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A spectral mapping theorem for evolution

semigroups on asymptotically almost periodic

functions defined on the half line ∗

Constantin Buşe

Abstract

We prove that the evolution semigroup on AAP0(R+, X) is strongly
continuous. Then we prove some properties of the generator of this evolu-
tion semigroup and show some applications in the theory of inequalities.

1 Introduction

Let X be a complex Banach space and L(X) the Banach algebra of all linear
and bounded operators acting on X. The norms in X and in L(X) will be
denoted by ‖ · ‖. Let A be a linear and bounded operator acting on X. We
consider the system

u̇(t) = Au(t) t ≥ 0 (1.1)

and the Cauchy problem

u̇(t) = Au(t) + eiµtx t ≥ 0
u(0) = 0

(1.2)

where µ ∈ R and x ∈ X. It is well-known [12, 2] that the system (1.1) is
exponentially stable; that is, there exist the constants N > 0 and ν > 0 such
that

‖etA‖ ≤ Ne−νt for all t ≥ 0,

if and only if the solution of the Cauchy problem (1.2) is bounded for every
µ ∈ R and any x ∈ X, i.e., if and only if

sup
t>0
‖
∫ t

0

e−iµξeξAxdξ‖ <∞, ∀µ ∈ R and ∀x ∈ X.

For unbounded linear operators, the above result is false, see e.g. [28, Example
3.1]. However some weaker results, described as follows, hold.
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2 A spectral mapping theorem EJDE–2002/70

Let T = {T (t) : t ≥ 0} ⊂ L(X) be a strongly continuous semigroup on X
and A : D(A) ⊂ X → X its infinitesimal generator. It is well-known that the
Cauchy problem

u̇(t) = Au(t)
u(0) = x ∈ X

(1.3)

is well-posed and the mild solution of (1.3) is defined by

u(t) = T (t)x, t ≥ 0. (1.4)

For well-posedness of equations we refer the reader to [29, 30] and the references
therein. The mild solution of the non-homogeneous Cauchy problem

u̇(t) = Au(t) + f(t) t ≥ 0
u(0) = x

(1.5)

is

uf (t) = T (t)x+
∫ t

0

T (t− ξ)f(ξ)dξ, t ≥ 0. (1.6)

Particularly for x = 0, y ∈ X, µ ∈ R and f(t) := eiµty, the solution uf (·) can
be written as

uµy(t) =
∫ t

0

T (t− ξ)eiµξydξ = eiµt
∫ t

0

e−iµξT (ξ)ydξ.

In [28], it is shown that if uµy(·) is bounded on R+ for every µ ∈ R and all
y ∈ X then

σ(A) ⊂ {λ ∈ C : Re(λ) < 0}. (1.7)

Conversely if (1.7) holds and T is uniformly bounded (i.e. supt≥0 ‖T (t)‖ <∞)
then uµy(·) is bounded on R+ for every µ ∈ R and all y ∈ X. This last result is
proven in [4, Proposition 2]. Another result of this type is due to Arendt and
Batty in [1].

For x ∈ X, Let ω(x) the infimum of all ω ∈ R for which there exists Mω > 0
such that ‖T (t)x‖ ≤ Mωe

ωt for all t ≥ 0. Let ω1(T) the supremum of all ω(x)
with x ∈ D(A). Frank Neubrander [25] proved that ω1(T) is the infimum of all
ω ∈ R with the property that

{Re(λ) > ω} ⊂ ρ(A) and there is R(λ,A)x = lim
t→∞

∫ t

0

e−λsT (s)xds

for every λ ∈ C with Re(λ) > ω and any x ∈ X. Neerven [23, 24] has shown
that if

sup
µ∈R

sup
t>0
‖
∫ t

0

e−iµξT (ξ)ydξ‖ = M(x) <∞, ∀µ ∈ R and ∀x ∈ X (1.8)

then ω1(T) < 0; that is, if (1.8) holds then every solution of the system (1.1),
starting in D(A), is exponentially stable.
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However, there can be solutions of the system (1.1) starting in X \ D(A)
which are not exponentially stable, even if (1.8) holds, see e.g. [6, Example 2].
Moreover, in [23, Corollary 5 and the proof of Theorem 4] it is shown that if (1.8)
holds then the operator resolvent R(λ,A) exists and the function λ 7→ R(λ,A)
is uniformly bounded on {Re(λ) > 0}. Combining this fact with the Gearhart’s
famous stability theorem [14] (see also Herbst [15], Howland [16], Huang [17],
Prüss [27] Weiss [32]) follows that if X is a complex Hilbert space and (1.8)
holds then

ω0(T) := lim
t→∞

ln ‖T (t)‖
t

is negative, i.e. in these conditions every solution of the system (1.1) is ex-
ponentially stable. This and related results are explicitly presented in a very
recent paper of Phong [31]. It seems that the last stability result, having (1.8)
as hypothesis, cannot be extended for periodic evolution families, but a weaker
result holds, see Theorem 2.4 below.

For a well-posed, non-autonomous Cauchy problem

u̇(t) = A(t)u(t) t ≥ 0
u(0) = x ∈ X

(1.9)

with (possibly unbounded) linear operators A(t), the mild solutions lead to an
evolution family on R+, U = {U(t, s) : t ≥ s ≥ 0} ⊂ L(X); that is:

(e1) U(t, r) = U(t, s)U(s, r) for all t ≥ s ≥ r ≥ 0 and U(t, t) = I for any t ≥ 0,
(I is the identity operator in L(X))

(e2) The maps (t, s) 7→ U(t, s)x : {(t, s) : t ≥ s ≥ 0} → X are continuous for
each x ∈ X.

An evolution family is exponentially bounded if there exist ω ∈ R and Mω > 0
such that

‖U(t, s)‖ ≤Mωe
ω(t−s), ∀t ≥ s ≥ 0. (1.10)

An evolution family is exponentially stable if (1.10) holds with some negative ω.
If the evolution family U verifies the condition

(e3) U(t, s) = U(t− s, 0) for all t ≥ s ≥ 0,

then the family T = {U(t, 0) : t ≥ 0} ⊂ L(X) is a strongly continuous semigroup
on X. In this case the estimate (1.10) holds automatically.

If the Cauchy problem (1.9) is q-periodic, i.e. A(t+q) = A(t) for t ≥ 0, then
the corresponding evolution family U is q-periodic, that is,

(e4) U(t+ q, s+ q) = U(t, s) for all t ≥ s ≥ 0.

Every q-periodic evolution family is exponentially bounded [9, Lemma 4.1]. For
a locally Bochner integrable function f : R+ → X, the mild solution of the
well-posed, inhomogeneous Cauchy problem

u̇(t) = A(t)u(t) + f(t), t ≥ 0
u(0) = x

(1.11)
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is

uf (t, x) := U(t, 0)x+
∫ t

0

U(t, τ)f(τ)dτ, (t ≥ 0). (1.12)

We also consider evolution families on the line. We shall use the same notation
as in the case of evolution families on R+ with the mention that variables s
and t can take any value in R. For more details about the strongly continuous
semigroups and evolution families we refer to [13].

We recall the notion of evolution semigroup. For more details we refer the
reader to [10, 11] and references therein. Let us consider the following spaces:

• BUC(R, X) is the space of all X-valued, bounded and uniformly contin-
uous functions on the real line endowed with the sup-norm.

• C0(R, X) is the subspace of BUC(R, X) consisting of all functions f such
that lim|t|→∞ f(t) = 0.

• AP (R, X) is the space of all almost periodic functions, that is, the smallest
closed subspace of BUC(R, X) containing the functions of the form, [20],

t 7→ eiµtx, µ ∈ R and x ∈ X .

Let U = {U(t, s) : t ≥ s ∈ R} be a strongly continuous and exponentially
bounded evolution family of bounded linear operators on X. For every t ≥ 0
and each F ∈ C0(R, X) the function

s 7→ (T (t)F )(s) := U(s, s− t)F (s− t) : R→ X (1.13)

belongs to C0(R, X) and the family T = {T (t) : t ≥ 0} is a strongly continuous
semigroup on C0(R, X), [19]. If U = {U(t, s) : t ≥ s ∈ R} is a q-periodic
evolution family, t ≥ 0, and G ∈ AP (R, X) then the function given by

s 7→ (S(t)G)(s) := U(s, s− t)G(s− t) : R→ X, (1.14)

belongs to AP (R, X) and the one-parameter family S = {S(t) : t ≥ 0} is a
strongly continuous semigroup on AP (R, X), [21]. T and S are called evolu-
tion semigroups on C0(R, X) and AP (R, X), respectively. In the following we
will consider spaces consisting of functions defined on R+. AP (R+, X) and
C0(R+, X) are the spaces consisting of all functions g : R+ → X for which there
exists G ∈ AP (R, X), respectively G ∈ C0(R, X), such that G(s) = g(s) for all
s ≥ 0. C00(R+, X) is the subspace of C0(R+, X) consisting of all functions f for
which f(0) = 0, and AAP0(R+, X) is the space of all X-valued functions h such
that h(0) = 0 and there exist f ∈ C0(R+, X) and g ∈ AP (R+, X) such that
h = f + g. For each h ∈ AAP0(R+, X) and every t ≥ 0 consider the function
T (t)h given by

[T (t)h](s) =
{
U(s, s− t)h(s− t), s ≥ t
0, 0 ≤ s < t.

(1.15)



EJDE–2002/70 Constantin Buşe 5

2 Results

Lemma 2.1 Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup and
A : D(A) ⊂ X → X its infinitesimal generator. If T is uniformly stable, i.e.
there exists a positive constant M such that supt≥0 ‖T (t)‖ = M <∞, then

‖Ax‖2 ≤ 4M2‖A2x‖‖x‖, for all x ∈ D(A2).

The proof of this lemma can be found in [18].

Lemma 2.2 The semigroup T = {T (t) : t ≥ 0} described in (1.15) is defined
on AAP0(R+, X) and is strongly continuous. This semigroup is called evolution
semigroup associated to U on the space AAP0(R+, X).

Proof. Let h = f + g with f ∈ C0(R+, X) and g ∈ AP (R+, X) such that
h(0) = 0 and let F ∈ C0(R, X) and G ∈ AP (R, X) such that F (s) = f(s) and
G(s) = g(s) for all s ≥ 0. It is easy to see that for each t ≥ 0, we have

T (t)h = (1[0,∞))S(t)G) + (1[t,∞)T (t)f − 1[0,t)S(t)G).

Here {S(t)}t≥0 is the evolution semigroup on AP (R, X) given in (1.14) and 1J
is the characteristic function of the interval J . If we put g1 := 1[0,∞)S(t)G
and f1 := 1[t,∞)T (t)f − 1[0,t]S(t)G then f1 ∈ C0(R+, X), g1 ∈ AP (R+, X) and
(f1 + g1)(0) = 0, so T (t) is defined on AAP0(R+, X) for every t ≥ 0. Moreover,
for all h ∈ AAP0(R+, X), we have:

sup
s≥0
‖T (t)h− h‖ ≤ sup

s≥t
‖(T (t)h− h)(s)‖+ sup

s∈[0,t]

‖(T (t)h− h)(s)‖

≤ sup
s≥t
‖(S(t)G−G)(s)‖+ sup

s≥t
‖(T (t)F − F )(s)‖+ sup

s∈[0,t]

‖h(s)‖

≤‖S(t)G−G‖AP (R,X) + ‖T (t)F − F‖C0(R,X) + sup
s∈[0,t]

‖h(s)‖.

Thus ‖T (t)h−h‖AAP0(R+,X) tends to 0 as t→ 0; i.e., the semigroup T is strongly
continuous. �

Lemma 2.3 Let U = {U(t, s) : (t, s) ∈ ∆} be a q-periodic evolution family of
bounded linear operators on X, T = {T (t) : t ≥ 0} the evolution semigroup
associated to U on the space AAP0(R+, X), given in (1.15), and (A,D(A)) its
infinitesimal generator. Let u, f in AAP0(R+, X). The following two statements
are equivalent.

1. u ∈ D(A) and Au = −f

2. u(t) =
∫ t

0
U(t, s)f(s)ds for all t ≥ 0.

The proof of this lemma follows from lemma 2.2 using an argument given in [22,
lemma 1.1].

By P 0
q (R+, X) we will denote the space of all q-periodic, X-valued functions

f on R+, such that f(0) = 0.
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Theorem 2.4 Let U ,T and (A,D(A)) as in Lemma 2.3. The following five
statements are equivalent.

(i) U is uniformly exponentially stable

(ii) A is an invertible operator

(iii) For every f ∈ AAP0(R+, X) the function t 7→ uf (t, 0) =
∫ t

0
U(t, s)f(s)ds

belongs to AAP0(R+, X)

(iv) For every f ∈ AAP0(R+, X) the function uf (·, 0) is bounded on R+

(v) For every f ∈ P 0
q (R+, X) and µ ∈ R the function t 7→

∫ t
0
U(t, s)e−iµsf(s)ds

is bounded on R+.

Proof. (i)⇒ (ii) Let X := AAP0(R+, X). Then

‖T (t)‖L(X ) = sup{sup
s≥t
‖U(s, s− t)h(s− t)‖ : ‖h‖X = 1}

≤ sup{Mωe
ωt sup

s≥t
‖h(s− t)‖ : ‖h‖X = 1} ≤Mωe

ωt,

for all t ≥ 0. Thus ω0(T) := limt→∞
ln(‖T (t)‖)

t ≤ ω < 0 and by the general
theory of linear semigroups [26, p. 4-5] it follows that 0 ∈ ρ(A); that is, A is an
invertible operator.
(ii)⇒ (iii) follows from Lemma 2.3.
(iii)⇒ (iv) and (iv)⇒ (v) are obvious.
(v)⇒ (i) follows as in [5, Theorem 4]; see also [8, Theorem 2.1], or [21]. �

Remarks: 1. Let A(·) be a q-periodic operator-valued function on R+ and
{U(t, s) : t ≥ s ≥ 0} the q-periodic evolution family associated to it. Since
the function t 7→

∫ t
0
U(t, s)f(s)ds is the mild solution of the abstract Cauchy

problem
u̇(t) = A(t)u(t) + f(t) (t ≥ 0)

u(0) = 0,
(2.1)

the equivalence between (i) and (iii) from Theorem 2.4 can be interpreted in
the following way:

The system u̇(t) = A(t)u(t) is exponentially stable if and only if
for every input f ∈ AAP0(R+, X) the mild solution of the Cauchy
problem (2.1), belongs to AAP0(R+, X).

2. A related result on the individual stability, where the space AAP (R+, X) is
also involved, can be found in [3, Proposition 2.9].
3. If every solution of the q-periodic homogeneous system v̇(t) = A(t)v(t),
t ∈ R+ is exponentially stable then for each f ∈ P 0

q (R+, X) and every µ ∈ R
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there is a mild solution u(·) of the Cauchy problem

v̇(t) = A(t)v(t) + eiµtf(t), (t ≥ 0)
v(0) = x

such that the function t 7→ e−iµtu(t) is q-periodic on R+. Indeed the family
U = {U(t, s) : t ≥ s ≥ 0} is exponentially stable, so the resolvent set ρ(V )
contains all complex number z with |z| ≥ 1. Here V := U(q, 0) denotes the
monodromy operator associated to U . Then for each µ ∈ R we have that
eiµq ∈ ρ(V ). Let y :=

∫ q
0
U(q, τ)eiµτ and x = (eiµq − V )−1(y). Using (1.12)

follows that

u(t) = U(t, 0)x+
∫ t

0

U(t, τ)eiµτf(τ)dτ.

Thus

u(t+ q) = U(t, 0)V x+ U(t, 0)y + eiµq
∫ t

q

U(t, τ)eiµτf(τ)dτ.

In the end we obtain that e−iµqu(t + q) = u(t) for every t ≥ 0, and now it is
easy to see that the function e−iµ·u(·) is q-periodic.
4. The proof of Theorem 2.4 depends of Lemma 2.3 which also depends of the
strongly continuity of the evolution semigroup T, defined in (1.15). Thus the
condition, h(0) = 0, which appears in the definition of the space AP0(R+, X),
is essentially in the proof of Theorem 2.4, because it is involved in the proof of
Lemma 2.2. �

An immediate consequence of Theorem 2.4 is the spectral mapping theorem
for the evolution semigroup T on AAP0(R+, X). Similar results, but for the
evolution semigroup on C00(R+, X), can be found in [22, Theorem 2.2, Corollary
2.4]. Recall that σ(L) denotes the spectrum of the linear operator L acting on
X, and ρ(L) := C \ σ(L) is the resolvent set of L. The spectral radius of L is
r(L) := sup{|λ| : λ ∈ σ(L)} and the spectral bound is s(L) := sup{Re(λ) : λ ∈
σ(L)}.

Theorem 2.5 Let U be a q-periodic evolution family of bounded linear operators
on the Banach space X. Then the evolution semigroup T on AAP0(R+, X)
satisfies the spectral mapping theorem, as follows:

etσ(A) = σ(T (t)) \ {0}, t ≥ 0.

Moreover, σ(A) = {λ ∈ C : Re(λ) ≤ s(A)} and

σ(T (t)) = {λ ∈ C : |λ| ≤ r(T (t))}, for all t > 0.

The proof of this theorem follows from Theorem 2.4 using an argument given
in [22, Corollary 2.4].

Another application of Theorem 2.4 is the following inequality of Landau’s
type. For more details about theorems of this form, see [7].
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Theorem 2.6 Let U = {U(t, s) : t ≥ s ≥ 0} be a q-periodic evolution family of
bounded linear operators acting on X and let f ∈ X := AAP0(R+, X). Suppose
that the following two conditions are satisfied:

(i) uf (·, 0) =
∫ ·

0
U(·, s)f(s)ds belongs to X

(ii) vf (·) :=
∫ ·

0
(· − s)U(·, s)f(s)ds belongs to X .

If sup{‖U(t, s)‖ : t ≥ s ≥ 0} = M <∞ then

‖uf (·, 0)‖2X ≤ 4M2‖f‖X · ‖vf (·)‖X . (2.2)

Proof. Let T the evolution semigroup associated to U on the space X and
(A,D(A)) its infinitesimal generator. From Lemma 2.3 results that uf (·, 0)
belongs to D(A) and Auf (·, 0) = −f . Using Fubini’s theorem it is easy to see
that vf (t) =

∫ t
0
U(t, r)uf (r, 0)dr for every t ≥ 0. Then from Lemma 2.3 follows

that vf (·) ∈ D(A2) and A2vf (·) = f . Now the inequality (2.2) can be easily
obtained from Lemma 2.1. �

For U(t, s) = I, Theorem 2.6 can be generalized in the following sense.

Proposition 2.7 Let f be a X-valued, locally Bochner integrable function on
R+ and g, h the mappings on R+ given by

g(t) :=
∫ t

0

f(s)ds and h(t) =
∫ t

0

(t− s)f(s)ds.

If sup{|f(t)| : t ≥ 0} = M1 <∞ and sup{|h(t)| : t ≥ 0} = M3 <∞ then

|g(r)|2 ≤ 4M1M3, ∀r ≥ 0. (2.3)

Proof For every t ≥ 0 and any X-valued function F on R+ let us consider the
function Ft given by

Ft(s) =
{
F (s− t), s ≥ t
0, 0 ≤ s < t.

With this notation, we have

ht(r)− h(r) + tg(r) =
∫ t

0

(t− s)fs(r)ds, ∀t ≥ 0, and ∀r ≥ 0. (2.4)

Passing to the norm in this equation, we obtain

‖g(r)‖ ≤ 2M3

t
+
tM1

2
, ∀t > 0. (2.5)

If M1 = 0 or M3 = 0 then g = 0 and (2.3) holds with equality. If M1 > 0 and
M3 > 0 then (2.3) can be obtained from (2.5) with t =

√
4M3/M1. �
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Remark. If f is a continuous function then Proposition 2.7 follows directly
and easily by [18], because g′(t) = f(t) and h′(t) = g(t) for all t ≥ 0. The
author thanks to the referee who brought to the author’s attention about this
fact.
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[7] C. Buşe, S. S. Dragomir, A Kallman-Rota Inequality for Evolution Semi-
groups, in press.
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