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Resolvent kernel for the Kohn Laplacian on
Heisenberg groups *

Neur eddine Askour & Zouhair Mouayn

Abstract

We present a formula that relates the Kohn Laplacian on Heisenberg
groups and the magnetic Laplacian. Then we obtain the resolvent kernel
for the Kohn Laplacian and find its spectral density. We conclude by
obtaining the Green kernel for fractional powers of the Kohn Laplacian.

1 Introduction

The Heisenberg group can be described as the set H,, = R?" x R equipped with
the group law

(@, 1)@y 1) = (e + 2",y + o, t+1 + 2"y — y'2)).
Its infinitesimal generators are the left invariant vector fields

P P P P P
EZ omn TV TR T gy T TR at

which satisfy the canonical relations [Yj, Xj] = 40;,T. The self-adjoint oper-
ators %X 1 and %Yk correspond to the position and momentum operators in
quantum mechanics. One also considers the following combinations of X} and

Yk:

1 0 o = 1 0 0

Zp=—(Xp —1Ys) = — +iZp—, Zp=—-(X V) = —— — 2 —

% 2( K —iY%) 9o —Hz;cat, k 2( & +iYy) 7 T
where 2z, = xi + iyx. The operators Zj,Z; are related to the creation or

annihilation operators. The model for the Kohn Laplacian on the Heisenberg
group is
n
Oy ==Y (ZZk + Z17)
k=1
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which can be written as

n

tL9? ~_ 0 5 0
_2; PN —QZZ(zka—Ek - Z wltog (L)

This operator with D(00,) = C§°(H,,C), the space of complex-valued C°-
functions with a compact support in H,, as its natural regular domain in the
Hilbert space X = L2(H,,,du ® dt), is essentially self-adjoint. Here du and dt
denote respectively the Lebesgue measure on C™ and R. It should be noted that
the operator [, is subelliptic but not elliptic [6, p.374]. Its spectrum in X is
the set [0, +oo[. As it will be shown in lemma 3.1 below, the operator O, is
connected to the magnetic Laplacian

Z 87;] Z 85 (12)

acting on the Hilbert space LQ(C",e"Z“ dp). Here |z|? = (z,2) denotes the
Euclidean norm square and (z,w) = Z?:l zjw; the Hermitian product of C™.

This paper is organized as follows. In section 2 we set some notation for
special functions and state some formulas. In section 3, we give the resolvent of
the Kohn Laplacian [J,. In section 4, we obtain the Green kernel for fractional
powers of [Ji*. In section 5, we give the spectral density of ;. Section 6 will
be the Appendix.

2 Notation and formulas

Here we list some special functions and formulas to be used later. The reader
can proceed to section 3 and refer back to this section as necessary.
The confluent hypergeometric function [10, p.204] is denoted by

I'(c) =T(a+j)a’
F , Cy = ~ -
1 l(a C CE) F(a) JEZ:I F(C"‘j) j'
As in [10, p.264], we define the function
I'(1— I'(c—1
Gla,e,x) = F(<_+)1> 1Py (ac; x>+(§<a))x“ VFi(a—c+1,2-c,) (2.1)

Note note that at ¢ = m € Z,, the second term of (2.1) has a removable
singularity. More precisely,

(-nm = DR -1
dim Gla,e,x) = 70— 1)'F(c—m+ 1){ Z (@ —k)n(m — k) '

W

k=0

—~

a
l

ln:ﬂ—l-\I/( k) — U(m+ k) — Uk + 1)]}, (2.2)

W
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where ¥(z) is the logarithmic derivative of I'(z) and (z); =: z(z + 1) - (x +
j—1). For m = 1, one makes the convention that the first series in the second
term of (2.2) vanishes [10, p.213].

The Whittaker function [10, p.225] is denoted by

Ws.alx )fa:‘”Ze 2G(a76+1 200+ 1, ) (2.3)

The Macdonald functions [10, p.159] are defined as

K ()= 2"

2 sin v

(v (z) = 1,(x)), (2.4)

where T, (x) is the modified Bessel function of indice v given by the series

o0 (%x)u+2m
W)= 2 o 1) (25)
We have also the following formulas for v ¢ Z:

B T (%x)fu+2m 00 (%x)u+2m
Ko (@) = 2sin 1/7r{ mz::o m!T(—v+m+1) 7;) m!l(v+m+1) }’ (26)

K ( )_( )u+1I ( )1 (_)+1V—1 (_l)k(y_k_l)!(z)ﬂcfu

v Ma T ! 2
> %)2k+z/

+(~1) 1;) m[\y(u +k4+1) - U(k+1). (2.7)

For v = 0, we assume that the first series in (2.7) vanishes, see [10, p.159]. The
Laguerre polynomials [7, p.1037] are defined as

LM (z) = Xk: <k+m> i (2.8)

Jj=

3 The resolvent of the operator L],

First, we_establish the connection between the Kohn Laplacian [, and the
operator A given in (1.1). For this, we denote by F the map from L?(H,, du®dt)
to L?(C", du) given by the partial Fourier transform with respect to the variable
t:
Fo(z,A) / e~ Mdt = lim o(z,t)e" M dt.
\/_

P01t <p

considered as the limit in the L?(R)-norm sense.
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Lemma 3.1 For A > 0, the operators L, and A are related by
1 1 ~
T\ o (5.7-'0 Oy —nA) o Ty ™ = 2MA, (3.1)

where Ty : L*(C", dp) — L2(C”,e*|z‘2du) is the map

Ty f(z) =27 "A el f(—=).

z
V22X
Proof Let f(z,t) € D(Op) = C§°(H,) and let g(z,¢) = O f(2,1). i.e.,

z Z 0 0 .0 s 0?
-2 20y GFpee— — )= — 2 2 t
Z azkﬁzk ’;(3’“ 7 om0t ; 2l g (=
(3.2)
Then, applying F to both sides of this equation and using the property

0 f

Flan) (2, 0) = () F () (=),

equation (3.2) becomes

- 9 2\ 2
g(z,\) = 2[— ZaZkaZk—i—)\Z Zh— —zk )—i—)\ Z\zk| JFf(z,A).

k=1

Denoting by F o [, the operator

[ Z Zk62k+ ZZk——Zk +>\22|2k‘}

formula (3.1) follows by a direct computation. O

Theorem 3.2 Let £ € C such that Re(§) < 0. Then, the resolvent operator
(€ —Oy)~ L s given by

(€~ Op) " f(z1) = /H R(E: (2,1), (w, 8)) f(w, 8)dp(w) © ds

where

_2n—1 oo _ _
RE (200), (0.5) = — / P 4 G 2 2z wf)

x e~@lz=vl” ¢og (z(t —5) 4+ 22 Im(z, w))dz  (3.3)
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Proof Let £ € C be such that Re(§) < 0 and f € C§°(H,,,C). Then we need
to solve the equation

Applying the map F to both sides of this equation, we obtain
(E—=Folp)Fg(z,\) =Ff(z,)\) (3.5)

where A is the dual variable of t. Because of lemma 3.1, for A > 0, equation
(3.4) becomes

Tl o 4)\(% - g —A) o ThFyg(z,\) = Ff(z\). (3.6)

Now, for Re(&) < 0, the operator ﬁ -5 A is invertible because ﬁ — 5 does
not belong to the set Z, which is the spectrum of A. Thus, we can write

Fg(z,\) =Ty "o (4/\)*1(% — g —A) Lo IZFf(z, ). (3.7)

On the other hand, for ¢ € C\Z,, we have the following formula, [1, p.693§],

(C=A)"f(z) = —F_"F(—C)/ = G(=¢m, |z = w?) f(w)e " du(w).
(3.8)
Next, after a computation using (3.8), equation (3.7) becomes

4\ 2 4\ 2
x e2MEW) A AP e Ndp(w).  (3.9)

Fg(z,2) = —r—man=2xn—1p( =S | E)/ G4 oz — wf?)

For the case A < 0, it suffices to change the variable z to iZ in (3.5). This yields
(3.5) again with —\ instead of A. Hence, in view of (3.9), we get

Fg(z,A) = —w‘”?"”(—k)"‘lﬂﬁ +3) /<C G(ﬁ ty

x e MW 2 RPN 2 e N)dp(w).  (3.10)

n, —2X\|z — w|?)

In summary, for A # 0, we obtain
Fg(z,A) = : QA (& 2z, w) F f(w, A)dp(w), (3.11)

where

Qu(62 ) =~ G s e

2 2
o« 2z w) = Al |w]? ~[Al|=[?

)y 1, 2|)\HZ - w|2)



6 Resolvent kernel for the Kohn Laplacian EJDE-2002/69

Now, by the Parseval-Plancherel theorem [11, p.39], from (3.11) we get the
integral representation

g(z,t) :% /Z ei/\t( . Qr(& 2z, w)F f(w, /\)du(w))dA
:/C” (% /_O; ez’,\tQ,\(g,z,w)ff(w,A)dA)du(w). (3.12)

On the other hand, square integrability of the function A — e Q(&; z,w) (see
section 6 below) enables us to write

/ T QL (€ 2 w)FF (w, A)dA

— 00

:/Oo (/_O:O eis(t_’\)Qs(g,z7w)ds)f(w,)\)d>\ (3.13)

(see [11, p.49] for the general theory). Hence, by (3.12) and (3.13) one can write
920 = [ B(E (), (0. ) (. () @ )
where

R (210, (0.3) = = / T =N, (€ 2, w)ds.

Finally, a direct computation yields

—gn—l oo € n._,—€& n 9
Rig: (1), (0. 0) = — [ (G DG + G2z —u)

x e slz—ul? cos(s(t — \) + 2sIm(z, w))ds.
This completes the proof of theorem 3.2. &

Remark 3.3 Considering the limit value £ = 0 in (3.3), we obtain the kernel
function

_2n—1r(2) o] e n n
Ro((z,t),(w,A)):TlQ/ S"TIT(G)G (G m, 28]z — wl)
™ 2 0

« 675|27w‘2 COS(S(t _ )\) + 2s Im<z, w})ds (314)

which corresponds to a right inverse of [J,. That is,

0, ' f(zt) = ; —Ro((2,1), (w, 5)) f(w, \)dp(w) © dA .

In other words, —Ro((2,t), (w, A)) is a Green kernel of (. Another Green kernel
for OJy is given by
1

F=—cop
9 nP

2n
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—(n+4)

where p = (t? + |z\4)_Tl and ¢, = n(n + 2) an |212(1 + p(z,)Y) == du(z)dt,
which was obtained by Folland using an analogous fact to ||z||?~" being (a
constant multiple of) the fundamental solution of the Laplacian on R"™ with
source at 0, see [6, theorem 2, p.375].

4 Green kernel for fractional powers of [],

As application of the formula obtained for the resolvent kernel of [y, we give
the Green kernel of the fractional power operator ¢ for a €]0, 1].

Proposition 4.1 Let a €]0,1[. Then the Green kernel of the fractional power
operator L1 is

Hal(2,1), (w,5)) = — = _;:’S_F(():)_ ™) /O " (sinh ) A

l—a+n

A
x ((|]z — w| coth 5)2 +t—s+2Im(z,w))” " 2

t— s+ 2Im(z,w) .

x cos((n + 1 — «) arctan( | |
z—w

anh %))d)\.

Proof Since O, is a positive self-adjoint operator, its resolvent [8, p.21] satis-
fies

[R(=s)|| < - (4.1)

® | =

This estimate enables us to define the fractional powers OF, a €]0, 1[ according
to the formula, [8, p.127],

sin T

+o0o
ag = - / s* " R(—s)0pgds, g € D(0y).
0

Thanks to Kato’s formula [8, pp.123-125], the resolvent operator R, (y) = (v —
D?)_la ar < |argy| < 7, is given by

sin o /°° E*R(=¢)
0

Ru(v) =
) T £20 — ¢~ cos T + 2

de. (4.2)

The action of R, () on a function f € L?(H,,) is

sin oy /°° *R(=€)f(z,t)
T Jo &2 —2¥ycosTa+y

Ro(7)f(2,t) = 5d€, almost every where.
(4.3)

Then the resolvent kernel of [J3" is

: © cap(_g.
It (), (w,5)) = 227 [T ERCECD 0D g0 (0




8 Resolvent kernel for the Kohn Laplacian EJDE-2002/69

The limit value v = 0 in (4.4) gives a Green kernel of I}

sinma [ _
o 1= 10(0; (1), (w, ) = / EOR(—E, (2,1), (w,5)dE,  (45)
0
Using theorem 3.2, I, in (4.5) becomes
727171 : [e'e}
I, = &/ "1 cos(TaU)e*‘/""‘Z*w‘2
Tt 0
([ + DG + B mep)dde, (16)
0 dr 2 TNy TP “ '
where
T=t—s+2Im(z,w), p=|z—w (4.7)
Making the change of variable u = =&, equation (4.6) can be rewritten as
_2n—14—a+1 : [ee]
I, = — S1n7TOé/ 2" "% cos(tx)e” P N p(z)de, (4.8)
ke 0
where -
Nanp(z) = / uw °T'(u + g)G(u + gm; 2zp)du. (4.9)
0

The formula

F(a)G(a,c,w)/Ooo(le)‘)cexp( “T yemragy

er—1

is obtained by combining (2.3) with the integral representation

D(s—v+1)ez®az" 2 W, L-sdiv = / e (et — 1) exp( _al)dt
0

3V—3 et —
(see [4, p.146]. Then, the integral (4.9) becomes

oS B oS 1 pr s
N — o -
e ?) /0 ! </0 (1—eM)n eXlD(1 - e/\)e e 2 dA)du

© e 2p X e
:/0 A= exp(l_e)\x)(/o u” % Mdu)d\

©27"T(1 — ) 2p _
= e )N dA.
/0 (sinh §)" X 1—er )

So, (4.8) becomes

72172(1 o]
I, :17/ "% P cosTx
7" 20(a) Jo

> 1 2p -1+«
X (/0 ( exp(1 _e/\x))\ ab\)dx

sinh %)”

72172(1 o] 1 o1 oo e A
= T — A ( 2"~ %exp(—xp coth =) cos T:cdx> dA.
720 (a) Jo (sinh g)" 0 2

(4.10)
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By using the formula
/ 2V te™ % cos(zy)dr = (v)(a® + y*) ™ 2 cos(v arctan(%))
0

(see [7], p. 490) for v =1 -« +n, a = pcoth§ and y = 7, the fundamental
solution I, in (4.10) becomes

41_0‘F 1-— o )\ )\ l1—a+tn
Ia — _ ( o+ n) / (Sinh_)_n)\a_l((pcoth§)2 +T2>_ 2+
0

2731 (o) 2
T A
x cos ((n + 1 — a) arctan(— tanh 5))d)\.
p
So, the proof of proposition 4.1 is complete. &

Remark 4.2 Proposition 4.1 extends the result obtained by Benson et al in [3,
p.457] by providing the Green kernel of powers O} with 1 <p < n,p € Z,.

5 Spectral density of the operator L],

In this section, we give the spectral density of the Kohn Laplacian [J,. The
extension of [J, given by its adjoint will be also denoted by [J,. The domain
of the extension [, will be denoted by x. This extension [J, admits a spectral
decomposition {E\},. The {E\}, is an increasing family of projectors that

satisfy
1= / dE)

where [ is the identity operator, and [, = ffooo AdE) in the weak sense; that
is, .
Oufg)= [ M(Ef.9)
— 00
for f € x and g € L?(H,,), where (f,g) is the inner product of L?(H,). The
spectral density
dEy
ex = ——
AT
is understood as an operator-valued distribution; i.e., an element of the space
D'(R, L(x, L*(H,))). Here L(x, L?>(H,,)) is the space of bounded operators from
X to L2(H,,).
Proposition 5.1 The spectral density ey = % of Oy is the operator valued
distribution ¢ — (ex, ) from D(R) to L(x, L*(H,)) given by

er o)t = [

Hy

[/OOO e, (2,4), (w, s))ga()\)d)\} F(w, 8)dp(w) © ds
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where
B I &, Az —wf? At —s) + 2Im(z, w)
e(\, (z,t),(w,s))_fT%ZOLj ((2j+n) ) cos( 20 1) )

™ -
ji=

A ey (5.1)
X ——— € g .
(2 +n)ntt

Proof We can write the resolvent kernel of [, given in (3.3), as

R(& (2,1), (w,5))
_2n—1

= 71'"—""%/0 "0 (n(x)G(n(x), n, 2z|z — w[*)e ™ cos(z7)dz  (5.2)

where p , 7 are defined in (4.7) and n(z) = ;—f + 5. Next, using the summation

formula
=1

I'(a)G(a,c,y) = Z T aL?l(y)

(understood in the distributional sense; [1, theroem 3.1]) for a = n(x), c = n
and y = 2zp, we get successively

R(& (2,1), (w, 8))
_2n71 Sl 00 1
= 71—n—+% Z/ l‘nilmL?_l(Qﬂfp)@imp COS(mT)dl'
j=0"0
—on—1 & o0 g ntlyn A o2 A d\
= 1 22 +m) SN WA
-1 [ & N A —p> TA d\
= Lt 2+ i
(5.3)
Setting
e((A (2,1), (w, 5)))
o0
A" A —pA TA
"—1 22+ —) (b4
g Gl G e coslgs) (5.4)

Then, we can write
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The convergence of the series given in (5.4) can be seen as follows. For j
sufficiently large, we have

T
2(2j +n)

A" n—l(

2. S
@ r p)eTEFm cos

| )|

2j+n
A
27 +n

<e(n; A7) LY

p);
where ¢(n; A, 7, p) is a positive constant. And by using the asymptotic formula

n-1, PA n—1
T (——) =0@G"
P = 0"
(see, [9], p.248) the inequality (5.7) becomes

A" 1, A —pA TA 1
n 2(2j+n) — )< : - .
g B G e cosl )l < el AT )
Now, in view of (5.6) for £ € C\R and f,g € L*(H,), we have
(R(&)f,9)
©dA —
o &= AJu, Ju,
On the other hand, recalling the formula, [2, p. 134],
>~ 1
(R(§) [, 9) = — AExS,9).
0o §—A
By uniqueness of the spectral measure, we get
d(E)\fa g)

o (Kxf,9),

where K the operator
Kaf(z:0) = [ eOh(aot) (w5) f(w, s)du(w)ds, f € L2(HL).

Finally, an interpretation argument of the operator K in terms of the operators
valued distribution see [5, p.9] completes the proof. &

6 Appendix

Proposition 6.1 The function A — e Qx(&; z,w) belongs to L?(R,d)), where

3 _ __—non—2|y|n—1 __6 ﬁ __g E _ 2
Q&5 w) =~ "IN + DIG( + 2N — )

2 2
o 2z w) =l |w]? ~[Al|=[?
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To prove this proposition, we need the following lemma.

Lemma 6.2 For A € R, Re(§) < 0, and w # z, we have the following estimates:
(i) For |A| > 0,

n—1
2

—n—Lln_3 —n
QA€ 2 w)| < 7 R2E R [ — WA Ko (A2 - wf?).

» —Re(§)
(ii) For |\| > —>,

Qx(& 2,w)| < T2 AT (E, |2 — w[P)e Il

Proof Let Re(§) < 0 and

£ n =

n
= _— — — - 2 - 2 .
SO =Ty + )Gy + 5 2z — )

This function can be expressed using the kernel @y (; 2z, w) as
S()\) — _7_(_7122—71‘)\'l—ne—2|)\\{z,w>+\)\||w\2+|/\\\z|2Q)\(§-; Z,ﬂ)). (61)

Using the integral representation

400
G(a,c,x) = ! ) / t* 1+t e dt, Re(a) > 0, Re(z) >0
0

I(a)

[9, p.277], S(A\) can be written as

oo — n n
SO :/ t4§‘+§71(1+t)ﬁ+571672‘/\|t‘/27w‘2dt, w2
0

where

—Re(¢) n Re(§) ' n 2
s +5 — 1) In(1+t) —2[A[t|z—w|?).

¢€x)\7’ﬂ(t) = exp(( 4|>\| 2

On the other hand, for ¢t > 0 it follows that

Re(§)  n

(n(1-+8) = I(0) i +

—1)In(t) + (g —1)In(l+1t) < (g — 1) In( + ).
Therefore,

bean(t)dt g/ (t(1+ 1))z~ Le2Rltl=—wl® gy, (6.2)
0
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To compute the integral in (6.2), we make use of the formula

()(%
VT oD

|arg(8)] < m and Re(v) > 0 (see [7, p.322]). With v = n/2, § = 1/2 and
p = 2|\ |z — w|?, we obtain the estimate (i).

/w(2ﬂx+x2)”_16_p”dx ) T2ePPK 1(Bp),
0

For (ii), we proceed as follows. For A # 0 and w # z, we have that

1 [e's)
N / bern (1)t + / bern(t)dt

Then it is easy to see that

/O deam()dt < /0 (b1 + 1) 3 Ldt.

On other hand for [A| > %C(g), we have

° n R(s) 2
[ ocantoin < / (11 + 1)) 31 42wl g
1 1

—Re(§)
4

Consequently for |[A| > , one gets the estimate

(&)

IS S/Ol(t(1+t))%‘1dt+/loo( H1+ 1)) 3 Let T el gy

=Ch g |z—w2 < +00. (6.3)
Then, in view of (6.1) and (6.3) we get estimate (ii).
Proof of proposition 6.1 First, we shall prove that the function A — ¢(\) =

nglKan(\)\Hz —w|?) is L%-integrable for |\| < %e(&)' We will discuss two
cases.

Case 251 ¢ Z,: in view of (2.6) we have
0 1 TN & (g)”T*l+2k(|)\|)n—1+2k
A
PN = gsmukgo k—251+1) & KT+ 51 +1) )

where p = |z—w|?. It is not difficult to show uniform convergence of the involved
¢ Thus the function p(A) is continuous on the compact
set Be = {A, |A] < 2@} consequently, o()) is L2-Integrable on Be.

series for |\| <
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Case 51 € Z,: by (2.7) we can write

¢»=e>zbmeM|2m%§>
k(n— 1_
% Dk D
1 not 2, (2)%k4n—l n—1
+5(= Zkf]H oy WG ke D)+ R DI

k=0
(6.4)

Note that for n # 1 the last series converges uniformly in the compact set B
where we have use the asymptotic behavior of the function ¥(z) as |z| — +o0,
[9, p-18],

1 1 n 1 1 n O( 1 )
2z 1222 12024 25226 287"

Then, using the same argument as in the first case, we deduce that p(\) is
L?-integrable on the set Be. For n =1, (6.4) can be rewritten as

p

©(\) = Io(p|A]) In( p' ' +Z 2 2\1/ (k+ 1)\
k=0

which is also L*-integrable on Be. Thus, we have
/ QA (€ 2 w)|2dA < +oo.
<=5
By (ii) of lemma (6.1) we get that
|Qx(&: 2, w)[PdA < +oo.
/|A|> e

Therefore,

/Do |QA(&; 2, w) [PdN < +00.
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