+} a\, (v^+)^p \le a\, \norm{v^+}{p^\ast}^p\, \mu(\Omega_+)^{p/n} \notag\\ & \le a\, S^{-1}\, \norm{v^+}{}^p\, \mu(\Omega_+)^{p/n} \end{align} where $\Omega_+ = \set{x \in \Omega : v(x) > 0}$, $p^\ast = np/(n - p)$ is the critical Sobolev exponent, $S$ is the best constant for the embedding $W^{1,\, p}_0(\Omega) \hookrightarrow L^{p^\ast}(\Omega)$, and $\mu$ is the Lebesgue measure in $\mathbb {R}^n$, so \begin{equation} \label{108} \mu(\Omega_+) \ge \left(\frac{S}{a}\right)^{n/p}. \end{equation} A similar argument shows that \begin{equation} \label{109} \mu(\Omega_-) \ge \left(\frac{S}{b}\right)^{n/p} \end{equation} where $\Omega_- = \set{x \in \Omega : v(x) < 0}$, and hence \begin{equation} \label{110} \mu\Big(\set{x \in \Omega : v(x) = 0}\Big) \le \mu(\Omega) - S^{n/p}\, \Big(a^{-n/p} + b^{-n/p}\Big). \end{equation} Thus, \begin{corollary} \label{T103} Problem \eqref{101} has a solution in the following cases: \begin{enumeratepr} \item \label{H105} $(a,b) \in C^+_l$, $H(x,t) \to + \infty$ in $\Omega'$ as $|t| \to \infty$, and $H(x,t) \ge - C(x)$, \item \label{H106} $(a,b) \in C^-_l$, $H(x,t) \to - \infty$ in $\Omega'$ as $|t| \to \infty$, and $H(x,t) \le C(x)$ \end{enumeratepr} for some $\Omega' \subset \Omega$ with $\mu(\Omega') > \mu(\Omega) - S^{n/p} \left(a^{-n/p} + b^{-n/p}\right)$ and $C \in L^1(\Omega)$. \end{corollary} Next note that \begin{equation} \label{111} \begin{split} \underline{H}_+(x)\, & (v^+(x))^q + \underline{H}_-(x)\, (v^-(x))^q \le \liminf\, \frac{H(x,u_j(x))}{\rho_j^q}\\ & \hspace{-0.20in} \le \limsup\, \frac{H(x,u_j(x))}{\rho_j^q} \le \overline{H}_+(x)\, (v^+(x))^q + \overline{H}_-(x)\, (v^-(x))^q \end{split} \raisetag{24pt} \end{equation} where \begin{equation} \label{112} \underline{H}_\pm(x) = \liminf_{t \to \pm \infty}\, \dfrac{H(x,t)}{|t|^q}, \quad \overline{H}_\pm(x) = \limsup_{t \to \pm \infty}\, \dfrac{H(x,t)}{|t|^q}. \end{equation} Moreover, \begin{equation} \label{113} \frac{|H(x,u_j(x))|}{\rho_j^q} \le (p + q)\, V(x)^{p-q}\, |v_j(x)|^q + \frac{(p + 1)\, W(x)^{p-1}\, |v_j(x)|}{\rho_j^{q-1}} \end{equation} by \eqref{102}, so it follows that \begin{equation} \label{114} \begin{split} \int_\Omega \underline{H}_+ (v^+)^q + \underline{H}_- & (v^-)^q \le \liminf\, \frac{\textstyle \int_\Omega H(x,u_j)}{\rho_j^q}\\ & \hspace{-0.3in} \le \limsup\, \frac{\textstyle \int_\Omega H(x,u_j)}{\rho_j^q} \le \int_\Omega \overline{H}_+ (v^+)^q + \overline{H}_- (v^-)^q. \end{split} \raisetag{24pt} \end{equation} Thus we have \begin{corollary} \label{T104} Problem \eqref{101} has a solution in the following cases: \begin{enumeratepr} \item \label{H107} $(a,b) \in C^+_l$ and $\int_\Omega \underline{H}_+ (v^+)^q + \underline{H}_- (v^-)^q > 0 \quad \forall v \in N$, \item \label{H108} $(a,b) \in C^-_l$ and $ \int_\Omega \overline{H}_+ (v^+)^q + \overline{H}_- (v^-)^q < 0 \quad \forall v \in N$. \end{enumeratepr} \end{corollary} Finally we note that if \begin{equation} \label{115} \dfrac{t f(x,t)}{|t|^q} \to f_\pm(x) \quad \text{a.e. as } t \to \pm \infty, \end{equation} then \begin{equation} \label{116} \frac{F(x,t)}{|t|^q} = \frac{1}{|t|^q} \int_0^t \left[\frac{s f(x,s)}{|s|^q} - f_\pm(x)\right] \! |s|^{q-2} s\, ds + \frac{f_\pm(x)}{q} \to \frac{f_\pm(x)}{q} \end{equation} and hence \begin{equation} \label{117} \dfrac{H(x,t)}{|t|^q} \to \bigg(\dfrac{p}{q} - 1\bigg) f_\pm(x), \end{equation} so Corollary \ref{T104} implies \begin{corollary} \label{T105} Problem \eqref{101} has a solution in the following cases: \begin{enumeratepr} \item \label{f101} $(a,b) \in C^+_l$ and $ \int_\Omega f_+ (v^+)^q + f_- (v^-)^q > 0 \quad \forall v \in N$, \item \label{f102} $(a,b) \in C^-_l$ and $\int_\Omega f_+ (v^+)^q + f_- (v^-)^q < 0 \quad \forall v \in N$. \end{enumeratepr} \end{corollary} \section{Preliminaries on the Fu\v c\'\i k Spectrum} \label{S2} As in Cuesta, de Figueiredo, and Gossez \cite{CudeFiGo}, the points in $\Sigma_p$ on the line parallel to the diagonal $a = b$ and passing through $(s,0)$ are of the form $(s + c_+,c_+)$ (resp. $(c_-,s + c_-)$) with $c_\pm$ a critical value of \begin{equation} \label{201} J^\pm_s(u) = \int_\Omega |\nabla u|^p - s\, (u^\pm)^p, \quad u \in S = \set{u \in W^{1,\, p}_0(\Omega) : \norm{u}{p} = 1} \end{equation} and $J^\pm_s$ satisfies the Palais-Smale compactness condition. Since $\Sigma_p$ is clearly symmetric with respect to the diagonal, we may assume that $s \ge 0$. In particular, the eigenvalues of $- \Delta_p$ on $W^{1,\, p}_0(\Omega)$ correspond to the critical values of the even functional $J = J^\pm_0$. As observed in Dr{\'a}bek and Robinson \cite{DrRo}, we can define an unbounded sequence of critical values of $J$ by \begin{equation} \label{202} \lambda_l := \inf_{A \in {\cal F}_l} \max_{u \in A} J(u), \quad l \in \mathbb{N} \end{equation} where \begin{equation} \label{203} {\cal F}_l = \set{A \subset S : \text{there is a continuous odd surjection } h : S^{l-1} \to A} \end{equation} and $S^{l-1}$ is the unit sphere in $\mathbb {R}^l$, although it is not known whether this gives a complete list of eigenvalues. Suppose that $l \ge 2$ is such that $\lambda_l > \lambda_{l-1}$ and let $0 < \varepsilon < \lambda_l - \lambda_{l-1}$ be given. By \eqref{202}, there is an $A^{l-2} \in {\cal F}_{l-1}$ such that \begin{equation} \label{204} \max_{u \in A^{l-2}} J(u) < \lambda_{l-1} + \varepsilon. \end{equation} Let $h_{l-2} : S^{l-2} \to A^{l-2}$ be any continuous odd surjection and let \begin{align} \label{205} {\cal F}_l^+ = \big\{&A_+ \subset S : \text{there is a continuous surjection } h : S^{l-1}_+ \to A_+ \notag\\ & \text{such that } h|_{S^{l-2}} = h_{l-2}\big\} \end{align} where $S^{l-1}_+$ is the upper hemisphere of $S^{l-1}$ with boundary $S^{l-2}$. Then ${\cal F}_l^+$ is a homotopy-stable family of compact subsets of $S$ with closed boundary $A^{l-2}$, i.e, \begin{enumeratepr} \item every set $A_+ \in {\cal F}_l^+$ contains $A^{l-2}$, \item for any set $A_+ \in {\cal F}_l^+$ and any $\eta \in C([0,1] \times S; S)$ satisfying $\eta(t,u) = u$ for all $(t,u) \in (\set{0} \times S) \cup ([0,1] \times A^{l-2})$ we have that $\eta(\set{1} \times A) \in {\cal F}_l^+$. \end{enumeratepr} For $s \in I_l^\varepsilon := [0,\lambda_l - \lambda_{l-1} - \varepsilon]$, set \begin{equation} \label{206} c^\pm_l(s) := \inf_{A_+ \in {\cal F}_l^+} \max_{u \in A_+} J^\pm_s(u). \end{equation} If $c^\pm_l(s) < \lambda_l - s$, taking $A_+ \in {\cal F}_l^+$ with \begin{equation} \label{207} \max_{u \in A_+} J^\pm_s(u) < \lambda_l - s \end{equation} and setting $A = A_+ \cup (- A_+)$ we get a set in ${\cal F}_l$ for which \begin{equation} \label{208} \max_{u \in A} J(u) = \max_{u \in A_+} J(u) \le \max_{u \in A_+} J^\pm_s(u) + s < \lambda_l, \end{equation} a contradiction. Thus \begin{equation} \label{209} c^\pm_l(s) \ge \lambda_l - s \ge \lambda_{l-1} + \varepsilon > \max_{u \in A^{l-2}} J(u) \ge \max_{u \in A^{l-2}} J^\pm_s(u), \end{equation} and it follows from Theorem 3.2 of Ghoussoub \cite{Gh2} that $c^\pm_l(s)$ is a critical value of $J^\pm_s$. Hence \begin{equation} \label{210} C^\pm_l := \set{(s + c^\pm_l(s),c^\pm_l(s)) : s \in I_l^\varepsilon} \cup \{(c^\pm_l(s),s + c^\pm_l(s)) : s \in I_l^\varepsilon\} \subset \Sigma_p. \end{equation} Note that \eqref{209} implies $c^\pm_l(0) \ge \lambda_l \to \infty$. \section{Proof of Theorem \ref{T101}} \label{S3} As is well-known, solutions of \eqref{102} are the critical points of \begin{equation} \label{301} \Phi(u) = \int_\Omega |\nabla u|^p - a\, (u^+)^p - b\, (u^-)^p - p\, F(x,u), \quad u \in W^{1,\, p}_0(\Omega). \end{equation} We only consider \eqref{H101} as the proof for \eqref{H102} is similar. Let $(a,b) = (s + c^+_l(s),c^+_l(s))$, $s \ge 0$ and \begin{equation} \label{302} \Phi_j(u) = \Phi(u) + \frac{1}{j}\, \int_\Omega |u|^p = \int_\Omega |\nabla u|^p - s\, (u^+)^p - \left(c^+_l(s) - \frac{1}{j}\right) |u|^p - p\, F(x,u). \end{equation} First we show that, for sufficiently large $j$, there is a $u_j \in W^{1,\, p}_0(\Omega)$ such that \begin{equation} \label{303} \norm{u_j}{} \,\norm{\Phi_j'(u_j)}{} \to 0, \quad \inf \Phi_j(u_j) > - \infty. \end{equation} Let $\varepsilon$ and $A^{l-2}$ be as in Section \ref{S2}. By \eqref{209}, \begin{equation} \label{304} \max_{u \in A^{l-2}} J^\pm_s(u) \le c^\pm_l(s) - \frac{2}{j} \end{equation} for sufficiently large $j$. For such $j$, $u \in A^{l-2}$, and $R > 0$, \begin{align} \label{305} \Phi_j(Ru) & = R^p \left[J^+_s(u) - \left(c^+_l(s) - \frac{1}{j}\right)\right] - \int_\Omega p\, F(x,Ru) \notag\\ & \le - \frac{R^p}{j} + p\, \Big(\norm{V}{p}^{p-q}\, R^q + \norm{W}{p}^{p-1}\, R\Big) \end{align} by \eqref{102}, so \begin{equation} \label{306} \max_{u \in A^{l-2}} \Phi_j(Ru) \to - \infty \quad \text{as } R \to \infty. \end{equation} Next let \begin{equation} \label{307} F = \set{u \in W^{1,\, p}_0(\Omega) : J^+_s(u) \ge c^+_l(s)\, \norm{u}{p}^p}. \end{equation} For $u \in F$, \begin{equation} \label{308} \Phi_j(u) \ge \frac{\norm{u}{p}^p}{j} - p\, \Big(\norm{V}{p}^{p-q}\, \norm{u}{p}^q + \norm{W}{p}^{p-1}\, \norm{u}{p}\Big), \end{equation} so \begin{equation} \label{309} \inf_{u \in F} \Phi_j(u) \ge C := \min_{r \ge 0} \bigg[\frac{r^p}{j} - p\, \Big(\norm{V}{p}^{p-q}\, r^q + \norm{W}{p}^{p-1}\, r\Big)\bigg] > - \infty. \end{equation} Now use \eqref{306} to fix $R > 0$ so large that \begin{equation} \label{310} \max \Phi_j(B) < C \end{equation} where $B = \set{Ru : u \in A^{l-2}}$. Next consider the homotopy-stable family of compact subsets of $X$ with boundary $B$ given by \begin{align} \label{410} {\cal F} = \big\{&A \subset X : \text{there is a continuous surjection } h : S^{l-1}_+ \to A \notag\\ & \text{such that } h|_{S^{l-2}} = R\, h_{l-2}\big\} \end{align} where $h_{l-2}$ is as in Section \ref{S2}. We claim that the set $F$ is dual to the class $\cal F$, i.e., \begin{equation} \label{411} F \cap B = \emptyset, \quad F \cap A \ne \emptyset \quad \forall A \in {\cal F}. \end{equation} It is clear from \eqref{309} and \eqref{310} that $F \cap B = \emptyset$. Let $A \in {\cal F}$. If $0 \in A$, then we are done. Otherwise, denoting by $\pi$ the radial projection onto $S$, $\pi(A) \in {\cal F}_l^+$ and hence \begin{equation} \label{412} \max_{u \in \pi(A)} J^+_s(u) \ge c^+_l(s), \end{equation} so $F \cap \pi(A) \ne \emptyset$. But this implies $F \cap A \ne \emptyset$. Now it follows from a deformation argument of Cerami \cite{Ce} that there is a $u_j$ such that \begin{equation} \label{314} \norm{u_j}{} \, \norm{\Phi_j'(u_j)}{} \to 0, \quad |\Phi_j(u_j) - c_j| \to 0 \end{equation} where \begin{equation} \label{315} c_j := \inf_{A \in {\cal F}} \max_{u \in A} \Phi_j(u) \ge C, \end{equation} from which \eqref{303} follows. We complete the proof by showing that a subsequence of $\seq{u_j}$ converges to a solution of \eqref{101}. It is easy to see that this is the case if $\seq{u_j}$ is bounded, so suppose that $\rho_j := \norm{u_j}{} \to \infty$. Setting $v_j := u_j/\rho_j$ and passing to a subsequence, we may assume that $v_j \to v$ weakly in $W^{1,\, p}_0(\Omega)$, strongly in $L^p(\Omega)$, and a.e. in $\Omega$. Then \begin{align} \label{316} \int_\Omega |\nabla v_j|^{p-2}\, \nabla v_j \cdot \nabla (v_j & - v) = \frac{\bigip{\Phi_j'(u_j)}{v_j - v}}{p\, \rho_j^{p-1}} + \int_\Omega \bigg[\!\left(a - \frac{1}{j}\right)\!(v_j^+)^{p-1} \notag\\ & - \left(b - \frac{1}{j}\right)\!(v_j^-)^{p-1} + \frac{f(x,u_j)}{\rho_j^{p-1}}\, \bigg] (v_j - v) \to 0, \end{align} and we deduce that $v_j \to v$ strongly in $W^{1,\, p}_0(\Omega)$ (see, e.g., Browder \cite{Br}). In particular, $\norm{v}{} = 1$, so $v \ne 0$. Moreover, for each $w \in W^{1,\, p}_0(\Omega)$, passing to the limit in \begin{align} \label{317} \frac{\bigip{\Phi_j'(u_j)}{w}}{p\, \rho_j^{p-1}} = \int_\Omega |\nabla v_j|^{p-2}\, & \nabla v_j \cdot \nabla w - \bigg[\!\left(a - \frac{1}{j}\right)\!(v_j^+)^{p-1} \notag\\ & - \left(b - \frac{1}{j}\right)\!(v_j^-)^{p-1} + \frac{f(x,u_j)}{\rho_j^{p-1}}\, \bigg] w \raisetag{24pt} \end{align} gives \begin{equation} \label{318} \int_\Omega |\nabla v|^{p-2}\, \nabla v \cdot \nabla w - \Big[a\, (v^+)^{p-1} - b\, (v^-)^{p-1}\Big] w = 0, \end{equation} so $v \in N$. Thus, \begin{equation} \label{319} \frac{\bigip{\Phi_j'(u_j)}{u_j}}{p} - \Phi_j(u_j) = \int_\Omega H(x,u_j) \to + \infty, \end{equation} contradicting \eqref{303}. \begin{thebibliography}{10} \bibitem{Br} F.~Browder. \newblock Nonlinear eigenvalue problems and group invariance. \newblock In {\em Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, Chicago, Ill., 1968)}, pages 1--58. Springer, New York, 1970. \bibitem{Ca} N.~C{\'a}c. \newblock On nontrivial solutions of a {D}irichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. \newblock {\em J. Differential Equations}, 80(2):379--404, 1989. \bibitem{Ce} G.~Cerami. \newblock An existence criterion for the critical points on unbounded manifolds. \newblock {\em Istit. Lombardo Accad. Sci. Lett. Rend. A}, 112(2):332--336 (1979), 1978. \bibitem{CudeFiGo} M.~Cuesta, D.~de~Figueiredo, and J.-P. Gossez. \newblock The beginning of the {F}u\v c\'\i k spectrum for the $p$-{L}aplacian. \newblock {\em J. Differential Equations}, 159(1):212--238, 1999. \bibitem{CuGo} M.~Cuesta and J.-P. Gossez. \newblock A variational approach to nonresonance with respect to the {F}u\v cik spectrum. \newblock {\em Nonlinear Anal.}, 19(5):487--500, 1992. \bibitem{Da3} E.~N. Dancer. \newblock On the {D}irichlet problem for weakly non-linear elliptic partial differential equations. \newblock {\em Proc. Roy. Soc. Edinburgh Sect. A}, 76(4):283--300, 1976/77. \newblock Corrigendum: {\em Proc. Roy. Soc. Edinburgh Sect. A}, 89(1-2):15, 1981. \bibitem{Da2} E.~N. Dancer. \newblock Remarks on jumping nonlinearities. \newblock In {\em Topics in nonlinear analysis}, pages 101--116. Birkh\"auser, Basel, 1999. \bibitem{DaPe} E.~N. Dancer and K.~Perera. \newblock Some remarks on the {F}u\v c\'\i k spectrum of the $p$-{L}aplacian and critical groups. \newblock {\em J. Math. Anal. Appl.}, 254(1):164--177, 2001. \bibitem{deFiGo} D.~de~Figueiredo and J.-P. Gossez. \newblock On the first curve of the {F}u\v cik spectrum of an elliptic operator. \newblock {\em Differential Integral Equations}, 7(5-6):1285--1302, 1994. \bibitem{Dr} P.~Dr{\'a}bek. \newblock {\em Solvability and bifurcations of nonlinear equations}. \newblock Longman Scientific \& Technical, Harlow, 1992. \bibitem{DrRo} P.~Dr{\'a}bek and S.~Robinson. \newblock Resonance problems for the $p$-{L}aplacian. \newblock {\em J. Funct. Anal.}, 169(1):189--200, 1999. \bibitem{Fu1} S.~Fu{\v{c}}{\'\i}k. \newblock Boundary value problems with jumping nonlinearities. \newblock {\em \v Casopis P\v est. Mat.}, 101(1):69--87, 1976. \bibitem{GaKa} T.~Gallou{\"e}t and O.~Kavian. \newblock R\'esultats d'existence et de non-existence pour certains probl\`emes demi-lin\'eaires \`a l'infini. \newblock {\em Ann. Fac. Sci. Toulouse Math. (5)}, 3(3-4):201--246 (1982), 1981. \bibitem{Gh2} N.~Ghoussoub. \newblock {\em Duality and perturbation methods in critical point theory}. \newblock Cambridge University Press, Cambridge, 1993. \bibitem{La} A.~Lazer. \newblock Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities. \newblock In {\em Partial differential equations (Rio de Janeiro, 1986)}, pages 137--165. Springer, Berlin, 1988. \bibitem{LaMc1} A.~Lazer and P.~McKenna. \newblock Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. \newblock {\em Comm. Partial Differential Equations}, 10(2):107--150, 1985. \bibitem{LaMc2} A.~Lazer and P.~McKenna. \newblock Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues. {I}{I}. \newblock {\em Comm. Partial Differential Equations}, 11(15):1653--1676, 1986. \bibitem{LiPeSu2} S.~J. Li, K.~Perera, and J.~B. Su. \newblock On the role played by the {F}u\v c\'\i k spectrum in the determination of critical groups in elliptic problems where the asymptotic limits may not exist. \newblock {\em Nonlinear Anal.}, 49(5):603--611, 2002. \bibitem{Lin1} P.~Lindqvist. \newblock On the equation ${\rm div}\,(\vert \nabla u\vert \sp {p-2}\nabla u)+\lambda\vert u\vert \sp {p-2}u=0$. \newblock {\em Proc. Amer. Math. Soc.}, 109(1):157--164, 1990. \newblock Addendum: {\em Proc. Amer. Math. Soc.}, 116(2):583--584, 1992. \bibitem{Ma} C.~Magalh\~aes. \newblock Semilinear elliptic problem with crossing of multiple eigenvalues. \newblock {\em Comm. Partial Differential Equations}, 15(9):1265--1292, 1990. \bibitem{MaMa} C.~Margulies and W.~Margulies. \newblock An example of the {F}u\v cik spectrum. \newblock {\em Nonlinear Anal.}, 29(12):1373--1378, 1997. \bibitem{MiPi} A.~Micheletti and A.~Pistoia. \newblock On the {F}u\v c\'\i k spectrum for the $p$-{L}aplacian. \newblock {\em Differential Integral Equations}, 14(7):867--882, 2001. \bibitem{Pe6} K.~Perera. \newblock An existence result for a class of quasilinear elliptic boundary value problems with jumping nonlinearities. \newblock to appear in Topol. Methods Nonlinear Anal. \bibitem{Pe5} K.~Perera. \newblock On the {F}u\v c\'\i k spectrum of the $p$-{L}aplacian. \newblock preprint. \bibitem{PeSc8} K.~Perera and M.~Schechter. \newblock Computation of critical groups in {F}u\v c\'\i k resonance problems. \newblock preprint. \bibitem{PeSc2} K.~Perera and M.~Schechter. \newblock Type ({II}) regions between curves of the {F}u\v c\'\i k spectrum and critical groups. \newblock {\em Topol. Methods Nonlinear Anal.}, 12(2):227--243, 1998. \bibitem{PeSc3} K.~Perera and M.~Schechter. \newblock A generalization of the {A}mann-{Z}ehnder theorem to nonresonance problems with jumping nonlinearities. \newblock {\em NoDEA Nonlinear Differential Equations Appl.}, 7(4):361--367, 2000. \bibitem{PeSc6} K.~Perera and M.~Schechter. \newblock Multiple nontrivial solutions of elliptic semilinear equations. \newblock {\em Topol. Methods Nonlinear Anal.}, 16(1):1--15, 2000. \bibitem{PeSc5} K.~Perera and M.~Schechter. \newblock Double resonance problems with respect to the {F}u\v c\'\i k spectrum. \newblock {\em Indiana Univ. Math. J.}, 50(4), 2001. \bibitem{PeSc9} K.~Perera and M.~Schechter. \newblock The {F}u\v c\'\i k spectrum and critical groups. \newblock {\em Proc. Amer. Math. Soc.}, 129(8):2301--2308, 2001. \bibitem{Sc7} M.~Schechter. \newblock The {F}u\v c\'\i k spectrum. \newblock {\em Indiana Univ. Math. J.}, 43(4):1139--1157, 1994. \end{thebibliography} \noindent\textsc{Kanishka Perera}\\ Department of Mathematical Sciences\\ Florida Institute of Technology\\ Melbourne, FL 32901-6975, USA\\ e-mail: kperera@winnie.fit.edu\\ http://winnie.fit.edu/$\sim$kperera/ \end{document}