
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 37, pp. 1–23.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

On plane polynomial vector fields and the

Poincaré problem ∗

M’hammed El Kahoui

Abstract

In this paper we address the Poincaré problem, on plane polynomial
vector fields, under some conditions on the nature of the singularities of
invariant curves. Our main idea consists in transforming a given vector
field of degree m into another one of degree at most m + 1 having its
invariant curves in projective quasi-generic position. This allows us to
give bounds on degree for some well known classes of curves such as the
nonsingular ones and curves with ordinary nodes. We also give a bound on
degree for any invariant curve in terms of the maximum Tjurina number
of its singularities and the degree of the vector field.

1 Introduction

The study of algebraic invariant curves and integrating factors of plane polyno-
mial vector fields goes back at least to Darboux [11] and Poincaré [23]. We refer
the reader to [26, 25, 6] for an interesting survey and historical remarks on the
problem. For a given polynomial vector field the question of finding invariant
algebraic curves reduces mainly to the so-called Poincaré problem which con-
sists in finding an upper bound on the degree of such curves. Indeed, any time
such bound is found for a given vector field the question of finding its invariant
curves can be algorithmically solved by using linear algebra (see e.g. [7, 19, 22]).

Solving the Poincaré problem, and hence finding invariant curves, yields
great advances in the algorithmic study of plane polynomial vector fields. Dar-
boux [11] showed that the abundance of invariant algebraic curves of a plane
polynomial vector field ensures its integrability. More precisely, he proved that
a vector field of degree m with a least m(m+1)

2 + 1 invariant curves has a first
integral. Later on Jouanolou [17] showed that any degree m plane polynomial
vector field with at least m(m+1)

2 +2 invariant curves has a rational first integral.
In this direction Prelle and Singer studied in [24] another kind of first integrals,
namely elementary first integrals. They proved that the existence of algebraic
integrating factors is necessary for the existence of elementary first integrals,
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and that deciding about the existence of algebraic integrating factors is the
main question to be solved in order to decide about the existence of elementary
first integrals. Ten years later, Singer [27] used differential algebra techniques
to study a wider class of first integrals, namely the Liouvillian first integrals,
and he proved that they have elementary functions as integrating factors.

It is well known from the work of Jouanolou that a plane polynomial vector
field has either a rational first integral or finitely many invariant curves. This
gives an indirect proof for the existence of an upper bound for the degree of
irreducible invariant curves of a given vector field. As far as we know there is
actually no effective method to compute such bound for any given vector field,
even more the question promises to be hard. For example, the related question
of deciding whether the closure of the set of vector fields with given degree and
having invariant curves is an algebraic set is still open (see e.g. [9, 21] for more
details on the question). On the other hand, it is well known that the degree of
the given vector field is not enough in order to get control on the maximal degree
of its irreducible invariant curves. It is for instance easy to find linear vector
fields having rational first integrals of arbitrarily high degree. Even more, its is
established in [20] and [8] the existence of quadratic plane vector fields without
rational first integral and having invariant algebraic curves of any given degree.

Partial answers to the Poincaré problem have been given in recent years. All
of them follow the same strategy, which consists in finding an upper bound in
terms of the degree of the vector field under some additional conditions on its
fixed points or on the nature of the singularities the invariant curves have (see
e.g. [5, 3, 4, 28, 29, 2]).

Outline of the paper

In this paper we study the Poincaré problem from “algebraic geometry” point
of view. For this purpose it is natural to state the problem in the general
setting of a commutative field of characteristic zero. Our main idea consists in
reducing the problem , by means of projective transformations, to a situation
where invariant curves have no critical points at infinity. This reduction has a
double advantage: first it keeps the geometric properties of the invariant curves.
Secondly, it allows to use some basic results of projective algebraic geometry
such as Bézout theorem.

The paper is structured as follows: in section 2 we define the concept of
curves in projective quasi-generic position and we show explicitly how to trans-
form projectively any curve to a curve in such position. Section 3 is devoted
to show how to transform vector fields, without loss of control on their degree,
into vector fields having their invariant curves in projective quasi-generic posi-
tion. In section 4 we apply the techniques developed in sections 2 and 3 to the
Poincaré problem. We recover the classical bound given in the case of nonsingu-
lar curves and we give better bounds than the known ones in the case of curves
with ordinary nodes. A bound in terms of the maximum Tjurina number of the
singularities of an invariant curve is also given in this section.
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The setting of a commutative field of characteristic zero

Polynomial vector fields and invariant algebraic curves are objects of algebraic
nature. It is hence natural to study their properties in the general setting of a
commutative field of characteristic zero. This gives as well some flexibility to
our study of vector fields; we shall for example see that this allows to treat in
the same way invariant curves and rational first integrals (lemma 1.1). Another
practical reason lies in the study of parameterized vector fields, since any given
vector fields X ∈ R[u, x, y], where u = (u1, . . . , ur) is a list of parameters, can
be viewed as vector field over R(u)[x, y].

Notation

Let K be a commutative field of characteristic zero and K its algebraic closure.
Let f be a squarefree polynomial in K[x, y] and C(f) be the affine plane algebraic
curve, over the field K, defined by the equation f(x, y) = 0.

The zeros in K
2

of the ideal I(f, ∂yf) are called the critical points of the
curve C(f) with respect to the projection on the x-axis. In the same way, the
zeros of the ideal I(f, ∂xf) are called the critical points of the curve C(f) with
respect to the projection on the y-axis. A critical point of the curve C(f) with
respect to one of the projections is simply called a critical point of the curve.

The multiplicity of a point (α, β) of the curve C(f) is defined as the smallest
integer s such that ∂i+jxiyjf(α, β) = 0 for any i+ j < s. When s ≥ 2 the point is
called singular. The singular points of the curve C(f) are the critical points for
both of the two projections.

If (α, β) is a point of multiplicity s in the curve C(f) then the Taylor expan-
sion of f around (α, β) writes as

f(x, y) = fs(x− α, y − β) + . . .+ fn(x− α, y − β)

where the fi’s are homogeneous and fs 6= 0. Since fs is homogeneous and
bivariate it factors over K into a product of linear polynomials. For each linear
factor `(x, y) of fs the equation

`(x, y) = 0

gives a tangent line to C(f) at (α, β). Thus a point of multiplicity s has s
tangent lines counted with multiplicities. In the case where fs is squarefree the
point (α, β) is called an ordinary multiple point of the curve.

If I is an ideal of K[x, y] then to each zero (α, β) of I corresponds a local
ring

(
K[x, y]/I

)
(α,β)

obtained by localizing the ring K[x, y]/I at the maximal

ideal I(x − α, y − β). When this local ring is finite dimensional as K-vector
space we say that (α, β) is an isolated zero of I and the dimension as vector
space of the corresponding local ring is called the multiplicity of (α, β) as zero
of I.

An important particular case is when two curves C(f) and C(g) meet at a
point (α, β) and have no one-dimensional common component passing through
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this point. In this case (α, β) is an isolated zero of the ideal I(f, g) and its
multiplicity is called the intersection number of the two curves at this point and
denoted by I(f, g, (α, β)). The intersection number satisfies the inequality

I(f, g, (α, β)) ≥ st (1.1)

where s (resp. t) is the multiplicity of (α, β) as point of the curve C(f) (resp.
C(g)). The equality holds if and only if the two curves have no common tangent
line at the considered point (see [14] for more details).

When the two curves have no one-dimensional common component then
they meet at finitely many points. In this case the vector space K[x, y]/I(f, g)
is finite dimensional and its dimension is the sum of all the intersection numbers
at the common points of C(f) and C(g) in the affine plane. A fundamental result
of algebraic geometry, namely Bézout theorem asserts that

dimKK[x, y]/I(f, g) ≤ deg(f) deg(g) (1.2)

and the equality holds if and only if the two curves have no common points at
infinity.

Another important case is the so-called Milnor number: given a singular
point (α, β) of a curve C(f), it is easy to see that it is an isolated zero of
the ideal I(∂xf, ∂yf). Its multiplicity as zero of this ideal is called the Milnor
number of (α, β) as singular point of C(f) and is denoted by µ(f, (α, β)). For
any singular point (α, β) we have the relation

I(f, ∂yf, (α, β)) = µ(f, (α, β)) + r − 1 (1.3)

where r is the multiplicity of β as root of the univariate polynomial f(α, y), see
e.g. [18].

The multiplicity of a singular point (α, β) of the curve C(f) as zero of the
ideal I(f, ∂xf, ∂yf) is called the Tjurina number of the singular point and is
denoted by τ(f, (α, β)).

By plane polynomial vector field with coefficients in the field K, or often a
vector field over K[x, y], we mean a K-derivation X of the algebra K[x, y]. Any
plane polynomial vector field X with coefficients in K can be uniquely written
in the form X = p∂x + q∂y, with p, q ∈ K[x, y]. The maximum of the degrees of
p and q is called the degree of X .

Let us recall here that any vector field X extends uniquely to the fractions
field K(x, y) and as well to any algebraic extension of it. In particular X extends
uniquely as K-derivation of K[x, y].

In the sequel we shall also be concerned with transcendent extensions of the
field K. In such cases, given a transcendent extension F of K the vector field
X do not extend in a unique way to F[x, y]. However, it extends uniquely as
F-derivation, and in all the rest this will be our default extension of X .



EJDE–2002/37 M’hammed El Kahoui 5

Invariant curves

Let X = p∂x + q∂y be a plane polynomial vector field with coefficients in R or
C and let

ẋ = p(x, y), ẏ = q(x, y) (1.4)

be the differential system associated with it. We say that an algebraic curve
C(f) is an invariant curve of X if any solution of the differential system (1.4)
starting out at a point of C(f) lies entirely in C(f). Following the famous Hilbert
Nullstellenzatz this can be expressed in terms of algebraic identities as

p∂xf + q∂yf = kf (1.5)

This last identity gives a way to define the concept of algebraic invariant curves
for polynomial vector fields with coefficients in an abstract field K.

Definition 1.1 Let X = p∂x + q∂y be a plane polynomial vector field with
coefficients in K. A nonconstant polynomial f ∈ K′[x, y], where K′ is a field
extension of K, is called an algebraic invariant curve of X if there exists a
polynomial k ∈ K′[x, y], called the cofactor of f , such that

X (f) = kf.

In the same way, a nonconstant rational function h = f/g with coefficients
in an extension K′ of K is called a rational first integral of the vector field X if

X (h) = 0.

In this case it is easy to verify that f and g are invariant algebraic curves of X
with the same cofactor.

The following lemma shows how rational first integrals can be viewed as
invariant algebraic curves over transcendent extensions of the field of coefficients
of the vector field.

Lemma 1.1 Let X be a plane polynomial vector field with coefficients in the
field K. Then the following are equivalent:

i) The vector field X has a rational first integral.
ii) There exists an invariant algebraic curve f of X such that the field gen-

erated over K by the coefficients of f is transcendent over K, and f has no
nonconstant factor belonging to K[x, y].

In particular, any vector field X with coefficients in a field K having a first
integral has a first integral with coefficients in K.

Proof: “i ⇒ ii” Let h = f/g be a rational first integral, with coefficients in
K
′ ⊇ K, of the vector field X and suppose that gcd(f, g) = 1. Then we have
X (h) = 0 which gives the relation

gX (f)− fX (g) = 0.
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According to the fact that gcd(f, g) = 1 and using Gauss lemma we get

X (f) = kf
X (g) = kg

with k ∈ K′[x, y].
Let u be an indeterminate over K′[x, y] and let h1 = f − ug. Then an

easy computation shows that X (h1) = kh1. On the other hand, since u is
transcendent over K′ the field generated over K by the coefficients of h1 is
transcendent over K. The fact that h1 has no nonconstant factor in K[x, y]
follows immediately from the irreducibility of h1 in K′[u, x, y.]

“ii⇒ i” Let f be an invariant algebraic curve of the vector field X such that
the field K′ generated over K by the coefficients of f is transcendent over K.

Since K′ is finitely generated over K we can find u1, . . . , us ∈ K′ such that
K(u1, . . . , us) is purely transcendent over K and K′ is algebraic of finite degree
over K(u1, . . . , us).

On the other hand, let us remark that for any K(u1, . . . , us)-isomorphism σ
from K

′ into its algebraic closure K′ the curve σ(f) is also invariant for the vector
field X . Moreover, there are only finitely many such K(u1, . . . , us)-isomorphisms
and their number equals the dimension of K′ as K(u1, . . . , us)-vector space.

By considering the product of all the σ(f)’s we get a polynomial h with
coefficients in the field K(u1, . . . , us) which is an invariant algebraic curve of X .
Without loss of generality we may suppose that h has its coefficients in the ring
K[u1, . . . , us]. Indeed, it suffices to multiply h by the common denominator of
its coefficients.

Let
h =

∑
|α|≤d

hα(x, y)uα

with α = (α1, . . . , αs), |α| = α1 + . . .+ αs and uα = uα1
1 . . . uαss . We have then

X (h) =
∑
|α|≤d

X (hα)uα

and thus ∑
|α|≤d

X (hα)uα = k
∑
|α|≤d

hαu
α

where k is the cofactor of h as invariant curve of X . This last equation should
show that k depends on the ui’s, but in fact by comparing the total degrees with
respect to the ui’s in this last equality it is easy to see that k must be of degree
0 as polynomial in the ui’s. Thus k is a polynomial in K[x, y] and moreover we
have

X (hα) = khα

for any α.
To find a rational first integral of the vector field X it is enough to prove

that for some α 6= α′ the rational function hα/hα′ is nonconstant. This last
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fact is true, otherwise the polynomial h will be of the form h = ch′ with c ∈
K(u1, . . . , us) and h′ ∈ K[x, y], and thus f will have a nonconstant factor in
K[x, y] and this will also be the case for f .

Let us remark that the rational first integral we have constructed has its
coefficients in the field K. This same proof shows that starting from a first
integral of X we can always construct another one with coefficients in the field
K. �

Remark 1.2 When a vector field X over K[x, y] has no rational first integral
then essentially the field generated over K of any algebraic invariant curve is
algebraic of finite degree over K, i.e. any invariant algebraic curve f of X writes
as f = cf1 where c is a constant lying in an extension of K and the coefficients
of f1 generate over K a finite degree extension. As by-product, in any process of
computation of invariant curves there is in general no need to extend the field
of coefficients K.

2 Curves in quasi-generic position

In this section we define the concept of curves in quasi-generic position and give
some of their properties that will be needed for our purpose. Several aspects of
such curves are studied in [15, 12, 1, 13].

Definition 2.1 An affine plane algebraic curve C(f) is said in quasi-generic
position with respect to the projection on the x-axis if the following conditions
hold:

i) deg(f) = degy(f),

ii) the curve C(f) has no vertical tangent line at its singular points,

iii) the curve C(f) has no inflexion point with vertical tangent line.

Moreover if the curve C(f) has no critical points at infinity with respect to the
projection on the x-axis then we say that C(f) is in projective quasi-generic
position with respect to the projection on the x-axis. A curve C(f) is said in
quasi-generic position (resp. in projective quasi-generic position) with respect
to the projection on the y-axis if the curve defined by the polynomial f(y, x) is
in quasi-generic position (resp. in projective quasi-generic position) with respect
to the projection on the x-axis.

When the curve C(f) is in quasi-generic position (resp. in projective quasi-
generic position) with respect to both of the projections we simply call it a curve
in quasi-generic position (resp. in projective quasi-generic position). Let us no-
tice that if C(f) is in projective quasi-generic position then for any nonconstant
factor f1 of f the curve C(f1) is also in projective quasi-generic position.

The previous definition slightly differs from the one given in [15, 12], and
the curves defined there are called in generic position. The concept of curves
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in generic position is cooked up exactly so that no overlapping occurs in the
projections, with respect to the coordinates axes, of the critical points. More
precisely, in addition to the conditions given in the previous definition we add
the condition that any two distinct critical points have distinct coordinates.
This last condition will not be needed for our purpose and adding it will make
somewhat involved the proof of theorem 2.3. For these reasons we did not
include it in our definition and changed the “generic position” terminology into
“quasi-generic position”.

The following lemma will be useful to make more explicit projective quasi-
generic position.

Lemma 2.1 Let n be a positive integer and f0, . . . , fn ∈ K[x, y] be homogeneous
polynomials such that deg(fi) = ni ≤ n. Let M(x) be the matrix of the fi’s in
the canonical basis {1, y, . . . , yn} of the K[x]-module K[x]n[y]. Then

det(M(x)) = det(M(1))xN

where N = (
∑n
i=0 ni)−

1
2n(n+ 1).

Proof: Let fj =
∑n
i=0 ai,jx

nj−iyi, with ai,j = 0 if nj < i. The determinant
of the matrix M(x) can be written in the form

det(M(x)) =
∑

σ∈Sn+1

ε(σ)a0,σ(0) . . . an,σ(n)x
nσ(0)xnσ(1)−1 . . . xnσ(n)−n.

If we let N = (
∑n
i=0 ni) −

1
2n(n + 1) then we get det(M(x)) = det(M(1))xN .

�

As consequence of lemma 2.1 we have the following proposition.

Proposition 2.2 Let C(f) be an affine plane algebraic curve given by a degree
n polynomial f and write f = fn + . . .+ fp, where fi is homogeneous of degree
i. Then the following are equivalent:

i) the curve C(f) has no critical points at infinity.

ii) The polynomial fn is squarefree and does not have x or y as factors.

iii) The discriminant Discy(f) (resp. Discx(f)) of the polynomial f with re-
spect to y (resp. x) has degree n(n− 1).

Proof: It is sufficient to prove the result for the critical points with respect to
the projection on the x-axis.

Since f is squarefree the polynomial Discy(f) vanishes identically if and only
if x is a factor of f . Moreover, if this is not the case the degree of Discy(f) equals
the number of critical points, with respect to the projection on the x-axis, in the
affine plane of the curve C(f) counted with multiplicities of intersection. Thus
the assertions i) and iii) are equivalent according to Bézout theorem.
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“i =⇒ ii” Since the curve C(f) has no critical points at infinity the polynomials
f and fn are monic with respect to the variable y, i.e. deg(f) = degy(f) and
deg(fn) = degy(fn). One has then

Discy(f) = det
(
yn−2f, . . . , yf, f, yn−1∂yf, . . . , ∂yf

)
and

Discy(fn) = det
(
yn−2fn, . . . , yfn, fn, y

n−1∂yfn, . . . , ∂yfn
)
.

Using multilinearity of the function det and lemma 2.1 we obtain

Disc
y

(f) = Discy(fn) +R = Disc
y

(fn(1, y))xn(n−1) +R (2.1)

where deg(R) ≤ n(n− 1)− 1. Since Discy(f) has degree n(n− 1) it is so for fn
and this means that fn is squarefree. The fact that x does not divide fn follows
from deg(fn) = degy(fn).
“ii =⇒ i” If fn is squarefree and does not have x as factor then Discy(fn) 6= 0.
This proves that deg(Discy(f)) = n(n− 1) according to the relation (2.1). �

2.1 Transformation into curves in projective quasi-generic
position

In this subsection we shall show that for a curve C(f) and a sufficiently ”generic”
projective transformation T ∈ PGL(3,K) of the projective plane P2

K the curve
defined by F ◦ T (x, y, 1) is in projective quasi-generic position. In fact the set
of projective transformations T such that the curve defined by F ◦ T (x, y, 1) is
not in projective quasi-generic position is a projective variety in PGL(3,K), but
this result will not be needed in the sequel. For our purpose we shall consider
a generic projective transformation which is defined in the following way:

Let u1, u2, v, w be new indeterminates, F = K(u1, u2, v, w) and Γ : F[x, y] 7→
F[x, y] be the map defined by

f(x, y)→ F (u1x+ u2y,−u2x+ u1y, v(u1x+ u2y) + w(u1y − u2x) + 1)

The map Γ is bijective and multiplicative (i.e Γ(fg) = Γ(f)Γ(g)). Moreover, for
any polynomial f with coefficients in F the curves defined by f and Γ(f), over
an algebraic closure of F, are projective transformations one of the other. This
shows in particular that the two curves have the same geometric invariants (such
as multiplicities, Milnor and Tjurina numbers of singularities). On the other
hand, the geometric invariants of a curve defined by a polynomial f ∈ K[x, y]
do not depend on the algebraically closed extension of K over which we view
this curve. Thus, for any polynomial f with coefficients in K the curve defined
by Γ(f) conserves the same geometric invariants as C(f) (defined over K) even
though these two curves are not defined over the same algebraically closed field.

The following theorem relates the main feature of considering the above
generic projective transformation.
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Theorem 2.3 Let f ∈ K[x, y] be a squarefree polynomial of degree n defining
a curve C(f), and u1, u2, v, w be new indeterminates. Then:

i) The curve C(g) defined, over an algebraic closure of K(u1, u2), by the poly-
nomial g(x, y) = f(u1x + u2y,−u2x + u1y) is in quasi-generic position.
Moreover, if the leading homogeneous term of f is squarefree then the
curve C(g) is in projective quasi-generic position.

ii) The curve defined, over an algebraic closure of F, by the polynomial Γ(f)
is in projective quasi-generic position.

Proof: i) Let us write f =
∑
i fi where fi is homogneous of degree i. Then

the polynomial g writes as g =
∑
i gi where gi = fi(u1x + u2y,−u2x + u1y) is

the homogeneous term of degree i of g.
In particular, the leading homogeneous term of g is fn(u1x+u2y,−u2x+u1y).

It is easy to see that this last polynomial has degree n with respect to both x
and y.

Let us now prove that the singular points of C(g) have neither horizontal nor
vertical tangent lines. For this, let [(α1, β1), . . . , (αs, βs)] be the list of singular
points of the curve C(f).

Then the list of singular points of the curve C(g) is given as

[
1

u2
1 + u2

2

(u1α1 − u2β1, u2α1 + u1β1), . . . ,
1

u2
1 + u2

2

(u1αs − u2βs, u2αs + u1βs)].

On the other hand, let (α, β) be a singular point of multiplicity p in the curve

C(f) and let (α′, β′) =
1

u2
1 + u2

2

(u1α− u2β, u2α+ u1β).

Let f(x, y) =
∑
i≥p hi(x − α, y − β) by the Taylor expansion of f around

(α, β). Then the Taylor expansion of g around (α′, β′) writes as

g(x, y) =
∑
i≥p

hi(u1(x− α′) + u2(y − β′),−u2(x− α′) + u1(y − β′)).

Since the homogeneous term hp(u1(x−α′)+u2(y−β′),−u2(x−α′)+u1(y−β′))
is not divisible by x − α′ or y − β′ we deduce that the curve C(g) has neither
horizontal nor vertical tangent lines at the singular point (α′, β′).

Using similar arguments to the ones used for singular points we can prove
that the curve C(g) has no inflexion point with vertical tangent line. Indeed, if
[(γ1, δ1), . . . , (γs, δs)] is the list of inflexion points of the curve C(f) then the list
of inflexion points of the curve C(g) is given as

[
1

u2
1 + u2

2

(u1γ1 − u2δ1, u2γ1 + u1δ1), . . . ,
1

u2
1 + u2

2

(u1γs − u2δs, u2γs + u1δs)].

Suppose now that fn is squarefree. Since fn(u1x + u2y,−u2x + u1y) is the
leading homogeneous term of g and u1, u2 are algebraically independent over
K[x, y] we deduce that its is squarefree and not divisible by x or y. Therefore,
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the curve C(g) is in projective quasi-generic position according to proposition
2.2.

ii) To prove that C(Γ(f)) is in projective quasi-generic position it suffices to
show that the leading homogeneous term of F (x, y, vx+ wy + 1) is squarefree.
This leading homogeneous term is

hn = F (x, y, vx+ wy).

According to the fact that F is squarefree and u1, u2, v, w are algebraically
independent over K[x, y] we deduce that hn is squarefree and does not have x or
y as factors. This proves that C(Γ(f)) has no critical points at infinity according
to proposition 2.2. �

3 Transformation into vector fields with Invari-
ant curves in projective quasi-generic position

In this section we shall construct a K-linear map Γ?m from the K-vector space of
vector fields of degree ≤ m over K[x, y] into the space of vector fields of degree
≤ m+ 1 over F[x, y] in such a way that a given vector field X has f ∈ K[x, y] as
invariant curve if and only if Γ(f) is an invariant curve of the vector field Γ?m(X ).
As by-product all the invariant algebraic curves of the vector field Γ?(X ) are in
projective quasi-generic position.

For this aim. we need to define the family of maps Γn : Fn[x, y] 7→ Fn[x, y],

f(x, y) −→ Fn(u1x+ u2y,−u2x+ u1y, v(u1x+ u2y) + w(u1y − u2x) + 1)

where Fn[x, y] denotes the F-vector space of polynomials of degree at most n
and Fn stands for the degree n homogenization of f . Contrary to the map Γ all
the Γn’s are F-linear. Moreover, an easy computation shows that

Γn(f) = (v(u1x+ u2y) + w(−u2x+ u1y) + 1)n−deg(f)Γ(f).

This last relation shows in particular that

Γn1+n2(f1f2) = Γn1(f1)Γn2(f2) (3.1)

for any polynomials f1, f2 with deg(f1) ≤ n1 and deg(f2) ≤ n2.
We are now able to define in an explicit way the map Γ?m. Let X = p∂x+q∂y

be a vector field of degree ≤ m over K[x, y]. Then we define Γ?m by Γ?m(X ) =
r∂x + s∂y with

r =
(vu2

1x+ u1 + u2
2vx)Γm(p)

u2
2 + u2

1

+
(wu2

2x− u2 + u2
1wx)Γm(q)

u2
2 + u2

1

s =
(vu2

2y + u2 + u2
1vy)Γm(p)

u2
2 + u2

1

+
(wu2

1y + u1 + u2
2wy)Γm(q)

u2
2 + u2

1

The exact relation concerning invariant curves between Γ?m(X ) and X is given
in the following theorem.
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Theorem 3.1 Let X = p∂x + q∂y be a vector field of degree m over K[x, y].
Then the following assertions hold:

i) The vector field Γ?m(X ) has degree m+ 1 and for any polynomial f of degree
at most n we have

Γ?m(X )(Γn(f)) = Γm+n−1(X (f)) + nΓm(vp+ wq)Γn(f) (3.2)

ii) A rational function
f

g
is a first integral of X if and only if

Γn(f)
Γn(g)

is a first

integral of the vector field Γ?m(X ), where n = max(deg(f),deg(g)).

iii) A polynomial f is an invariant curve of X if and only if Γ(f) is an invariant
curve of Γ?m(X ). In particular, if X has no rational first integral then all
the invariant algebraic curves of Γ?m(X ) are in projective quasi-generic
position.

Proof: i) Since u1, u2, v, w are indeterminates over K[x, y] the map Γm sends
p and q to polynomials of degree m. Thus the vector field Γ?m(X ) has degree
exactly m+ 1. To simplify the proof of the identity we introduce the following
abbreviations

X = u1x+ u2y, Y = −u2x+ u1y,

Z = v(u1x+ u2y) + w(−u2x+ u1y) + z,

G = Fn(X,Y, Z), A = (∂xFn)(X,Y, Z),
B = (∂yFn)(X,Y, Z), C = (∂zFn)(X,Y, Z),
P ? = Pm(X,Y, Z), Q? = Qm(X,Y, Z)

R =
(vu2

1x+ u1z + u2
2vx)P ?

u2
2 + u2

1

+
(wu2

2x− u2z + u2
1wx)Q?

u2
2 + u2

1

,

S =
(vu2

2y + u2z + u2
1vy)P ?

u2
2 + u2

1

+
(wu2

1y + u1z + u2
2wy)Q?

u2
2 + u2

1

Now let us consider the expression R∂xG+S∂yG. On the first hand, by letting
z = 1 in the last expression we get

(R∂xG+ S∂yG)(x, y, 1) = r∂xΓn(f) + s∂yΓn(f) = Γ?m(X )(Γn(f)).

On the other hand, we have

∂xG = u1A− u2B + (u1v − u2w)C
∂yG = u2A+ u1B + (u2v + u1w)C

which gives after computation (This factorization can be obtained using a sym-
bolic computation software such as Maple)

R∂xG+ S∂yG− zP ?A− zQ?B

= (vP ? + wQ?)
(

(wu1y − u2wx+ u1vx+ u2vy + z)C

+(u1x+ u2y)A+ (u1y − u2x)B
)
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The Euler formula for the homogeneous polynomial G writes as

nG = (u1x+ u2y)A+ (−u2x+ u1y)B + ((u1x+ u2y)v + (−u2x+ u1y)w+ z)C.

Thus
R∂xG+ S∂yG− zP ?A− zQ?B = n(vP ? + wQ?)G.

By letting z = 1 in the last equality and taking into account the linearity of the
Γn’s and the equation (3.1) we finally get

Γ?m(X )(Γn(f)) = Γm+d−1(X (f)) + Γm(k)Γn(f),

where k = n(vp+ wq).
ii) Without loss of generality we may suppose that n = deg(f), we have thus
Γn(f) = Γ(f). Let n1 = deg(g) and let us simplify the expression

Γ?m(X )
(

Γn(f)
Γn(g)

)
(Γn(g))2.

Using elementary rules of derivations we have

Γ?m(X )
(

Γn(f)
Γn(g)

)
(Γn(g))2 = Γn(g)Γ?m(X )(Γ(f))− Γ(f)Γ?m(X )(Γn(g)).

Now taking into account the identities (3.1) and (3.2) we obtain

Γ?m(X )
(

Γn(f)
Γn(g)

)
(Γn(g))2

= Γn(g)Γm+n−1(X (f))− Γ(f)Γm+n1−1(X (g))Γn−n1(1)
+Γ(fg)((n− n1)Γm(vp+ wq)Γn−n1(1)− Γ?m(X )(Γn−n1(1)))

On the other hand, using the identity (3.1) it is easy to verify that

Γn(g)Γm+n−1(X (f))− Γ(f)Γm+n1−1(X (g))Γn−n1(1) = Γm+2n−1

(
g2X

(f
g

))
.

Moreover, a direct computation shows that

(n− n1)Γm(vp+ wq)Γn−n1(1)− Γ?m(X )(Γn−n1(1)) = 0

and then

Γ?m(X )
(

Γn(f)
Γn(g)

)
(Γn(g))2 = Γm+2n−1

(
g2X

(f
g

))
.

Thus Γ?m(X )
(

Γn(f)
Γn(g)

)
= 0 if and only if X

(
f

g

)
= 0 according to the fact that

Γm+2n−1 is one to one.
iii) Suppose that f is a degree n algebraic invariant curve of the vector field
X . Then we have the equality X (f) = kf with deg(k) ≤ m − 1, and applying
Γm+n−1 to it we get

Γm+n−1(X (f)) = Γm−1(k)Γ(f).
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Combining this last equality with the identity (3.2) we obtain

Γ?m(X )(Γ(f)) = k1Γ(f).

Conversely, suppose that Γ(f) is an invariant algebraic curve of the vector field
Γ?m(X ) and let us write Γ?m(X ) = k2Γ(f) with deg(k2) ≤ m. Since Γm is
bijective we can write k2 = Γm(k3) with deg(k3) ≤ m, and taking into account
the identity (3.2) we get

Γm+n−1(X (f)) = Γm(k4)Γ(f)

with deg(k4) ≤ m. Since deg(Γm+n−1(X (f)) ≤ m + n − 1 and deg(Γ(f)) = n
we have the bound deg(Γm(k4)) ≤ m − 1, and hence Γm(k4) = Γm−1(k5) with
deg(k5) ≤ m− 1. This gives the relation

Γm+n−1(X (f)) = Γm+n−1(k5f)

and then
X (f) = k5f.

Now assume that the given vector field X has no rational first integral. Then
the vector field has finitely many invariant curves. Moreover, following remark
1.2, and without loss of generality, we may assume that all these invariant
curves have their coefficients in K. Therefore, all their transforms under Γ are
in projective quasi-generic position, and these are exactly the invariant curves
of the vector field Γ?(X ). �

A property of the transformed vector field

A remarkable property of the transformed vector field lies in the fact that it has
the straight line v(u1x+ u2y) + w(−u2x+ u1y) + 1 as invariant curve. In this
subsection we clear up this question and give some of its consequences.

Lemma 3.2 Let X = p∂x + q∂y be a degree m vector field over K[x, y] and
Γ?m(X ) = r∂x + s∂y. Then the following holds:

i) yrm+1 − xsm+1 = 0.

ii) The straight line `(x, y) = v(u1x+u2y)+w(−u2x+u1y)+1 is an invariant
curve of Γ?m(X ). If moreover ypm − xqm = 0 then ` is a common factor
of r and s.

Proof: i) An easy computation shows that

yr − xs = (−u2x+ u1y)Γm(p)− (u1x+ u2y)Γm(q).

This implies in particular that yr − xs is of degree at most m + 1 and thus
yrm+1 − xsm+1 = 0.
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ii) The fact that ` is invariant follows immediately from the relation (3.2) by
taking f = 1 and n = 1. Suppose now that ypm − xqm = 0. First let us note
that

Γm(p) = Γm(pm) + `g

Γm(q) = Γm(qm) + `h

where g, h ∈ K[x, y]. This gives the relation

(u2
1 + u2

2)r = (vu2
1x+ u1 + u2

2vx)Γm(pm)
+(wu2

2x− u2 + u2
1wx)Γm(qm) + g1`.

On the other hand, a direct computation gives (Here again we used Maple to
carry out this division)

(−u2x+ u1y)((vu2
1x+ u1 + u2

2vx)Γm(pm) + (wu2
2x− u2 + u2

1wx)Γm(qm))
= xΓm(qm)(u2

1 + u2
2)`+ (vu2

1x+ u1 + vu2
2x)((u1x+ u2y)Γm(qm)

−(−u2x+ u1y)Γm(pm))

Applying Γm+1 to the identity ypm − xqm = 0 we get

(u1x+ u2y)Γm(qm)− (−u2x+ u1y)Γm(pm) = 0

and thus ` divides the product

(−u2x+ u1y)((vu2
1x+ u1 + u2

2vx)Γm(pm) + (wu2
2x− u2 + u2

1wx)Γm(qm)).

Since on the other hand it is prime with −u2x + u1y it must divide the other
factor. As by product the polynomial ` is a factor of r. The case of s can be
done in the same way. �

As consequence of theorem 3.1 and lemma 3.2 we have the following corollary
which will be very useful in the sequel.

Corollary 3.3 Let X = p∂x + q∂y be a degree m vector field over K[x, y]. Let
K
′ be a field extension of K and f1, . . . , ft ∈ K′[x, y] be squarefree polynomials

defining invariant curves of the vector field X . Then there exists a field extension
F of K′, a projective transformation over F sending f1, . . . , ft to f ′1, . . . , f

′
t and

a vector field Y of degree m+ 1 over F[x, y] such that:

i) the curves defined by the f ′i ’s are in projective quasi-generic position,

ii) the curves defined by the f ′i ’s are invariant for the vector field Y.

Moreover, if ypm − xqm = 0 then we can choose Y of degree m.

Proof: Let X ′ be the extension of X to K′[x, y] obtained by viewing the ele-
ments of K′ as constants. We can then take F = K

′(u1, u2, v, w), f ′i = Γ(fi) and
Y = Γ?m(X ′).

Suppose now that ypm − xqm = 0 and let Y = r∂x + s∂y. Then following
lemma 3.2 the linear polynomial ` = v(u1x + u2y) + w(−u2x + u1y) + 1 is a
common factor of r and s, say r = `r1 and s = `s1. By taking Y ′ = r1∂x + s1∂y
we obtain a vector field fulfilling the required conditions. �
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4 Application to the Poincaré problem

In this section we shall apply the results and tools developed in sections 2 and
3 to the study, under some assumptions on invariant curves, of the Poincaré
problem. The main idea in this respect is to reduce the question to the case
of invariant curves in projective quasi-generic position, and then use Bézout
theorem. We first state some lemmas that we will need in the sequel.

Let C(f) be a plane algebraic curve given by a squarefree polynomial f and
suppose that x and y are not factors of f . In this case the ideals I(f, ∂xf) and
I(f, ∂yf) are zero-dimensional. For a given point (α, β) of the curve C(f) if we
define Lx (resp. Ly) to be the K-linear map of the multiplication by ∂xf (resp.
∂yf) in the K-algebra (K[x, y]/I(f, ∂yf))(α,β) (resp. (K[x, y]/I(f, ∂xf))(α,β)) its
range is (I(f, ∂xf, ∂yf)/I(f, ∂yf))(α,β) (resp. (I(f, ∂xf, ∂yf)/I(f, ∂xf))(α,β)),
and (I(f, ∂yf) : ∂xf/I(f, ∂yf))(α,β) (resp. (I(f, ∂xf) : ∂yf/I(f, ∂xf))(α,β)) is
its kernel.

Now applying the dimension formula, of vector spaces, to Lx (resp. Ly) we
get the relations

I(f, ∂xf, (α, β)) = dimK (K[x, y]/I(f, ∂xf) : I(∂yf))(α,β) + τ(f, (α, β)) (4.1)

I(f, ∂yf, (α, β)) = dimK (K[x, y]/I(f, ∂yf) : I(∂xf))(α,β) + τ(f, (α, β)) (4.2)

This implies in particular that any singular point of the curve C(f) is a zero of
both of the ideals I(f, ∂xf) : I(f, ∂xf, ∂yf) and I(f, ∂yf) : I(f, ∂xf, ∂yf).

Lemma 4.1 Let X = p∂x + q∂y be a vector field of degree m over K[x, y] and
let C(f) and invariant curve of X . Then the following hold:

i) Any singular point of the curve C(f) is a fixed point of X , i.e. a zero of the
ideal I(p, q).

ii) If gcd(p, q, f) = 1 then the number of singular points of C(f) do not exceed
(m+ 1)2. If moreover ypm − xqm = 0 then it is bounded by m2.

Proof: i) Without loss of generality we may assume that x and y are not
factors of f . Let (α, β) be a singular point of C(f). Then (α, β) is a zero
of both of the ideals I(f, ∂xf) : I(f, ∂xf, ∂yf) and I(f, ∂yf) : I(f, ∂xf, ∂yf).
Since p ∈ I(f, ∂yf) : I(f, ∂xf, ∂yf) and q ∈ I(f, ∂xf) : I(f, ∂xf, ∂yf) we have
p(α, β) = q(α, β) = 0.
ii) The number of singular points of a curve is a projective invariant. Thus
according to corollary 3.3 we may assume that C(f) has no critical points at
infinity and X has degree m + 1. Let g be the gcd of p and q and let p =
gp1, q = gq1. From the relation p∂xf + q∂yf we deduce that g divides kf .
Moreover, according to the assumption gcd(p, q, f) = 1 we have gcd(g, f) = 1
and then g divides k. Therefore, the curve C(f) is invariant by the vector field
X1 = p1∂x + q1∂y, and following i) the singular points of C(f) are zeros of the
zero-dimensional ideal I(p1, q1).
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Taking into account the inequalities deg(p1) ≤ m + 1, deg(q1) ≤ m + 1
and according to Bézout theorem we get the bound (m + 1)2. If moreover
ypm − xqm = 0 then following corollary 3.3 we can choose X of degree m and
this gives the bound m2. �

The case of nonsingular invariant curves

In this subsection we prove that the degree of a nonsingular invariant curve does
not exceed m+1, where m is the degree of the vector field. This result has been
obtained for the first time by Cerveau and Lins Neto in [4] using foliations of
the projective plane. Other proofs, more or less involved, of the same result can
be found in [28, 16]. It is included here because we can supply an elementary
and purely algebraic proof.

Theorem 4.2 Let X = p∂x + q∂y be a degree m vector field over K[x, y] and
suppose that in some extension K′ of K the vector field has a nonsingular in-
variant curve of degree n given by a squarefree polynomial f ∈ K′[x, y]. Then
the following holds:

i) The degree of f do not exceed m + 1. If moreover ypm − xqm = 0 then
n ≤ m.

ii) If the leading homogeneous term of f is squarefree then n ≤ m.

Proof: i) It is harmless to assume that K = K
′. Indeed, we can extend the

vector field X to K′[x, y] by viewing the elements of K′ as constants. On the
other hand, According to corollary 3.3 we can reduce to the case where X has
degree m+ 1 and C(f) is in projective quasi-generic position.

From the relation
p∂xf + q∂yf = kf

we deduce that p ∈ I(f, ∂yf) : I(f, ∂xf, ∂yf). Moreover, the fact that C(f) is
nonsingular implies that I(f, ∂xf, ∂yf) = K[x, y] and hence

p ∈ I(f, ∂yf).

Let g be the greatest common divisor of p and ∂yf and let p = gp1 and ∂yf = gh.
We have then

p1 ∈ I(f, ∂yf) : g.

Now let us prove that I(f, ∂yf) : g = I(f, h). First, it is obvious that I(f, ∂yf) :
g ⊇ I(f, h). On the other hand, let h1 ∈ I(f, ∂yf) : g and let a, b ∈ K[x, y] such
that

gh1 = af + b∂yf.

According to the last relation and to the fact that g divides ∂yf we deduce
that g divides the product af . Since f and ∂yf have no common factors the
polynomial g must divide a, say a = ga1.
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We have thus the relation h1 = a1f + bh which means that h1 ∈ I(f, h).
Therefore we have the inclusion

I(p1, h) ⊆ I(f, h)

which gives
dimKK[x, y]/I(p1, h) ≥ dimKK[x, y]/I(f, h).

On the other hand, according to the fact that C(f) is in projective quasi-generic
position and that h is a factor of ∂yf we deduce that f and h have no common
zeros at infinity. Thus, by using Bézout theorem we get

dimKK[x, y]/I(f, h) = n deg(h),
dimKK[x, y]/I(p1, h) ≤ deg(p1) deg(h).

this finally gives n ≤ deg(p1) and then n ≤ m + 1 according to deg(p1) ≤
deg(p) = m+ 1.

if ypm − xqm = 0 then according to corollary 3.3 we can reduce to the case
of a curve in projective quasi-generic position but with a vector field of degree
m. This gives the bound n ≤ m.
ii) Suppose that the leading homogeneous term of f is squarefree. Then applying
theorem 3.1 with v = w = 0 and according to theorem 2.3 we reduce to the case
where X has degree m and C(f) is in projective quasi-generic position. This
gives the bound n ≤ m. �

The case of invariant curves with ordinary nodes

This subsection deals with invariant algebraic curves having only ordinary sin-
gular points. A bound in the case of ordinary double points is given in [5] and
also in [28], and it is of order 2m where m is the degree of the vector field. Here
we give a better bound for this category of curves. A notable feature of the
results we present is that no irreducibility assumptions are needed.

Theorem 4.3 Let X = p∂x + q∂y be a degree m vector field over K[x, y] and
suppose that in some extension K′ of K the vector field has an invariant curve
of degree n given by a squarefree polynomial f ∈ K′[x, y]. If the curve C(f) has
only ordinary double points as singularities then the following holds:

i) the degree of f does not exceed m + 2. If moreover ypm − xqm = 0 then
n ≤ m+ 1.

ii) If the leading homogeneous term of f is squarefree then n ≤ m+ 1.

Proof: As in the proof of theorem 4.2 we can reduce to the case where C(f)
is in projective quasi-generic position and X has degree m + 1. If moreover
ypm − xqm = 0 then according to corollary 3.3 we can choose X of degree m.
To treat the two cases at the same time let m1 = m if ypm − xqm = 0 and
m1 = m+ 1 otherwise.
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Let g be the gcd of f and p and let p = gp1 and f = gf1. From the relation
p∂xf + q∂yf = kf we deduce that g divides q∂yf . Since g is a factor of f and
gcd(f, ∂yf) = 1 the polynomial g divides q, say q = gq1. Therefore C(f1) is an
invariant curve of the vector field X1 = p1∂x + q1∂y.

On the other hand, since p1 ∈ I(f1, ∂yf1) : I(f1, ∂xf1, ∂yf1) we have the
inclusion

I(p1, f1) ⊆ I(f1, ∂yf1) : I(f1, ∂xf1, ∂yf1).

Let us note that I(f1, ∂yf1) and I(f1, ∂yf1) : I(f1, ∂xf1, ∂yf1) have the same
zeros in K

2
but with eventually different multiplicities.

Let (α, β) be a zero of I(f1, ∂yf1). Then one of the following cases occurs:
Case 1: The point (α, β) is nonsingular in the curve C(f1). In such situation
β is a multiplicity 2 root of the univariate polynomial f1(α, y) according to the
fact that C(f1) has no inflexion point with vertical tangent line. This gives
I(f1, ∂yf1, (α, β)) = 1 and then

I(f1, p1, (α, β)) ≥ I(f1, ∂yf1, (α, β))

since C(p1) and C(f1) meet at (α, β).
Case 2: (α, β) is an ordinary double point of the curve C(f1). In this case,
according to the fact that the curve has no vertical tangent line at its singular
points, we have I(f1, ∂yf1, (α, β)) = 2.

On the other hand, the curves C(f1) and C(p1) meet at the point (α, β) and
from relation (1.1) we have I(f1, p1, (α, β)) ≥ 2t ≥ 2, where t is the multiplicity
of (α, β) as point of C(p1). This gives as in the first case

I(f1, p1, (α, β)) ≥ I(f1, ∂yf1, (α, β)).

We have thus ∑
(α,β)

I(f1, p1, (α, β)) ≥
∑
(α,β)

I(f1, ∂yf1, (α, β))

where (α, β) ranges on the zeros of I(f1, ∂yf1) in the affine plane. Since the
curve C(f1) has no critical points at infinity we have by using relation (1.2)∑

(α,β)

I(f1, ∂yf1, (α, β)) = deg(f1)(deg(f1)− 1).

As I(p1, f1) may have other zeros than those of I(f1, ∂yf1) we have by using
once again relation (1.2)

deg(p1) deg(f1) ≥
∑
(α,β)

I(f1, p1, (α, β)).

This gives deg(p1) + 1 ≥ deg(f1) and then m1 + 1 ≥ n after adding deg(g) to
both sides of the inequality.
ii) Suppose that the leading homogeneous term of f is squarefree. Then applying
theorem 3.1 with v = w = 0 and according to theorem 2.3 we reduce to the case
where X has degree m and C(f) is in projective quasi-generic position. This
gives the bound n ≤ m+ 1. �
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Remark 4.4 Using theorem 4.3 we recover a part of a result given in [7] (see
also [10] theorem 1) concerning the case where the invariant curves satisfy gener-
icity conditions so that their product gives a curve having no critical points at
infinity and only ordinary nodes as singularities.

A bound in terms of the Tjurina number

This subsection concerns a bound on degree for an invariant curve in terms of
the degree of the vector field and an upper bound of the Tjurina numbers of the
singularities the curve has.

Theorem 4.5 Let X = p∂x + q∂y be a degree m vector field over K[x, y] and
suppose that in some extension K′ of K the vector field has an invariant curve of
degree n given by a squarefree polynomial f ∈ K′[x, y]. Let K be the maximum
of the Tjurina numbers of the singularities the curve has in the projective plane.
Then

n ≤
(1 +

√
(1 + 4K))(m+ 2)

2

Proof: The Tjurina number is a projective invariant of the singularity. Thus
we can reduce to the case where C(f) is in projective quasi-generic position and
X has degree m+ 1.

Let g be the gcd of p and f and let p = gp1, f = gf1. In the proof of theorem
4.3 we have shown that g divides q, say q = gq1, and that f1 is an invariant
curve of the vector field X1 = p1∂x + q1∂y.

On the other hand, since f1 is a factor of f any upper bound of the Tjurina
numbers of the singularities of C(f) is also an upper bound for those of C(f1).
Moreover, the curve C(f1) is also in projective quasi-generic position.

From the inclusion I(p1, f1) ⊆ I(f1, ∂yf1) : I(f1, ∂xf1, ∂yf1) we have

deg(p1) deg(f1) ≥ dimKK[x, y]/I(p1, f1)
≥ dimKK[x, y]/I(f1, ∂yf1) : I(∂xf1).

According to the fact that C(f1) is in projective quasi-generic position and
following equations (4.2) and (1.2) we get

dimKK[x, y]/I(f1, ∂yf1) : I(∂xf1) = deg(f1)(deg(f1)− 1)−
∑
(α,β)

τ(f1, (α, β)).

As gcd(p1, q1, f1) = 1 then using lemma 4.1 ii) we obtain∑
(α,β)

τ(f1, (α, β)) ≤ (m+ 1− deg(g))2K.

We have then the inequality

(m+ 1− deg(g)) deg(f1) ≥ deg(f1)(deg(f1)− 1)− (m+ 1− deg(g))2K.
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This gives the inequality

deg(f1) ≤
(1 +

√
(1 + 4K))(m+ 2− deg(g))

2
.

Finally, by adding deg(g) to both sides of the inequality and taking into account
the fact that (1 +

√
1 + 4K)/2 ≥ 1 we get the required inequality. �

Remark 4.6 If we consider the case of a curve with ordinary nodes as singu-
larities then the previous theorem gives (1+

√
5)

2 (m+ 2) as bound while theorem
4.3 gives m+ 2. This shows that the bound given in theorem 4.5 is not sharp.
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