\documentclass[twoside]{article} \usepackage{amssymb, amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Uniqueness for radial minimizers \hfil EJDE--2002/43} {EJDE--2002/43\hfil Yutian Lei \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 43, pp. 1--11. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Uniqueness for radial Ginzburg-Landau type minimizers % \thanks{ {\em Mathematics Subject Classifications:} 35J70, 49K20. \hfil\break\indent {\em Key words:} radial minimizer, uniqueness, Ginzburg-Landau type functional. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted February 4, 2002. Published May 21, 2002. } } \date{} % \author{Yutian Lei} \maketitle \begin{abstract} We prove the uniqueness of radial minimizers of a Ginzburg-Landau type functional. We present also an analysis of the the location of the zeros of the radial minimizer. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \numberwithin{equation}{section} \section{Introduction } For $n \geq 2$, let $B=\{x \in \mathbb{R}^n;|x|<1\}$ and $\partial B$ its boundary. On this domain, we find minimizers to the Ginzburg-Landau-type functional $$ E_\varepsilon(u,B)= \frac{1}{p}\int_B|\nabla u|^p +\frac{1}{4\varepsilon^p}\int_B(1-|u|^2)^2,\quad (p\geq n) $$ on the class of functions $$ W=\{u(x)=f(r)\frac{x}{|x|} \in W^{1,p}(B,\mathbb{R}^n); f(1)=1, r=|x|\}. $$ Such minimizer is denoted by $u_{\varepsilon}$ and is called a {\it radial minimizer}. Many authors have studied the existence, uniqueness and asymptotic behaviour of $u_{\varepsilon}$ as $\varepsilon \to 0$. For $p=n=2$, studies of asymptotic behaviour can be found in \cite{b1,s1}, studies of uniqueness in \cite{h2}, and other related topics in \cite{b2,b3,f1,m1}. For $p=n>2$ and $p>n=2$, the asymptotic behaviour was studied in \cite{h1} and \cite{l2}, respectively. However, uniqueness was not mentioned there. In this paper, we prove the following results for $p\geq n$. \begin{theorem} \label{thm1.1} Assume $u_\varepsilon$is a radial minimizer of $E_\varepsilon(u,B)$. Then for any given $\eta \in (0,1/2)$ there exists a positive constant $h=h(\eta)$ such that $$ Z_\varepsilon=\{x \in B; |u_\varepsilon(x)|<1-\eta\} \subset B(0,h \varepsilon) =\{x \in \mathbb{R}^n;|x| n$, let $h(r)=f(r^{\frac{p-1}{p-n}})$. Then \begin{eqnarray*} \int_0^1|h'(r)|^p\,dr &=&(\frac{p-1}{p-n})^p\int_0^1|f'(r^{ \frac{p-1}{p-n}})|^p r^{\frac{p(n-1)}{p-n}}\,dr \\ &=&(\frac{p-1}{p-n})^{p-1} \int_0^1s^{n-1}|f'(s)|^p\,ds<\infty \end{eqnarray*} by noting $f_s(s)s^{(n-1)/p} \in L^p(0,1)$. If $p=n$, let $h(r)=f(r^x)$ with $x>1$ to be determined later. Then for any $y \in (1,p)$, \begin{eqnarray*} \int_0^1|h'(r)|^ydr&=&x^y\int_0^1|f'(r^x)|^yr^{(x-1)y}dr\\ &=&x^{y-1}\int_0^1|f'(s)|^ys^{(x-1)(y-1)/x}ds, \end{eqnarray*} where $s=r^x$. Choose $x,y$ such that $(1-\frac{1}{x})(1-\frac{1}{y})=\frac{n-1}{n}$. Hence \begin{eqnarray*} \int_0^1|h'(r)|^ydr&=& x^{y-1}\int_0^1|f'(s)|^ys^{y(n-1)/n}ds\\ &\leq& x^{y-1}(\int_0^1|f'(s)|^ns^{n-1}ds)^{y/n}<\infty. \end{eqnarray*} Using an interpolation inequality and Young inequality, $\|h\|_{W^{1,y}((0,1),R)}<\infty$ which implies that $h(r) \in C[0,1]$ and hence $f(r)\in C[0,1]$. Suppose $f(0)>0$, then $f(r) \geq s>0$ for $r \in [0,t)$ with $t>0$ small enough since $f \in C[0,1]$. We have $$ \int_0^1 r^{n-1-p}f^p \,dr \geq s^p \int_0^t r^{n-1-p} \,dr=\infty, $$ which contradicts $r^{(n-1)/p-1}f \in L^p(0,1)$. Therefore $f(0)=0$ and the proof is complete. \begin{proposition} \label{prop2.2} The functional $E_\varepsilon(u,B)$ achieves its minimum on W by a function $u_\varepsilon(x)=f_\varepsilon(r)\frac{x}{|x|}$. \end{proposition} \paragraph{Proof.} Note that $W^{1,p}(B,\mathbb{R}^n)$ is a reflexive Banach space and $E_\varepsilon(u,B)$ is weakly lower-semicontinuous. To prove the existence of minimizers of $E_\varepsilon(u,B)$ in W, it suffices to verify that W is a weakly closed subset of $W^{1,p}(B,\mathbb{R}^n)$. Clearly W is a convex subset of $W^{1,p}(B,\mathbb{R}^n)$. Now we prove that $W$ is a closed subset of $W^{1,p}(B,\mathbb{R}^n)$. Let $u_k=f_k(r)\frac{x}{|x|} \in W$ and $$ \lim_{k \to \infty}u_k=u, \quad\mbox{in }W^{1,p}(B,\mathbb{R}^n). $$ By the embedding theorem there exists a subsequence $u_k=f_k(r)\frac{x}{|x|}$ such that $$ \lim_{k \to \infty}f_k=f, \quad\mbox{in }C(0,1] $$ and $u =f(r)\frac{x}{|x|}$. Combining this with $f_k(1)=1$, we see that $f(1)=1$. Thus $u \in W$. \begin{proposition} \label{prop2.3} The minimizer $u_{\varepsilon}$ is a weak radial solution of \begin{gather} -\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)=\frac{1}{\varepsilon^p}u(1-|u|^2), \quad \mbox{on } B, \label{e2.1}\\ u|_{\partial B}=x. \label{e2.2} \end{gather} \end{proposition} \paragraph{Proof.} Denote $u_{\varepsilon}$ by $u$. For any $t \in [0,1)$and $ \phi=f(r)\frac{x}{|x|} \in C_0^{\infty}(B,\mathbb{R}^n)$, we have $u+t\phi \in W$ as long as $t$ is small sufficiently. Since $u$ is a minimizer we obtain $$ \frac{dE_{\varepsilon}(u+t\phi,B)}{dt}|_{t=0}=0, $$ namely, \begin{align*} 0=&\frac{d}{dt}|_{t=0}\int_B (\frac{1}{p}|\nabla (u+t\phi)|^p +\frac{1}{4\varepsilon^p}(1-|u|^2)^2)dx\\ =&\int_B|\nabla u|^{p-2} \nabla u \nabla \phi dx -\frac{1}{\varepsilon^p} \int_Bu\phi (1-|u|^2) dx. \end{align*} By a limit process we see that the test function $\phi$ can be any member of $\{\phi=f(r)\frac{x}{|x|} \in W^{1,p}(B,\mathbb{R}^n); \phi|_{\partial B}=0\}$. As in \cite[Lemma 2.2]{h1}, we also have the following statement. \begin{proposition} \label{prop2.4} Let $u_\varepsilon$ be a weak radial solution of (\ref{e2.1})-(\ref{e2.2}). Then $|u_\varepsilon| \leq 1$ on $\overline{B}$. \end{proposition} \paragraph{Proof.} Taking $\phi=u-\frac{u}{|u|}\min(1,|u|)$. Let $B_+=\{x \in B;|u|>1,a.e. \mbox{ on }B\}$. Noting $$ \nabla \phi=0,a.e.\quad on \quad B\setminus B_+; \quad \nabla \phi=\nabla u(1-\frac{1}{|u|}) +\frac{u(u\nabla u)}{|u|^3},a.e.\quad on \quad B_+, $$ we have $$ \int_{B_+}|\nabla u|^p(1-\frac{1}{|u|}) +\int_{B_+}|\nabla u|^{p-2}\frac{(u\nabla u)^2}{|u|^3} +\frac{1}{\varepsilon^p}\int_{B_+}|u|(|u|^2-1)(|u|-1)=0. $$ This implies that $|B_+|=0$. Thus $|u_{\varepsilon}|\leq 1$. \begin{proposition} \label{prop2.5} Assume $u_{\varepsilon}$ is a weak radial solution of (\ref{e2.1})-(ref{e2.2}). Then there exist positive constants $C_1,\rho$ which are independent of $\varepsilon$, such that \begin{gather} \|\nabla u_{\varepsilon}(x)\|_{L(B(x,\rho\varepsilon/8))}\leq C_1\varepsilon^{-1}, \quad\mbox{if}\quad x \in B(0,1-\rho \varepsilon), \label{e2.3} \\ |u_{\varepsilon}(x)|\geq \frac{10}{11}, \quad\mbox{if}\quad x \in \overline{B}\setminus B(0,1-2\rho\varepsilon). \label{e2.4} \end{gather} \end{proposition} \paragraph{Proof.} Let $y=x\varepsilon^{-1}$ in (\ref{e2.1}) and denote $v(y)=u(x)$, $B_{\varepsilon}=B(0,\varepsilon^{-1})$. Then \begin{equation} \int_{B_{\varepsilon}}|\nabla v|^{p-2}\nabla v\nabla \phi =\int_{B_{\varepsilon}}v (1-|v|^2)\phi, \quad \phi \in W_0^{1,p}(B_{\varepsilon},\mathbb{R}^n). \label{e2.5} \end{equation} This implies that $v(y)$ is a weak solution of (\ref{e2.5}). By using the standard discuss of the Holder continuity of weak solution of (\ref{e2.5}) on the boundary (for example see Theorem 1.1 and Line 19-21 of Page 104 in \cite{c1}) we can see that for any $y_0 \in \partial B_{\varepsilon}$ and $y \in B(y_0,\rho_0)$ (where $\rho_0>0$ is a constant independent of $\varepsilon$), there exist positive constants $C=C(\rho_0)$ and $\alpha \in (0,1)$, both independent of $\varepsilon$, such that $$ |v(y)-v(y_0)|\leq C(\rho_0)|y-y_0|^{\alpha}. $$ Choose $\rho>0$ sufficiently small such that \begin{equation} y \in B(y_0,2\rho) \subset B(y_0,\rho_0), \quad \mbox{and}\quad C(\rho_0)|y-y_0|^{\alpha}\leq \frac{1}{11}, \label{e2.6} \end{equation} then $$ |v(y)| \geq |v(y_0)|-C(\rho_0)|y-y_0|^{\alpha} =1-C(\rho_0)|y-y_0|^{\alpha} \geq \frac{10}{11}. $$ Let $x=y\varepsilon$. Thus $|u_{\varepsilon}(x)|\geq 10/11$, if $x \in B(x_0,2\rho \varepsilon)$, where $ x_0 \in \partial B$. This implies (\ref{e2.4}). Taking $\phi=v \zeta^p, \zeta \in C_0^{\infty} (B_{\varepsilon},R)$ in (\ref{e2.5}), we obtain $$ \int_{B_{\varepsilon}}|\nabla v|^p\zeta^p \leq p\int_{B_{\varepsilon}}|\nabla v|^{p-1}\zeta^{p-1} |\nabla \zeta||v| +\int_{B_{\varepsilon}}|v|^2(1-|v|^2)\zeta^p. $$ For $\rho$ as in (\ref{e2.6}), setting $y \in B(0,\varepsilon^{-1}-\rho)$, $B(y,\rho/2) \subset B_{\varepsilon}$, $$ \zeta=\begin{cases}1 &\mbox{in } B(y,\rho/4),\\ 0 & \mbox{in } B_{\varepsilon}\setminus B(y,\rho/2) \end{cases} $$ and $|\nabla \zeta| \leq C(\rho)$, we have $$ \int_{B(y,\rho/2)}|\nabla v|^p\zeta^p \leq C(\rho)\int_{B(y,\rho/2)}|\nabla v|^{p-1}\zeta^{p-1}+C(\rho). $$ Using Holder's inequality, we can derive $\int_{B(y,\rho/4)}|\nabla v|^p \leq C(\rho)$. Combining this with the Tolksdroff' theorem in \cite{t1} yields $$ \|\nabla v \|_{L^{\infty}(B(y,\rho/8))}^p \leq C(\rho)\int_{B(y,\rho/4)}(1+|\nabla v|)^p \leq C(\rho) $$ which implies $$ \|\nabla u\|_{L^{\infty}(B(x,\varepsilon \rho /8))} \leq C(\rho)\varepsilon^{-1}. $$ \begin{proposition} \label{prop2.6} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then \begin{gather} E_\varepsilon(u_\varepsilon,B) \leq C\varepsilon^{n-p}+C, \quad when \quad p>n, \label{e2.7}\\ E_\varepsilon(u_\varepsilon,B) \leq \frac{1}{n}(n-1)^{n/2}|S^{n-1}||\ln\varepsilon|+C \quad when \quad p=n, \label{e2.8} \end{gather} with a constant $C$ independent of $\varepsilon \in (0,1)$. \end{proposition} \paragraph{Proof.} Denote $$ I(\varepsilon,R)=\min\Big\{\int_{B(0,R)} [\frac{1}{p}|\nabla u|^p +\frac{1}{\varepsilon^p}(1-|u|^2)^2]; u \in W_R\Big\}, $$ where $$ W_R=\big\{u(x)=f(r)\frac{x}{|x|} \in W^{1,p}(B(0,R),\mathbb{R}^n); r=|x|, f(R)=1\big\}. $$ Then \begin{equation} \begin{aligned} I(\varepsilon,1)=&E_{\varepsilon}(u_{\varepsilon},B)\\ =&\frac{1}{p}\int_B|\nabla u_{\varepsilon}|^pdx +\frac{1}{4\varepsilon^p}\int_B(1-|u_{\varepsilon}|^2)^2dx\\ =&\varepsilon^{n-p}[\frac{1}{p} \int_{B(0,\varepsilon^{-1})}|\nabla u_{\varepsilon}|^pdy +\frac{1}{4}\int_{B(0,\varepsilon^{-1})} (1-|u_{\varepsilon}|^2)^2dy]\\ =&\varepsilon^{n-p}I(1,\varepsilon^{-1}). \end{aligned} \label{e2.9} \end{equation} Let $u_1$ be a solution of $I(1,1)$ and define $$ u_2=\begin{cases} u_1, &\mbox{if }0<|x|<1; \\ \frac{x}{|x|}, & \mbox{if } 1 \leq |x|\leq \varepsilon^{-1}. \end{cases} $$ Thus $u_2 \in W_{\varepsilon^{-1}}$ and when $p>n$, \begin{align*} I(1,\varepsilon^{-1})\leq &\frac{1}{p} \int_{B(0,\varepsilon^{-1})}|\nabla u_2|^p +\frac{1}{4} \int_{B(0,\varepsilon^{-1})}(1-|u_2|^2)^2\\ =&\frac{1}{p}\int_B|\nabla u_1|^p+\frac{1}{4}\int_B(1-|u_1|^2)^2 +\frac{1}{p}\int_{B(0,\varepsilon^{-1})\setminus B}|\nabla \frac{x}{|x|}|^p\\ =&I(1,1)+\frac{(n-1)^{p/2}|S^{n-1}|}{p} \int_1^{\varepsilon^{-1}}r^{n-p-1}dr\\ =&I(1,1)+\frac{(n-1)^{p/2}|S^{n-1}|}{p(p-n)}(1-\varepsilon^{p-n}) \leq C. \end{align*} Similarly, when $p=n$, $$ I(1,\varepsilon^{-1})\leq I(1,1)+\frac{1}{n}(n-1)^{n/2} |S^{n-1}||\ln\varepsilon|+C. $$ Substituting these into (\ref{e2.9}) yields (\ref{e2.7}) and (\ref{e2.8}). \section{Location of zeros of minimizers} \begin{proposition} \label{prop3.1} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then there exists a constant $C$ independent of $\varepsilon \in (0,1]$ such that \begin{equation} \frac{1}{\varepsilon^n} \int_B(1-|u_\varepsilon|^2)^2 \leq C. \label{e3.1} \end{equation} \end{proposition} \paragraph{Proof.} When $p>n$, (\ref{e3.1}) can be derived by multiplying (\ref{e2.7}) by $\varepsilon^{p-n}$. When $p=n$, as in \cite[eqn.(3.6)]{h1}, we derive that $$ \int_B|\nabla u_{\varepsilon}|^ndx \geq (n-1)^{n/2}|S^{n-1}||\ln\varepsilon|-C, $$ where $C$ is independent of $\varepsilon$. Combining this with (\ref{e2.8}) we obtain (\ref{e3.1}). \begin{proposition} \label{prop3.2} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then for any $\eta \in (0,1/2)$, there exist positive constants $\lambda, \mu$ independent of $\varepsilon \in (0,1)$ such that if \begin{equation} \frac{1}{\varepsilon^n} \int_{B(0,1-\rho \varepsilon) \cap B^{2l\varepsilon}}(1-|u_\varepsilon|^2)^2 \leq \mu, \label{e3.2} \end{equation} where $B^{2l\varepsilon}$ is the ball of radius $2l\varepsilon$ with $l \geq \lambda$, then \begin{equation} |u_\varepsilon(x)| \geq 1-\eta, \quad \forall x \in B(0,1-\rho \varepsilon) \cap B^{l\varepsilon}. \label{e3.3} \end{equation} \end{proposition} \paragraph{Proof.} First we observe that there exists a constant $C_2>0$ which is independent of $\varepsilon$ such that for any $x \in B$ and $0<\rho \leq 1$, $$ |B(0,1-\rho\varepsilon)\cap B(x,r)| \geq C_2 r^n. $$ To prove this proposition, we choose \begin{equation} \lambda=\frac{\eta}{2C_1}, \quad \mu=\frac{C_2}{C_1^n} (\frac{\eta}{2})^{n+2}, \label{e3.4} \end{equation} where $C_1$ is the constant in (\ref{e2.3}). Suppose that there is a point $x_0 \in B(0,1-\rho\varepsilon) \cap B^{l\varepsilon}$ such that $|u_\varepsilon(x_0)| < 1-\eta$. Then applying (\ref{e2.3})) we have \begin{eqnarray*} |u_\varepsilon(x)-u_\varepsilon(x_0)| &\leq& C_1 \varepsilon^{-1}|x-x_0| \leq C_1\varepsilon^{-1}(\lambda \varepsilon)\\ &=&C_1\lambda=\frac{\eta}{2}, \quad \forall x \in B(x_0,\lambda \varepsilon), \end{eqnarray*} hence $(1-|u_\varepsilon(x)|^2)^2 > \frac{\eta^2}{4}, \quad \forall x \in B(x_0,\lambda \varepsilon)$. Thus \begin{equation} \begin{aligned} \int_{B(x_0,\lambda \varepsilon) \cap B(0,1-\rho\varepsilon)}(1-|u_\varepsilon|^2)^2 &> \frac{\eta^2}{4} |B(0,1-\rho\varepsilon) \cap B(x_0,\lambda \varepsilon)| \\ &\geq C_2 \frac{\eta^2}{4}(\lambda \varepsilon)^n =C_2 \frac{\eta^2}{4}(\frac{\eta}{2C_1})^n \varepsilon^n=\mu \varepsilon^n. \end{aligned} \label{e3.5} \end{equation} Since $x_0 \in B^{l\varepsilon} \cap B$, and $(B(x_0,\lambda \varepsilon) \cap B(0,1-\rho\varepsilon)) \subset (B^{2l\varepsilon} \cap B(0,1-\rho\varepsilon))$, (\ref{e3.5}) implies $$ \int_{B^{2l\varepsilon} \cap B(0,1-\rho\varepsilon) }(1-|u_\varepsilon|^2)^2 > \mu \varepsilon^n, $$ which contradicts (\ref{e3.2}) and thus (\ref{e3.3}) is proved. Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Given $\eta \in (0,1/2)$. Let $\lambda,\mu$ be constants in Proposition \ref{prop3.2} corresponding to $\eta$. If \begin{equation} \frac{1}{\varepsilon^n} \int_{B(x^{\varepsilon},2\lambda \varepsilon) \cap B(0,1-\rho\varepsilon)} (1-|u_\varepsilon|^2)^2 \leq \mu, \label{e3.6} \end{equation} then $B(x^{\varepsilon},\lambda \varepsilon)$ is called the ball of type I. Otherwise it is called the ball of type II. Now suppose that $\{B(x_i^{\varepsilon},\lambda \varepsilon),i \in I\}$ is a family of balls satisfying \begin{equation} \begin{gathered} x_i^{\varepsilon} \in B(0,1-\rho\varepsilon),i \in I; \\ B(0,1-\rho\varepsilon) \subset \cup_{i \in I}B(x_i^{\varepsilon},\lambda \varepsilon); \\ B(x_i^{\varepsilon},\lambda \varepsilon /4) \cap B(x_j^{\varepsilon},\lambda \varepsilon /4)=\emptyset,i \neq j. \end{gathered} \label{e3.7} \end{equation} Denote $ J_\varepsilon=\{i \in I;B(x_i^{\varepsilon}, \lambda \varepsilon)\mbox{ is a ball of type II}\}$. \begin{proposition} \label{prop3.3} There exists an upper bound for the number of balls of type II. i.e., there exists a positive integer $N$ such that $\mathop{\rm Card} J_\varepsilon \leq N$. \end{proposition} \paragraph{Proof.} Since (\ref{e3.7}) implies that every point in $B$ can be covered by finite, say $m$ (independent of $\varepsilon$) balls, from (\ref{e3.6}) and the definition of balls of type II, we have \begin{align*} \mu \varepsilon^n CardJ_\varepsilon &\leq \sum_{i \in J_\varepsilon} \int_{B(x_i^{\varepsilon},2\lambda \varepsilon) \cap B(0,1-\rho\varepsilon)}(1-|u_\varepsilon|^2)^2\\ &\leq m\int_{\cup_{i \in J_\varepsilon} B(x_i^{\varepsilon},2\lambda \varepsilon) \cap B(0,1-\rho\varepsilon)}(1-|u_\varepsilon|^2)^2\\ &\leq m\int_B(1-|u_\varepsilon|^2)^2 \leq mC\varepsilon^n \end{align*} and hence for some $n$, $\mathop{\rm Card} J_\varepsilon \leq \frac{mC}{\mu} \leq N$. \hfill$\Box$ Proposition \ref{prop3.3} is an important result since the number of balls of type II is always finite as $\varepsilon$ becomes sufficiently small. Similar to the argument of \cite[Theorem IV.1]{b1}, we have \begin{proposition} \label{prop3.4} There exist a subset $J \subset J_{\varepsilon}$ and a constant $h\geq \lambda$ such that \begin{equation} \begin{gathered} \cup_{i \in J_{\varepsilon}}B(x_i^{\varepsilon},\lambda \varepsilon) \subset \cup_{i \in J}B(x_j^{\varepsilon},h \varepsilon), \\ |x_i^{\varepsilon}-x_j^{\varepsilon}|> 8h\varepsilon,\quad i,j \in J,\quad i \neq j. \end{gathered} \label{e3.8} \end{equation} \end{proposition} \paragraph{Proof.} If there are two points $x_1, x_2$ such that (\ref{e3.8}) is not true with $h=\lambda$, we take $h_1=9\lambda$ and $J_1=J_{\varepsilon}\setminus\{1\}$. In this case, if (\ref{e3.8}) holds we are done. Otherwise we continue to choose a pair points $x_3, x_4$ which does not satisfy (\ref{e3.8}) and take $h_2=9h_1$ and $J_2=J_{\varepsilon}\setminus\{1,3\}$. After at most $N$ steps we may choose $\lambda \leq h\leq \lambda 9^N$ and conclude this proposition. Applying Proposition \ref{prop3.4}, we may modify the family of balls of type II such that the new one, denoted by $\{B(x_i^{\varepsilon},h\varepsilon);i \in J\}$, satisfies \begin{gather*} \cup_{i \in J_\varepsilon}B(x_i^{\varepsilon},\lambda \varepsilon) \subset \cup_{i \in J}B(x_i^{\varepsilon},h \varepsilon), \\ \mathop{\rm Card}J \leq \mathop{\rm Card}J_\varepsilon, \\ |x_i^{\varepsilon}-x_j^{\varepsilon}|>8h \varepsilon,i,j \in J,i \neq j. \end{gather*} The last condition implies that every two balls in the new family are disjoint. Now we prove the main result of this section. \begin{theorem} \label{thm3.5} Let $u_\varepsilon $ be a radial minimizer of $ E_\varepsilon(u,B)$. Then for any $\eta \in (0,1/2)$, there exists a constant $h=h(\eta)$ independent of $\varepsilon \in (0,1)$ such that $Z_\varepsilon=\{x \in B; |u_\varepsilon(x)|<1-\eta\} \subset B(0,h \varepsilon) $. In particular the zeros of $u_\varepsilon$ are contained in $B(0,h\varepsilon)$. \end{theorem} \paragraph{Proof.} Suppose there exists a point $x_0 \in Z_\varepsilon$ such that $x_0 \overline{\in}B(0,h \varepsilon)$. Then all points on the circle $S_0=\{x \in B;~|x|=|x_0|\}$ satisfy $|u_\varepsilon(x)|<1-\eta$ and hence by virtue of Proposition \ref{prop3.2} and (\ref{e2.4}), all points on $S_0$ are contained in balls of type II. However, since $|x_0| \geq h\varepsilon,S_0$ can not be covered by a single ball of type II. $S_0$ can be covered by at least two balls of type II. However this is impossible. \hfill$\Box$ This theorem plays the key role in proving the uniqueness of radial minimizers. Furthermore, it implies that all the zeros of the radial minimizer locate near the singularity $0$ of $\frac{x}{|x|}$, which is not mentioned in [6] when $p=n>2$. Using Theorem \ref{thm3.5} and (\ref{e2.4}), we can see that \begin{equation} |u_{\varepsilon}(x)| \geq \min(\frac{10}{11},1-\eta), \quad x \in B(0,h(\eta)\varepsilon). \label{e3.9} \end{equation} \section{ Proof of Theorem \ref{thm1.2}} Fix $\varepsilon \in (0,1)$. Suppose $u_1(x)=f_1(r)\frac{x}{|x|}$ and $u_2(x)=f_2(r)\frac{x}{|x|}$ are both radial minimizers of $E_{\varepsilon}(u,B)$ on $W$, then they are weak radial solutions of (\ref{e2.1}) (\ref{e2.2}). Thus \begin{align*} \int_B&(|\nabla u_1|^{p-2}\nabla u_1 -|\nabla u_2|^{p-2}\nabla u_2)\nabla \phi dx\\ &=\frac{1}{\varepsilon^p}\int_B [(u_1-u_2)-(u_1|u_1|^2-u_2|u_2|^2)] \phi dx. \end{align*} Taking $\phi=u_1-u_2=(f_1-f_2)\frac{x}{|x|}$, we have \begin{align*} \int_B(&|\nabla u_1|^{p-2}\nabla u_1 -|\nabla u_2|^{p-2}\nabla u_2)\nabla (u_1-u_2)dx\\ =&\frac{1}{\varepsilon^p}\int_B (f_1-f_2)^2dx-\frac{1}{\varepsilon^p}\int_B (f_1-f_2)^2(f_1^2+f_2^2+f_1f_2)dx\\ =&\frac{1}{\varepsilon^p} \int_{B\setminus B(0,h\varepsilon)} (f_1-f_2)^2[1-(f_1^2+f_2^2+f_1f_2)]dx\\ & +\frac{1}{\varepsilon^p}\int_{B(0,h\varepsilon)} (f_1-f_2)^2dx-\frac{1}{\varepsilon^p} \int_{B(0,h\varepsilon)} (f_1-f_2)^2(f_1^2+f_2^2+f_1f_2)dx.\\ \end{align*} Letting $\eta<1-\frac{1}{\sqrt{2}}$ in (\ref{e3.9}), we have $f_1, f_2 \geq 1/\sqrt{2}$, on $B\setminus B(0,h\varepsilon)$ for any given $\varepsilon \in (0,1)$. Hence $$ \int_B(|\nabla u_1|^{p-2}\nabla u_1 -|\nabla u_2|^{p-2}\nabla u_2)\nabla (u_1-u_2)dx \leq \frac{1}{\varepsilon^p} \int_{B(0,h\varepsilon)}(f_1-f_2)^2dx. $$ Applying \cite[eqn.(2.11)]{t1}, we can see that there exists a positive constant $\gamma$ independent of $\varepsilon$ and $h$ such that \begin{equation} \gamma\int_B|\nabla(u_1-u_2)|^2dx \leq \frac{1}{\varepsilon^p}\int_{B(0,h\varepsilon)} (f_1-f_2)^2dx, \label{e4.1} \end{equation} which implies \begin{equation} \int_B|\nabla(f_1-f_2)|^2dx \leq \frac{1}{\gamma\varepsilon^p}\int_{B(0,h\varepsilon)} (f_1-f_2)^2dx. \label{e4.2} \end{equation} Denote $G=B(0,h\varepsilon)$. Applying \cite[Theorem 2.1]{l1}, we have $\|f\|_{\frac{2n}{n-2}} \leq \beta \|\nabla f\|_2$, where $\beta=2(n-1)/(n-2)$. Taking $f=f_1-f_2$ and applying (\ref{e4.2}), we obtain $f(|x|)=0$ as $x \in \partial B$ and $$ [\int_B|f|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{n}} \leq \beta^2 \int_B|\nabla f|^2dx \leq \beta^2 \gamma^{-1} \int_G|f|^2dx \varepsilon^{-p}. $$ Using Holder's inequality, we derive $$ \int_G|f|^2dx \leq |G|^{1-\frac{n-2}{n}} [\int_G|f|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{n}} \leq |B|^{1-\frac{n-2}{n}}h^2 \varepsilon^{2-p}\frac{\beta^2}{\gamma}\int_G|f|^2dx. $$ Hence for any given $\varepsilon \in (0,1)$, \begin{equation} \int_G|f|^2dx \leq C(\beta,|B|,\gamma,\varepsilon) h^2\int_G|f|^2dx. \label{e4.3} \end{equation} Denote $F(\eta)=\int_{B(0,h(\eta)\varepsilon)}|f|^2dx$, then $F(\eta)\geq 0$ and (\ref{e4.3}) implies that \begin{equation} F(\eta)(1-C(\beta,|B|,\gamma,\varepsilon)h^2) \leq 0. \label{e4.4} \end{equation} On the other hand, since $C(\beta,|B|,\gamma,\varepsilon)$ is independent of $\eta$, we may take $0<\eta<1-\frac{1}{\sqrt{2}}$ so small that $h=h(\eta)\leq \lambda 9^N=9^N\frac{\eta}{2C_1}$ (which is implied by (\ref{e3.4})) satisfies $$ 0<1-C(\beta,|B|,\gamma,\varepsilon)h^2 $$ for the fixed $\varepsilon \in (0,1)$, which and (\ref{e4.4}) imply that $F(\eta)=0$. Namely $f=0$ a.e. on $G$, or $$ f_1=f_2, \quad a.e. \quad on \quad B(0,h\varepsilon). $$ Substituting this into (\ref{e4.1}), we know that $u_1-u_2=C$ a.e. on $B$. Noticing the continuity of $u_1,u_2$ which is implied by Proposition \ref{prop2.1}, and $u_1=u_2=x$ on $\partial B$, we can see at last that $$ u_1=u_2,\quad\mbox{on }\overline{B}. $$ \begin{thebibliography}{00} \frenchspacing \bibitem{b1} F. Bethuel, H. Brezis, F. Helein: {\it Ginzburg-Landau Vortices,} Birkhauser. 1994. \bibitem{b2} H. Brezis, F. Merle, T. Riviere: {\it Quantization effects for $-\Delta u =u(1-|u|^2)$ in $\mathbb{R}^2$, } Arch. Rational Mech. Anal., {\bf 126} (1994).35-58. \bibitem{b3} H. Brezis, L. Oswald: {\it Remarks on sublinear elliptic equations, } J. Nonlinear Analysis,{\bf 10} (1986).55-64. \bibitem{c1} Y. Z. Chen, E. DiBenedetto: {\it Boundary estimates for solutions of nonlinear degenerate parabolic systems,} J. Reine Angew. Math. ,{\bf 395} (1989).102-131. \bibitem{f1} P. Fife, L. Peletier: {\it On the location of defects in stationary solution of the Ginzburg-Landau equation,} Quart. Appl. Math. ,{\bf 54} (1996).85-104. \bibitem{h1} M. C. Hong: {\it Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps,} Adv. in Diff. Equa.,{\bf 1} (1996), 611-634. \bibitem{h2} R. M. Herve, M. Herve: {\it Etude qualitative des solutions reelles d'une equation differentielle liee a l'equation de Ginzburg-Landau,} Ann. IHP. Analyse nonLineaire,{\bf 11} (1994),427-440. \bibitem{l1} O.Ladyzhenskaya, N.Uraltseva: {\it Linear and quasilinear elliptic equations,} Acad, Press, NewYork and London, 1968. \bibitem{l2} Y. T. Lei, Z. Q. Wu, H. J. Yuan: {\it Radial minimizers of a Ginzburg-Landau type functional,} Electron. J. Diff. Equs. ,{\bf 1999} (1999), No.30, 1-21. \bibitem{m1} P.Mironescu: {\it On the stability of radial solution of the Ginzburg-Landau equation, } J. Functional Analysis. ,{\bf 130} (1995), 334-344. \bibitem{s1} M.Struwe: {\it On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions, } Diff. and Int. Equs. ,{\bf 7} (1994), 1613-1624. \bibitem{t1} P.Tolksdorff: {\it Everywhere regularity for some quasilinear systems with a lack of ellipticity,} Anna. Math. Pura. Appl. ,{\bf 134} (1983), 241-266. \end{thebibliography} \noindent{\sc Yutian Lei} \\ Mathematics Department\\ SuZhou University\\ Suzhou, Jiangsu, 215006\\ P. R. China \\ e-mail: lythxl@163.com \end{document} \end{document}