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Stability of solutions for nonlinear

nonautonomous differential-delay

equations in Hilbert spaces ∗

Michael I. Gil’

Abstract

We consider nonlinear non-autonomous differential-delay equations hav-
ing separated linear and sublinear parts. We assume that the Green func-
tions of the linear part is selfadjoint and positive definite to obtain solution
estimates, explicit conditions for the absolute stability, and input-output
stability. Moreover, it is shown that the suggested conditions characterize
the equations that satisfy the generalized Aizerman - Myshkis hypothesis.

1 Introduction and definitions

Let H be a real separable Hilbert space with a scalar product (., .), the norm
‖.‖H = (., .)1/2, and the unit operator I, cf. [1]. As usually, L2(ω,H) is the
space of H-valued functions defined on a set ω ⊆ R and equipped with the norm

‖w‖L2(ω) = [
∫
ω

‖w(x)‖2Hdx]1/2 (w ∈ L2(ω,H)).

Put R+ = [0,∞) and Rh = [−h,∞) for a positive h < ∞. Let A(t) and
B(t) (t ∈ R+) be variable selfadjoint generally unbounded operators in H with
the dense constant domains DA, DB , respectively. Besides, DA ⊆ DB . Let
µ be a nondecreasing left-continuous bounded scalar function defined on [0, h]
with the property µ(0) = 0. In the present paper we establish solution esti-
mates, explicit conditions for the absolute stability and input-output one of the
equation

u̇+A(t)u+B(t)
∫ h

0

u(t− τ)dµ(τ) = F (t, u(.)) (t > 0, u̇ = du/dt) (1.1)

where F : R+ × L2(Rh,H)→ H is a causal nonlinearity in the sense that

F (t, u1(.)) = F (t, u2(.)) if u1(τ) = u2(τ)
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for all −h ≤ τ ≤ t and u1, u2 ∈ L2(Rh,H). Take the initial condition

u(t) = Φ(t) (−h ≤ t ≤ 0) (1.2)

with a given function Φ : [−h, 0]→ DA continuous in the norm of H.
Note that in the available literature, the stability of proble (1.1), (1.2) is

investigated mainly under the condition A(t) ≡ A. In addition, it is assumed
that the terms containing delays are bounded, cf. [13, 16]. In the papers [7, 10]
the equations with variable operators were investigated, but the terms contain-
ing delays are assumed to be bounded. About linear non-autonomous equations
with unbounded terms containing delays see [17, p. 184] and references given
therein. The very interesting papers [3] and [4] on nonlinear non-autonomous
equations should be noted. But the nonlinearities considered in these papers are
different from the nonlinearities considered in this paper. Moreover, to the best
of our knowledge, the absolute and input-output stability of abstract nonlinear
differential equations were not investigated in the available literature although
these notions are very important in theory of systems, cf. [18].

In addition, in Section 5 below we separate the linear parts of equations of
the type (1.1) that satisfy the generalized Aizerman - Myshkis hypothesis.

Definition 1.1 Let Es (s ∈ R) be an orthogonal resolution of the identity in
H. We will say that Es is a simple resolution of identity (s.r.i.), if there is a
(generating) vector g ∈ H, such that for any v ∈ H,

v =
∫ ∞
−∞

ṽsdEsg,

where ṽs is an (Esg, g)-measurable scalar-valued function. Besides vs will be
called the Eg-coordinate function of v.

Similarly, let Es be a s.r.i. and W be a normal operator defined by

W =
∫ ∞
−∞

w̃sdEs

where w̃s is an E-measurable scalar-valued function. Then w̃s will be called the
E-coordinate function of operator W .

As it is well-known [1, Section 83, Theorem 2], any selfadjoint operator with
the simple spectrum has a s.r.i. Note also that we write that w̃s is an E-
measurable, since the measurability of w̃s with respect to the measure (Esg, g)
does not depend on a generating vector g [1, Section 83].

2 Statement of the main result

It is assumed that

A(t) =
∫ ∞
−∞

as(t)dEs and B(t) =
∫ ∞
−∞

bs(t)dEs, (2.1)
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where Es is a s.r.i. and as(t), bs(t) are real functions continuous in t ∈ R+ for
almost all s ∈ R and Es-measurable in s for all t ≥ 0. In addition, as(t) is
positive. Moreover, there are nonnegative constants q and l0, such that

‖F (., v(.))‖L2(R+) ≤ q‖v‖L2(Rh) + l0 (v ∈ L2(Rh,H)). (2.2)

Let us consider the equation

ẇ(t) +A(t)w(t) +B(t)
∫ h

0

w(t− τ)dµ(τ) = 0 (t > t1 ≥ 0) (2.3)

Below we will check that under conditions pointed below, problem (2.3), (1.2)
has a solution φ differentiable almost everywhere on R+. Moreover, we will
show that (2.3) has the Green function G(t, t1) (t, t1 ≥ −h). That is G is the
operator-valued function whose values are bounded in H operators satisfying
(2.3) almost everywhere on R+ and the initial conditions

G(t1, t1) = I and G(t, t1) = 0 (t1 − h ≤ t < t1, −h ≤ t1 <∞). (2.4)

Let G be the Green function of equation (2.3) and φ be a solution of problem
(1.4), (1.2). Then a continuous function u defined on RH , satisfying the equa-
tion

u(t) = φ(t) +
∫ t

0

G(t, s)F (s, u(.))ds (t ≥ 0) (2.5)

and condition (1.2) will be called the mild solution of problem (1.1), (1.2). The
existence of mild solutions is assumed. About various existence results see
[16, 10], etc.

Finally denote by γE the set of points of the growth of Es and put

a−s = inf
t≥0

as(t) and b−s = inf
t≥0

bs(t).

Now we are in a position to formulate the main result of the paper

Theorem 2.1 Let the conditions (2.1), (2.2),

inf
s∈γE

a−s + µ(h) b−s > q (2.6)

and

β := sup
s∈γE

µ(h) |b−s |
a−s

< 1 (2.7)

hold. In addition, let the Green function G(t, t1) to equation (2.3) be positive
definite for all t ≥ t1 ≥ 0. Then there is a constant c1 > 0, independent of the
initial conditions, such that any solution u of problem (1.1), (1.2) satisfis the
inequality

‖u‖L2(R+) ≤ c1(‖B0Φ‖L2[−h,0] + ‖Φ(0)‖H + l0), (2.8)

where
B0 =

∫ ∞
−∞

b−s dEs.
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The proof of this theorem is divided into a series of lemmas presented in the
next two sections.

We also will check that the Green function to equation (2.3) is positive
definite, provided

e h sup
s∈γE ,t≥0

bs(t)
∫ h

0

exp
[ ∫ t

t−τ
as(t1)dt1

]
dµ(τ) < 1 (2.9)

(see Corollary 3.5 below). Now Theorem 2.1 implies

Corollary 2.2 Let conditions (2.1), (2.2), (2.6), (2.8) and (2.9) hold. Then
inequality (2.8) is valid for any solution u(t) to problem (1.1), (1.2).

3 Preliminaries

Let σh be the σ-algebra of the Borel sets of [0, h] and ν(t, .), ν+(t, .) nonnegative
measure defined on σh and continuously dependent on t ≥ 0. Consider the
equations

ẋ(t) +
∫ h

0

x(t− τ)ν(t, dτ) = 0 (t ≥ 0) (3.1)

and

ẏ(t) +
∫ h

0

y(t− τ)ν+(t, dτ) = 0 (t ≥ 0). (3.2)

Denote by Gν(t, t1) and G+
ν (t, t1) the Green function to equations (3.1) and

(3.2), respectively. So they are the solutions of (3.1) and (3.2), respectively,
with the initial conditions

G+
ν (t1, t1) = Gν(t1, t1) = 1, Gν(t, t1) = G+

ν (t, t1) = 0, (t1 − h ≤ t < t1).
(3.3)

Lemma 3.1 Let G+
ν (t, t1) ≥ 0 (t > t1 ≥ 0) and

ν+(t, τ) ≥ ν(t, τ) (τ ∈ σh, t ≥ 0).

Then
Gν(t, t1) ≥ G+

ν (t, t1) ≥ 0 (t > t1 ≥ 0). (3.4)

Proof. From (3.1) with x(t) = Gν(t, 0) it follows

ẋ(t) +
∫ h

0

x(t− τ)ν+(t, dτ) = f(t) (3.5)

where

f(t) =
∫ h

0

x(t− τ)(ν+(t, dτ)− ν(t, dτ)).
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According to the initial conditions (3.3), for a sufficiently small t0 > h,

x(t) ≥ 0 and f(t) ≥ 0 (0 ≤ t ≤ t0).

Hence, by virtue of the Variation of Constants Formula, we get

x(t) = G+
ν (t, 0) +

∫ t

0

G+
ν (t, s)f(s)ds ≥ G+

ν (t, 0) (0 ≤ t ≤ t0).

Extending this inequality to the whole half-line, we arrive at the required result
if t1 = 0. Similarly inequality (3.4) can be proved in the general case. As
claimed. Q.E.D.

It is simple to check that according to (2.1), equation (2.3) has Green’s
function represented by

G(t, t1) =
∫ ∞
−∞

Gs(t, t1)dEs

where Gs(t, t1) is Green’s function to the equation

u̇(t) + as(t)u(t) + bs(t)
∫ h

0

u(t− τ)dµ (t ≥ 0). (3.6)

Due to the previous lemma we have

Corollary 3.2 Let Gs(t, t1) ≥ 0. Then

Gs(t, t1) ≤Ws(t− t1) (t ≥ t1 ≥ 0),

where Ws(t) is the Green function to the equation

u̇(t) + a−s u(t) + b−s

∫ h

0

u(t− τ)dµ = 0 (t ≥ 0). (3.7)

To establish the positivity conditions, let us consider the equation

u̇(t) + c0u(t− h) = 0 (t ≥ 0) (3.8)

with a real constant c0.

Lemma 3.3 Let the condition ehc0 < 1 hold. Then the Green function to
equation (3.8) is nonnegative.

For the proof see for instance [8]. Due to Lemmas 3.1 and 3.3 we can assert
that the Green function to the equation

u̇(t) + b(t)
∫ h

0

u(t− τ)dµ(τ) = 0 ( t ≥ 0)

with a bounded real function b(t) is positive, provided

eh sup
t
b(t)µ(h) < 1. (3.9)
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Now let us consider the equation

u̇(t) + a(t)u(t) + b(t)
∫ h

0

u(t− τ)dµ(τ) = 0 ( t ≥ 0). (3.10)

with bounded real functions a(t), b(t). Substituting in this equation the equality,

u(t) = v(t)exp
[
−
∫ t

0

a(t1)dt1
]

we have the equation

v̇(t) + b(t)
∫ h

0

exp
[ ∫ t

t−τ
a(t1)dt1

]
v(t− τ)dµ(τ) = 0.

Now (3.9) and Lemma 3.1 imply

Lemma 3.4 Let the condition

e h sup
t≥0

b(t)
∫ h

0

exp
[ ∫ t

t−τ
a(t1)dt1

]
dµ(τ) < 1

hold. Then the Green function to equation (3.10) is nonnegative.

Since the Green function Gs(t, t1) to equation (3.6) is the Es-coordinate function
to the Green function Gs(t, t1) to equation (2.3), the latter result implies

Corollary 3.5 Let condition (2.9) hold. Then the Green function to equation
(2.3) is positive definite.

4 Proof of Theorem 2.1

Consider the equation

v̇(t) +A(t)v(t) +B(t)
∫ h

0

v(t− τ)dµ(τ) = f(t) (4.1)

with a given f ∈ L2(R+,H). Since Es is a m.r.i., there is a vector g ∈ H with
‖g‖ = 1, such that function f and the solution w to equation (4.1) with the zero
initial condition can be represented as

f(t) =
∫ ∞
−∞

f̃s(t)dEsg (4.2)

and
w(t) =

∫ ∞
−∞

ys(t)dEsg. (4.3)

Here f̃s(t) and ys(t) are the Eg-coordinate functions of f(t) and w(t), respec-
tively.
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Lemma 4.1 Let f be defined by (4.2) and∫ ∞
0

|f̃s(t)|2dt ≤ c0 (s ∈ γE)

where constant c0 does not depend on s. Then

‖f‖2L2(R+) ≤ c0.

Proof. We have∫ ∞
0

‖f(t)‖2Hdt =
∫ ∞

0

∫ ∞
−∞
|f̃(t)|2d(Esg, g) dt =

∫ ∞
−∞

∫ ∞
0

|f̃s(t)|2dt d(Esg, g) ≤ c0
∫ ∞
−∞

d (Esg, g) = c0.

As claimed. Q.E.D.
Due to (2.1) and (4.3)

ẏs(t) + as(t)ys(t) + bs(t)
∫ h

0

ys(t− τ)dµ(τ) = f̃s(t).

Hence, under the zero initial condition we have

ys(t) =
∫ t

0

Gs(t, t1)f̃s(t1)dτ.

If Gs(t, t1) ≥ 0, due to Corollary 3.2,

|ys(t)| ≤
∫ t

0

Ws(t− t1)|f̃s(t1)|dτ.

Consequently, ∫ ∞
0

|ys(t)|2dt ≤
∫ ∞

0

|f̃s(t)|2dt[
∫ ∞

0

Ws(t)dt]2.

Clearly the Laplace transform to Ws(t) is∫ ∞
0

e−λtWs(t)dt = (λ+ a−s + b−s

∫ h

0

e−λτdµ(τ))−1.

Hence due to (2.6)

θµ := sup
s∈γE

∫ ∞
0

Ws(t)dt = sup
s∈γE

(a−s +
∫ h

0

dµ(τ)b−s )−1 < 1/q <∞. (4.4)

Thus, ∫ ∞
0

|ys(t)|2dt ≤ θ2
µ

∫ ∞
0

|f̃s(t)|2dt.
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Now Lemma 4.1 implies

‖w‖L2(R+) ≤ θµ‖f‖L2(R+).

But due to (2.5)

w(t) =
∫ t

0

G(t, t1)f(t1)dt1.

Thus, we have proved

Lemma 4.2 Under the condition (2.6), let G be positive definite. Then

‖
∫ t

0

G(t, t1)f(t1)dt1‖L2(R+) ≤ θµ‖f‖L2(R+),

where θµ is defined by (4.4).

We need also the following

Lemma 4.3 Under the condition (2.7), let the Green function Ws to the scalar
equation (3.7) be non-negative and

c := inf
s∈γE

(as + µ(h)bs) > 0. (4.5)

Then
sup
s∈γE

∫ ∞
0

W 2
s (t)dt <∞.

Proof. If bs > 0, then from (3.7) and Ws(t) ≥ 0 it follows that Ẇs(t) ≤ 0. So
Ws(t) ≤ 1 (t ≥ 0). Hence due to (4.4),∫ ∞

0

W 2
s (t)dt ≤

∫ ∞
0

Ws(t)dt ≤ θµ.

So in this case the result is proved. Let now bs < 0. Recall that the Laplace
transform to Ws(t) is

ks(λ) :=
(
λ+ a−s + b−s

∫ h

0

e−λτdµ(τ)
)−1

.

For all real ω,

|iω + a−s + b−s

∫ h

0

e−iωτdµ(τ)| ≥ [ω2 + (a−s )2]1/2 − |b−s |µ(h)

≥ a−s − |b−s |µ(h) ≥ c.

In addition,

|iω + a−s + b−s

∫ h

0

e−iωτdµ(τ)| ≥ [ω2 + (a−s )2]1/2 − |b−s |µ(h) ≥
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[ω2 + (a−s )2]1/2 − asβ ≥ c3|ω| (|ω| ≥ c).

Hence,

sup
s

∫ −c
−∞

+
∫ ∞
c

|ks(iω)|2dω ≤ 2c−1
3

∫ ∞
c

ω−2dω <∞

and ∫ c

−c
|ks(iω)|2dω ≤ 2c c−2 = 2c−1.

This result and the Parseval equality prove the required result. Q.E.D.

Lemma 4.4 Under the conditions (4.5), (2.7), let the Green function Ws to the
scalar equation (3.7) be non-negative. Then any solution ỹs of problem (3.7),

ỹs(t) = Φ̃s(t) (−h ≤ t ≤ 0) (4.6)

with a continuous Φ̃s, satisfies the inequality

‖ỹs‖L2(R+) ≤ c4(|bs|‖Φ̃s‖L2[−h,0] + |Φ̃s(0)|)

where constant c4 does not depend on s ∈ R.

Proof. Take into account that

ỹs(t) = Ws(t)Φ̃s(0) + bs

∫ h

0

∫ 0

−τ
Ws(t− τ − z)Φ̃s(τ)dz dτ,

see [11, Section 1.6], [6, Section 8.2]. Since

ỹs(t) = Ws(t)Φ̃s(0) +
∫ h

0

∫ 0

−τ
Ws(t− τ − z)bsΦ̃s(τ)dz dτ, (4.7)

thanks to the previous lemma we have the required result. Q.E.D.

Lemma 4.5 Under condition (2.7) and (4.5), let the Green function Gs to the
scalar equation (3.6) be non-negative. Then any solution φs of problem (3.6),
(4.6) satisfies the inequality

‖φs‖L2(R+) ≤ c1[|Φ̃s(0)|+ |bs|‖Φ̃s‖L2[−h,0]].

Proof. Let ỹs be a solution of problem (3.7), (4.6). Since delays do net de-
pend on time, if Φ̃s is non-negative, then φs is positive due to the integral
representations of solutions [12, p.140]. Repeating the arguments of Lemma 3.1
we have φs(t) ≤ ỹs(t). If −Φ̃s is non-negative, then −φs is non-negative and
|φs(t)| ≤ |ỹs(t)|. Since the initial function is a difference of two non-negative
functions, we easily have |φs(t)| ≤ 2|ỹs(t)|. Now the required result is due to
the previous lemma. Q.E.D.
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It is simple to check that according to (2.1), problem (2.3), (1.2) has a
solution φ represented by

φ(t) =
∫ ∞
−∞

φ̃s(t)dEs

where φ̃s(t) is a solution to problem (3.6), (4.6). Due to the previous lemma
and Lemma 4.1 we have

‖φ‖L2(R+) ≤ c1(‖Φ(0)‖H + ‖B0Φ‖L2[−h,0]). (4.8)

Proof of Theorem 2.1 Due to (2.5) and (4.8), Lemma 4.2 and condition
(2.2) yield

‖u‖L2(R+) ≤ c1(‖Φ(0)‖H + ‖B0Φ‖L2[−h,0]) + θµ‖F‖L2(R+)

≤ c1(‖B0Φ‖L2[−h,0] + ‖Φ(0)‖H) + θµ(q‖u‖L2(R+) + l0).

Now condition (2.5) implies the required result. Q.E.D.

5 Absolute stability and the generalized
Aizerman-Myshkis hypothesis

Definition 5.1 The zero solution of equation (1.1) is said to be absolutely stable
in the class of nonlinearities satisfying the condition

‖F (., u(.))‖L2(R+) ≤ q‖u‖L2(Rh) (5.1)

if there exists a positive constant c1 independent of the specific form of function
F (but dependent on q), such that the inequality

‖u‖L2(R+) ≤ c1(‖Φ(0)‖H + ‖B0Φ‖L2[−h,0])

holds for any solution u of (1.1) with the initial condition (1.2).

Let a, b, c be an n × n-matrix, a column-matrix and a row-matrix, respec-
tively. In 1949 M. A. Aizerman conjectured the following hypothesis: for the ab-
solute stability of the zero solution of the equation ẋ = A0x+bf(cx) in the class
of nonlinearities f : R1 → R1, satisfying 0 ≤ f(s)/s ≤ q (q = const > 0, s ∈
R1, s 6= 0) it is necessary and sufficient that the linear equation ẋ = ax+ q1bcx
be asymptotically stable for any q1 ∈ [0, q] [2]. These hypothesis caused the great
interest among the specialists. Counterexamples were set up that demonstrated
it was not, in general, true, (see [15], [18], and references therein). Therefore,
the following problem arose: to find the class of systems that satisfy Aizerman’s
hypothesis. The author showed that any system satisfies Aizerman hypothesis
if its impulse function is non-negative [5]. The similar result was proved for
multivariable systems and distributed ones, cf. [6]. On the other hand, A.D.
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Myshkis [14] pointed out at the importance of consideration of the generalized
Aizerman problem for retarded systems. The problem pointed by A.D. Myshkis
was considered in [8] and [9]. In the present paper we will consider the following
generalization of the Aizerman problem:

Put

A0 =
∫ ∞
−∞

a−s dEs.

Problem 1: To separate a class of equations (1.1), such that the asymptotic
stability of the linear equations

u̇+A0u+B0

∫ h

0

u(t− τ)dµ(τ) = q̃u (5.2)

with some q̃ ∈ [0, q] provides the absolute stability of equation (1.1) in the class
of nonlinearities (5.1).

Theorem 2.1 with l0 = 0 implies

Theorem 5.2 Let conditions (2.1), (2.6) and (2.7) hold. In addition, let the
Green function to equation (2.3) be positive definite. Then the zero solution to
equation (1.1) is absolutely stable in the class of nonlinearities (5.1).

Let us check that Theorem 5.2 separates a class of nonlinearities satisfying Prob-
lem 1. To this end we will show that, if the Green function is positive definite,
the stability of equation (5.2) with q̃ = q implies condition (2.6). Indeed, let v
be a solution of (5.2). Then

v(t) =
∫ ∞

0

vs(t)dPsg,

where vs(t) is the Eg-coordinate function of v(t). According to (2.1) and (5.2)
vs satisfies the equation

v̇s(t) + a−s vs(t) + b−s

∫ h

0

vs(t− τ)dµ = qv(t).

Since equation (5.2) is assumed to be asymptotically stable, the roots of the
function

λ+ a−s + b−s

∫ h

0

e−λτdµ− q

are in the open left half-plane. So

−q + iω + a−s + b−s

∫ h

0

e−iωτdµ 6= 0

for all ω ∈ R. Hence, with ω = 0 we get (2.6), as claimed.
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6 Input-output stability

Let us consider the equation

u̇+A(t)u+B(t)
∫ h

0

u(t− τ)dµ(τ) = Ψ(t, u(.), ζ(.)) (t ≥ 0) (6.1)

where ζ : R+ → H is a given function (input), Ψ : R+×L2(Rh,H)×L2(R+,H)→
H is a causal nonlinearity in the sense that

Ψ(t, u1(.), ζ) = Ψ(t, u2(.), ζ) if u1(τ) = u2(τ)

for all
τ ≤ t, ζ ∈ L2(R+,H) and u1, u2 ∈ L2(Rh,H).

Definition 6.1 We will say that equation (6.1) is L2-input-output stable, if for
any ε > 0, there is a δ > 0, such that ‖ζ‖L2(R+) ≤ δ implies ‖u‖L2(R+) ≤ ε for
any solution u of (6.1) under the zero initial condition u(t) = 0 (t ≤ 0).

Theorem 6.2 Let the conditions (2.1), (2.6), (2.7) and

‖Ψ(., v(.), ζ)‖L2(R+) ≤ q‖v‖L2(Rh) + µ‖ζ‖L2(R+) + l0

(v ∈ L2(Rh,H), ζ ∈ L2(R+,H), µ = const > 0), (6.2)

hold. In addition, let the Green function to equation (2.3) be positive definite.
Then equation (6.1) is L2-input-output stable. Moreover, there is a constant
c1 > 0, such that

‖u‖L2(R+) ≤ c1(‖ζ‖L2(R+) + l0)

for any solution u of (6.1) with the zero initial condition.

Indeed, condition (6.2) implies inequality (2.2) with ‖ζ‖L2(R+) + l0 instead of
l0. Now the result is due to Theorem 2.1.

7 Example

First note that condition (5.1) holds, in particular, if F (t, u(.)) = F0(u(t), u(t−
h)) where F0 : H2 → H is a function satisfying

‖F (z1, z2)‖H ≤ q0‖z0‖H + q1‖z1‖H (q0, q1 = const; z0, z1 ∈ H). (7.1)

Indeed, in this case

‖F0(u(t), u(t− h))‖L2(R+) ≤ q0‖u‖L2(R+) + q1‖u(t− h)‖L2(R+) ≤

(q0 + q1)‖u‖L2(Rh). (7.2)

So condition (3.1) holds with q = q0 + q1.
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Let us consider the equation

∂u(t, x)
∂t

= g(t)
∂2u(t, x)
∂x2

− c(t)∂
2u(t− h, x)

∂x2
+ F1(x, u(t, x), u(t− h, x))

(0 < x < 1, t ≥ 0) (7.3)

where g(t), c(t) are continuous bounded positive functions, F1 is a scalar con-
tinuous function defined on [0, 1]× R2 and having the property

|F1(x, z0, z1)| ≤ q0|z0|+ q1|z1| (x ∈ [0, 1], z0, z1 ∈ R). (7.4)

According to (7.2), condition (7.4) implies (5.1) with q = q0 + q1.
Take some selfadjoint boundary conditions. Let S be the operator defined

by Su = −d2u/dx2 (0 < x < 1) with the taken boundary conditions and the
positive eigenvalues λk (k = 1, 2, ...) numerated in the increasing order with
the multiplicities taken into account. Then (7.1) can be written as (1.1) with
A(t) = g(t)S,B(t) = −c(t)S and

as(t) ≡ ak(t) = g(t)λk, bs(t) ≡ bk(t) = −c(t)λk.

So
a−s ≡ a−k = λk inf

t≥0
g(t); b−s ≡ b−k = −λk sup

t≥0
c(t).

Then condition (2.6) takes the form

λ1(inf
t≥0

g(t)− sup
t≥0

c(t)) > q. (7.5)

Condition (2.7) is fulfilled, provided for a β < 1,

β inf
t≥0

g(t) ≥ sup
t≥0

c(t). (7.6)

Condition (2.9) is always holds. Due to Theorem 2.1, under conditions (7.5)-
(7.6), any solution to equation (7.3) is in L2(R+,H), provided condition (7.4)
holds. Moreover, due to Theorem 5.2, the zero solution to equation (7.3) is
absolutely stable in the class of nonlinearities (7.4).

In particular, if we take the Dirichlet boundary conditions u(t, 0) = u(t, 1) =
0 (t ≥ 0), then λk = π2k2 (k = 1, 2, ...).
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[4] Făsangová, E., Prüss, J. (1999) Evolution equations with dissipation of
memory type, Topics in Nonlinear Analysis, Birkhäuser, Basel, 213-250.
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