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CONTINUOUS DEPENDENCE ESTIMATES FOR
VISCOSITY SOLUTIONS OF FULLY NONLINEAR

DEGENERATE ELLIPTIC EQUATIONS

ESPEN R. JAKOBSEN & KENNETH H. KARLSEN

Abstract. Using the maximum principle for semicontinuous functions [3, 4],

we prove a general “continuous dependence on the nonlinearities” estimate for
bounded Hölder continuous viscosity solutions of fully nonlinear degenerate

elliptic equations. Furthermore, we provide existence, uniqueness, and Hölder
continuity results for bounded viscosity solutions of such equations. Our results
are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs’s equations
of zero-sum, two-player stochastic differential games. An immediate conse-
quence of the results obtained herein is a rate of convergence for the vanishing

viscosity method for fully nonlinear degenerate elliptic equations.

1. Introduction

We are interested in bounded continuous viscosity solutions of fully nonlinear
degenerate elliptic equations of the form

F (x, u(x), Du(x), D2u(x)) = 0 in R
N , (1.1)

where the usual assumptions on the nonlinearity F are given in Section 2 (see also
[4]). We are here concerned with the problem of finding an upper bound on the
difference between a viscosity subsolution u of (1.1) and a viscosity supersolution
ū of

F̄ (x, ū(x), Dū(x), D2ū(x)) = 0 in R
N , (1.2)

where F̄ is another nonlinearity satisfying the assumptions given in Section 2. The
sought upper bound for u− ū should in one way or another be expressed in terms
of the difference between the nonlinearities “F − F̄”.

A continuous dependence estimate of the type sought here was obtained in [8]
for first order time-dependent Hamilton-Jacobi equations. For second order partial
differential equations, a straightforward applications of the comparison principle [4]
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gives a useful continuous dependence estimate when, for example, F̄ is of the form
F̄ = F + f for some function f = f(x). In general, the usefulness of the continuous
estimate provided by the comparison principle [4] is somewhat limited. For example,
it cannot be used to obtain a convergence rate for the vanishing viscosity method,
i.e., an explicit estimate (in terms of ν > 0) of the difference between the viscosity
solution u of (1.1) and the viscosity solution uν of the uniformly elliptic equation

F (x, uν(x), Duν(x), D2uν(x)) = ν∆uν(x) in R
N . (1.3)

Continuous dependence estimates for degenerate parabolic equations that imply,
among other things, a rate of convergence for the corresponding viscosity method
have appeared recently in [2] and [6]. In particular, the results in [6] are general
enough to include, among others, the Hamilton-Jacobi-Bellman equation associated
with optimal control of a degenerate diffusion process. Continuous dependence
estimates for the Hamilton-Jacobi-Bellman equation have up to now been derived
via probabilistic arguments, which are entirely avoided in [6].

The main purpose of this paper is to prove a general continuous dependence
estimate for fully nonlinear degenerate elliptic equations. In addition, we establish
existence, uniqueness, and Hölder continuity results for bounded viscosity solutions.
Although the results presented herein cannot be found in the existing literature,
their proofs are (mild) adaptions (as are those in [2, 6]) of the standard uniqueness
machinery for viscosity solutions [4], which relies in turn on the maximum principle
for semicontinuous functions [3, 4]. In [2, 6], the results are stated for nonlinearities
F, F̄ with a particular form, and as such the results are not entirely general. In this
paper, we avoid this and our main result (Theorem 2.1) covers general nonlinearities
F, F̄ .

We present examples of equations which are covered by our results. In particular,
an explicit continuous dependence estimate is stated for the second order Hamilton-
Jacobi-Bellman-Isaacs equations associated with zero-sum, two-player stochastic
differential games (see, e.g., [9] for a viscosity solution treatment of these equations).
For these equations such a result is usually derived via probabilistic arguments,
which we avoid entirely here. Also, it is worthwhile mentioning that a continuous
dependence estimate of the type derived herein is needed for the proof in [1] of
the rate of convergence for approximation schemes for Hamilton-Jacobi-Bellman
equations.

The rest of this paper is organized as follows: In Section 2 we state and prove
our main results. In Section 3 we present examples of equations covered by our
results. Finally, in Appendix A we prove some Hölder regularity results needed in
section 2.

Notation. Let | · | be defined as follows: |x|2 =
∑m
i=1 |xi|2 for any x ∈ Rm and

any m ∈ N. We also let | · | denote the matrix norm defined by |M | = supe∈Rp
|Me|
|e| ,

where M ∈ Rm×p is a m× p matrix and m, p ∈ N. We denote by SN the space of
symmetric N×N matrices, and let BR and BR denote balls of radius R centered at
the origin in RN and SN respectively. Finally, we let ≤ denote the natural orderings
of both numbers and square matrices.

Let USC(U), C(U) and Cb(U) denote the spaces of upper semicontinuous func-
tions, continuous functions, and bounded continuous functions on the set U . If
f : RN → R

m×p is a function and µ ∈ (0, 1], then define the following (semi)
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norms:

|f |0 = sup
x∈RN

|f(x)|, [f ]µ = sup
x,y∈RN
x6=y

|f(x)− f(y)|
|x− y|µ

, and |f |µ = |f |0 + [f ]µ.

By C0,µ
b (RN ) we denote the set of functions f : RN → R with finite norm |f |µ.

2. The Main Result

We consider the fully nonlinear degenerate elliptic equation in (1.1). The follow-
ing assumptions are made on the nonlinearity F : RN × R× RN × SN → R:

(C1) F ∈ C(RN × R× RN × SN ).

(C2) For every x, r, p, if X,Y ∈ SN , X ≤ Y, then F (x, r, p,X) ≥ F (x, r, p, Y ).

(C3)
For every x, p,X, and for R > 0, there is γR > 0 such that

F (x, r, p,X)− F (x, s, p,X) ≥ γR(r − s), for −R ≤ s ≤ r ≤ R.

Our main result is stated in the following theorem:

Theorem 2.1 (Continuous Dependence Estimate). Let F and F̄ be functions sat-
isfying assumptions (C1) – (C3). Moreover, let the following assumption hold for
some η1, η2 ≥ 0, µ ∈ (0, 1], and K > 0:

F̄ (y, r, α(x− y)− εy, Y )− F (x, r, α(x− y) + εx,X)

≤ K
(
|x− y|µ + η1 + α

(
|x− y|2 + η2

2

)
+ ε
(
1 + |x|2 + |y|2

) )
,

(2.1)

for α, ε > 0, x, y ∈ RN , r ∈ R, |r| ≤ K, and X,Y ∈ SN satisfying

1
K

(
X 0
0 −Y

)
≤ α

(
I −I
−I I

)
+ ε

(
I 0
0 I

)
. (2.2)

If u, ū ∈ C0,µ0
b (RN ), µ0 ∈ (0, 1], satisfy in the viscosity sense F [u] ≤ 0 and

F̄ [ū] ≥ 0, then there is a constant C > 0 such that:

sup
RN

(u− ū) ≤ C

γ

(
η1 + ηµ∧µ0

2

)
,

where γ is defined in (C3) with R = max(|u|0, |ū|0), and µ ∧ µ0 = min(µ, µ0).

Remark 2.2. For simplicity, we consider only equations without boundary condi-
tions. However, the techniques used herein can be applied to the classical Dirichlet
and Neumann problems, at least on convex domains. We refer to [5, 2] for the han-
dling of classical boundary conditions. Finally, note that we are not able to treat
so-called boundary conditions in the viscosity sense [4, section 7C].

Before giving the proof, we state and prove the following technical lemma:

Lemma 2.3. Let f ∈ USC(RN ) be bounded from above and define m,mε ≥ 0,
xε ∈ Rn as follows:

mε = max
x∈Rn
{f(x)− ε|x|2} = f(xε)− ε|xε|2, m = sup

x∈Rn
f(x).

Then as ε→ 0, mε → m and ε|xε|2 → 0.
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Proof. Choose any η > 0. By the definition of supremum there is an x′ ∈ RN such
that f(x′) ≥ m− η. Pick an ε′ so small that ε′|x′|2 < η, then the first part follows
since

m ≥ mε′ = f(xε′)− ε′|xε′ |2 ≥ f(x′)− ε′|x′|2 ≥ m− 2η.

Now define kε = ε|xε|2. This quantity is bounded by the above calculations since
f is bounded from above. Pick a converging subsequence {kε}ε and call the limit
k (≥ 0). Note that f(xε) − kε ≤ m − kε, so going to the limit yields m ≤ m − k.
This means that k ≤ 0, that is k = 0. Now we are done since if every subsequence
converges to 0, the sequence has to converge to 0 as well. �

Proof of Theorem 2.1. We start by defining the following quantities

φ(x, y) :=
α

2
|x− y|2 +

ε

2
(
|x|2 + |y|2

)
,

ψ(x, y) := u(x)− ū(y)− φ(x, y),

σ := sup
x,y∈RN

ψ(x, y) := ψ(x0, y0),

where the existence of x0, y0 ∈ RN is assured by the continuity of ψ and precom-
pactness of sets of the type {φ(x, y) > k} for k close enough to σ. We shall derive
a positive upper bound for σ, so we may assume that σ > 0.

We can now apply the maximum principle for semicontinuous functions [4, The-
orem 3.2] to conclude that there are symmetric matrices X,Y ∈ SN such that
(Dxφ(x0, y0), X) ∈ J 2,+

u(x0), (−Dyφ(x0, y0), Y ) ∈ J 2,−
ū(y0), where X and Y

satisfy inequality (2.2) for some constant K. So by the definition of viscosity sub-
and supersolutions we get

0 ≤F̄ (y0, ū(y0),−Dyφ(x0, y0), Y )− F (x0, u(x0), Dxφ(x0, y0), X). (2.3)

Since σ > 0 it follows that u(x0) ≥ ū(y0). We can now use (C3) (on F ) and the
fact that u(x0) − ū(y0) = σ + φ(x0, y0) ≥ σ to introduce σ and to rewrite (2.3) in
terms of ū(y0):

F (x0, u(x0), Dxφ(x0, y0), X)− F (x0, ū(y0), Dxφ(x0, y0), X)

≥ γ(u(x0)− ū(y0)) ≥ γσ,

so that (2.3) becomes

γσ ≤F̄ (y0, ū(y0),−Dyφ(x0, y0), Y )− F (x0, ū(y0), Dxφ(x0, y0), X).

Now since u, ū are bounded, −Dyφ(x0, y0) = α(x0 − y0)− εy0, and Dxφ(x0, y0) =
α(x0 − y0) + εx0, we may use (2.1) to get the estimate

γσ ≤ K
[
|x0 − y0|µ + η1 + α

(
|x0 − y0|2 + η2

2

)
+ ε
(
1 + |x0|2 + |y0|2

) ]
. (2.4)

By considering the inequality 2ψ(x0, y0) ≥ ψ(x0, x0) + ψ(y0, y0), and Hölder
continuity of u and ū, we find

α|x0 − y0|2 ≤ u(x0)− u(y0) + ū(x0)− ū(y0) ≤ Const |x0 − y0|µ0 ,

which means that |x0 − y0| ≤ Constα−1/(2−µ0). Furthermore, by Lemma 2.3 there
is a continuous nondecreasing function m : [0,∞)→ [0,∞) satisfying m(0) = 0 and

ε|x0|2, ε|y0|2 ≤ m(ε). (2.5)
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The last two estimates combined with (2.4) yield

γσ ≤ Const
[
α−

µ
2−µ0 + η1 + α−

µ0
2−µ0 + αη2

2 +m(ε)
]
. (2.6)

Without loss of generality, we may assume η2
2 < 1 and µ∧µ0 = µ0. Now we choose

α such that α−µ0/(2−µ0) = αη2
2 , and observe that this implies that α > 1, which

again means that α−µ/(2−µ0) ≤ α−µ0/(2−µ0). Thus we can bound the the smaller
term by the larger term. By the definition of σ, u(x) − ū(x) − ε|x|2 ≤ σ for any
x ∈ RN , so substituting our choice of α into (2.6), leads to the following expression

γ(u(x)− ū(x)) ≤ Const
[
η1 + ηµ∧µ0

2 +m(ε)
]

+ γε|x|2,

and we can conclude by sending ε to 0. �

Next we state results regarding existence, uniqueness, and Hölder continuity
of bounded viscosity solutions of (1.1). To this end, make the following natural
assumptions:

(C4)

There exist µ ∈ (0, 1], K > 0, and γ0R, γ1R,KR > 0 for any R > 0 such
that for any α, ε > 0, x, y ∈ RN , −R ≤ r ≤ R, X,Y ∈ SN satisfying (2.2),

F (x, r, α(x− y)− εy, Y )− F (y, r, α(x− y) + εx,X)
≤ γ0R|x− y|µ + γ1Rα|x− y|2 +KR ε

(
1 + |x|2 + |y|2

)
.

(C5) MF := sup
RN |F (x, 0, 0, 0)| <∞.

Theorem 2.4. Assume that (C1) – (C5) hold and that γR = γ is independent
of R. Then there exists a unique bounded viscosity solution u of (1.1) satisfying
γ|u|0 ≤MF .

Proof. Under conditions (C1) – (C4) we have a strong comparison principle for
bounded viscosity solutions of (1.1) (see also [4]). By assumptions (C3) and (C5) we
see that MF /γ and −MF /γ are classical supersolution and subsolution respectively
of (1.1). Hence existence of a continuous viscosity solution satisfying the bound
γ|u|0 ≤MF follows from Perron’s method, see [4]. Uniqueness of viscosity solutions
follows from the comparison principle. �

Remark 2.5. The condition that γR be independent of R and condition (C5) are
not necessary for having strong comparison and uniqueness.
Theorem 2.6. Assume that (C1) – (C5) hold and that γR = γ is independent of R.
Then the bounded viscosity solution u of (1.1) is Hölder continuous with exponent
µ0 ∈ (0, µ].

Proof. This theorem is consequence Lemmas A.1 and A.3, which are stated and
proved in the appendix. �

The final result in this section concerns the rate of convergence for the vanishing
viscosity method, which considers the uniformly elliptic equation (1.3). Existence,
uniqueness, boundedness, and Hölder regularity of viscosity solutions of (1.3) fol-
lows from Theorems 2.4 and 2.6 under the same assumptions as for (1.1).
Theorem 2.7. Assume that (C1) – (C5) hold and that γR = γ is independent of
R. Let u and uν be C0,µ0

b (RN ) viscosity solutions of (1.1) and (1.3) respectively.
Then |u− uν |0 ≤ Const νµ0/2.
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Proof. It is clear from Theorem 2.4, Lemma A.1, and the proof of Lemma A.3 that
µ0 ≤ µ and that |uν |µ0 can be bounded independently of ν. Now we use Theorem
2.1 with F̄ [u] = F [u]− ν∆u. This means that

F̄ (x, r, α(x− y)− εy, Y )− F (y, r, α(x− y) + εx,X)

≤ −νtr[Y ] + γ0R|x− y|µ + γ1Rα|x− y|2 +KR ε
(
1 + |x|2 + |y|2

)
,

with R = MF /γ. From (2.2) it follows that if ei is a standard basis vector in
R
N , then −eiY ei ≤ K(α + ε), so −tr[Y ] ≤ NK(α + ε). This means that (2.1) is

satisfied with η1 = 0 and η2
2 = NKν. Now Theorem 2.1 yield u−uν ≤ Const νµ0/2.

Interchanging u, F and uν , F̄ in the above argument yields the other bound. �

3. Applications

In this section, we give three typical examples of equations handled by our as-
sumptions. It is quite easy to verify (C1) – (C5) for these problems. We just remark
that in order to check (C4), it is necessary to use a trick by Ishii and the matrix
inequality (2.2), see [4, Example 3.6].

Example 3.1 (Quasilinear equations).

−tr[σ(x,Du)σ(x,Du)TD2u] + f(x, u,Du) + γu = 0 in R
N ,

where γ > 0, for any R > 0, σ (matrix-valued) and f (real-valued) are uniformly
continuous on RN × BR and RN × [−R,R] × BR respectively, and for any R > 0
there are K,KR > 0 such that the following inequalities hold:

|σ(x, p)− σ(y, p)| ≤ K|x− y|,
|f(x, t, p)− f(y, t, p)| ≤ KR (|p||x− y|+ |x− y|µ) , for |t| ≤ R,

f(x, t, p) ≤ f(x, s, p) when t ≤ s, |f(x, 0, 0)| ≤ K,

for any x, y, p ∈ RN and t, s ∈ R.

Example 3.2 (Hamilton-Jacobi-Bellman-Isaacs equations). In RN ,

sup
α∈A

inf
β∈B

{
−tr

[
σα,β(x)σα,β(x)TD2u

]
−bα,β(x)Du+cα,β(x)u+fα,β(x)

}
= 0, (3.1)

where A,B are compact metric spaces, c ≥ γ > 0, and
[σα,β ]1, [bα,β ]1, [cα,β ]µ, [fα,β ]µ + |fα,β |0 are bounded independent of α, β.

Example 3.3 (Sup and inf of quasilinear operators). In RN ,

sup
α∈A

inf
β∈B

{
− tr

[
σα,β(x,Du)σα,β(x,Du)TD2u

]
+ fα,β(x, u,Du) + γu

}
= 0,

where A,B are as above, γ > 0, and σ, f continuous satisfies the same assumptions
as in Example 3.1 uniformly in α, β.

We end this section by giving an explicit continuous dependence result for second
order Hamilton-Jacobi-Bellman-Isaacs equations associated with zero-sum, two-
player stochastic differential games with controls and strategies taking values in
A and B (see Example 3.2).

We refer to [9] for an overview of viscosity solution theory and its application to
the partial differential equations of deterministic and stochastic differential games.
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Theorem 3.4. Let u and ū be viscosity solutions to (3.1) with coefficients (σ, b, c, f)
and (σ̄, b̄, c̄, f̄) respectively. Moreover, assume that both sets of coefficients satisfy
the assumptions stated in Example 3.2. Then there is a µ0 ∈ (0, µ] such that
u, ū ∈ C0,µ0

b (RN ) and

|u− ū|0 ≤C
(

sup
A×B

[
|σα,β − σ̄α,β |µ0

0 + |bα,β − b̄α,β |µ0
0

]
+ sup
A×B

[
|cα,β − c̄α,β |0 + |fα,β − f̄α,β |0

])
,

for some constant C.

Proof. With

η1 = sup
A×B

[
|cα,β−c̄α,β |0+|fα,β−f̄α,β |0

]
, η2

2 = sup
A×B

[
|σα,β−σ̄α,β |20+|bα,β−b̄α,β |20

]
,

we apply Theorem 2.1 to u− ū and then to ū− u to obtain the result. �

Appendix A. Hölder Regularity

We consider the two cases γ > 2γ1 and 0 < γ < 2γ1 separately.
Lemma A.1. Assume that (C1) – (C5) hold and that u is a bounded viscosity
solution of (1.1). Let R = |u|0, define γ := γR, and similarly define γ0, γ1,K. If
γ > 2γ1 then u ∈ C0,µ

b , and for all x, y ∈ RN ,

|u(x)− u(y)| ≤ γ0

γ − 2γ1
|x− y|µ.

Proof. This proof is very close to the proof of Theorem 2.1, and we will only indicate
the differences. Let σ, φ, x0, y0 be defined as in Theorem 2.1 when

ψ(x, y) = u(x)− u(y)− 2φ(x, y).

Note the factor 2 multiplying φ. We need this factor to get the right form of our
estimate! A consequence of this is that we need to change α, ε to 2α, 2ε whenever
we use (C4) and (2.2). Now we proceed as in the proof of Theorem 2.1. We use
the maximum principle for semicontinuous functions and the definition of viscosity
sub- and supersolutions (u is both!), we use (C3) together with

u(x0)− u(y0) = σ + α|x0 − y0|2 + ε
(
|x0|2 + |y0|2

)
≥ σ + α|x0 − y0|2,

and finally we use (C4) and all the above to conclude that

γσ ≤ γ0|x0 − y0|µ − (γ − 2γ1)α|x0 − y0|2 + ω(ε), (A.1)

for some modulus ω. Here we have also used the bounds (2.5) on x0, y0. Compare
with (2.4).

Note that for any k1, k2 > 0,

max
r≥0

{
k1r

µ − k2αr
2
}

= c̄1k
2

2−µ
1 (αk2)−

µ
2−µ where c̄1 =

(µ
2

) µ
2−µ−

(µ
2

) 2
2−µ

.

Furthermore for fixed α, Lemma 2.3 yields

lim
ε→0

σ = sup
x,y∈RN

(
u(x)− u(y)− α|x− y|2

)
:= m.
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So let k1 = γ0 and k2 = γ − 2γ1 (> 0 by assumption), and go to the limit ε → 0
for α fixed in (A.1). The result is

m ≤ k
2

2−µ
1

γk
µ

2−µ
2

c̄1α
− µ

2−µ ≤ γ − 2γ1

γ

( γ0

γ − 2γ1

) 2
2−µ

c̄1α
− µ

2−µ ≤ kα−
µ

2−µ , (A.2)

where k =
(

γ0
γ−2γ1

) 2
2−µ

c̄1. Since, in view of (A.2),

u(x)− u(y) ≤ m+ α|x− y|2 ≤ kα−
µ

2−µ + α|x− y|2,

we can minimize with respect to α obtain

u(x)− u(y) ≤ min
α≥0

{
kα−

µ
2−µ + α|x− y|2

}
= c̄2k

2−µ
2 |x− y|µ,

where c̄2 =
(

µ
2−µ

) 2−µ
2

+
(

2−µ
µ

)µ
2
.

Now we can conclude by substituting for k and observing that c̄2c̄
2−µ

2
1 ≡ 1. �

Remark A.2. Lemma A.1 is not sharp. It is possible to get sharper results using
a test function of the type φ(x, y) = L|x− y|δ + ε

(
|x|2 + |y|2

)
and playing with all

three parameters L, δ, ε. However, (C4) is adapted to the test function used in this
paper, so changing the test function means that we must change (C4) too.

We will now use the previous result and an iteration technique introduced in
[7] (for first order equations) to derive Hölder continuity for solutions of (1.1) for
0 < γ < 2γ1. Note that since Lemma A.1 is not sharp, our next result will not
be sharp either. We also note that in the case γ = 2γ1 the Hölder exponent is of
course at least as good as for γ = 2γ1 − ε, ε > 0 small.

Lemma A.3. Assume that (C1) – (C5) hold and that u is a bounded viscosity
solution of (1.1). Let R = |u|0, define γ := γR, and similarly define γ0, γ1,K. If
0 < γ < 2γ1 then u ∈ C0,µ0

b (RN ) where µ0 = µ γ
2γ1

.

Proof. Let λ > 0 be such that γ + λ ≥ 2γ1 + 1 and let v ∈ C0,µ
b (RN ) be in the set

X :=
{
f ∈ C(RN ) : |f |0 ≤MF /γ

}
.

Then note that ±MF /γ are respectively super- and subsolutions of the following
equation:

F (x, u(x), Du(x), D2u(x)) + λu(x) = λv(x) ∀x ∈ RN . (A.3)

Let T denote the operator taking v to the viscosity solution u of (A.3). It is
well-defined because by Theorem 2.4 there exists a unique viscosity solution u
of equation (A.3). Furthermore by Theorem A.1 and the fact that ±MF /γ are
respectively super- and subsolutions of (A.3), we see that

T : C0,µ
b (RN ) ∩X → C0,µ

b (RN ) ∩X.

For v, w ∈ C0,µ
b (RN ) ∩X we note that

Tw − |w − v|0λ/(γ + λ) and Tv − |w − v|0λ/(γ + λ)
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are both subsolutions of (A.3) but with different right hand sides, namely λv and λw
respectively. So by using the comparison principle Theorem 2.4 twice (comparing
with Tv and Tw respectively) we get:

|Tw − Tv|0 ≤
λ

γ + λ
|w − v|0 ∀w, v ∈ C0,µ

b (RN ) ∩X. (A.4)

Let u0(x) = MF /γ and un(x) = Tun−1(x) for n = 1, 2, . . . Since C0,µ
b (RN ) ∩ X

is a Banach space and T a contraction mapping (A.4) on this space, Banach’s fix
point theorem yields un → u ∈ C0,µ

b (RN ) ∩X. By the stability result for viscosity
solutions of second order PDEs, see Lemma 6.1 and Remark 6.3 in [4], u is the
viscosity solution of (1.1).

Since F [u]+λu = 0 and F [un]+λun = λun−1, the continuous dependence result
Theorem 2.1 yields

|u− un|0 ≤
λ

λ+ γ
|u− un−1|0 ≤

(
λ

λ+ γ

)n
|u− u0|0. (A.5)

Furthermore by Theorem A.1 we have the following estimate on the Hölder semi-
norm of un:

[un]µ ≤
γ0 + λ[un−1]µ
γ + λ− 2γ1

≤
(

λ

γ + λ− 2γ1

)n (
[u0]µ +K

)
, (A.6)

where the constant K does not depend on n or λ (≥ 1). Now let x, y ∈ RN and
note that

|u(x)− u(y)| ≤ |u(x)− un(x)|+ |un(x)− un(y)|+ |un(y)− u(y)|.

Using (A.5) and (A.6) we get the following expression:

|u(x)− u(y)| ≤ Const
{(

λ

γ + λ

)n
+
(

λ

γ + λ− 2γ1

)n
|x− y|µ

}
. (A.7)

Now let t = |x − y| and ω be the modulus of continuity of u. Fix t ∈ (0, 1) and
define λ in the following way:

λ :=
2γ1

µ

n

log
(

1
t

) .
Note that if nt is a sufficiently large number, then n ≥ nt implies that γ+λ ≥ 2γ1+1.
Using this new notation, we can rewrite (A.7) in the following way:

ω(t) ≤ Const

{(
1 +

µγ

2γ1
log
(

1
t

)
1
n

)−n
+
(

1 + µ
γ − 2γ1

2γ1
log
(

1
t

)
1
n

)−n
tµ

}
.

Letting n→∞, we obtain

ω(t) ≤ Const
{
tµγ/2γ1 + tµγ/2γ1−µtµ

}
.

Now we can conclude since this inequality must hold for any t ∈ (0, 1). �
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