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Almost periodic solutions of semilinear equations

with analytic semigroups in Banach spaces ∗

Mohamed Bahaj & Omar Sidki

Abstract

We establish the existence and uniqueness of almost periodic solutions
of a class of semilinear equations having analytic semigroups. Our basic
tool in this paper is the use of fractional powers of operators.

1 Introduction

The existence of almost periodic solutions of abstract differential equations has
been considered in several works; see for example [1, 2, 4, 7, 11, 12, 13, 14,
15] and reference listed therein. There is also an extensive literature for the
same question in semilinear equations. Most of these works are concerned with
equation

x′(t) +Ax(t) = f(t, x(t)), (1.1)

where f is uniformly almost periodic and −A is the infinitesimal generator of a
C0−semigroup [3, 13, 14, 15]. Ballotti, Goldstein and Parrott [4] gave necessary
and sufficient conditions for the existence of almost periodic solutions of the
equation

x′(t) = A(t)x(t),

where A(t) is the generator of a C0 semigroup on a Banach space. These au-
thors used the mean ergodic theorem. Zaidman [12] proved the existence and
uniqueness of an almost periodic mild solution of the inhomogeneous equation

x′(t) +Ax(t) = g(t), (1.2)

where −A is the infinitesimal generator of a C0 semigroup S(t) satisfying the
exponential stability, and g is almost periodic function from R into X. In
this case, the solution is x(t) =

∫ t
−∞ S(t − σ)g(σ)dσ. When A generates a C0

semigroup S(t) satisfying the exponential stability and f is uniformly Lipschitz
continuous with a Lipschitz constant small enough, existence and uniqueness of
an almost periodic mild solution of (1.1) was proved in [13].
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In this paper, we consider the semilinear equation (1.1) when −A is the in-
finitesimal generator of an analytic C0 semigroup S(t) satisfying the exponential
stability. We investigate whether or not the classical solution inherits uniform
almost periodicity from f . We proposed a new method for proving existence
whose main component is the use of fractional powers of operators. More pre-
cisely, we assume that the function f : R×Xα → X satisfies the hypothesis:

(F) There are numbers L ≥ 0 and 0 ≤ θ ≤ 1 such that |f(t1, x1)− f(t2, x2)| ≤
L(|t1 − t2|θ + |x1 − x2|α) for all (t1, x1) (t2, x2) in R×Xα,

where X is a real or complex Banach space with norm | · |, Aα is the fractional
power, and Xα is the Banach space D(Aα) endowed with the norm |x|α = |Aαx|.
We prove first that the map

Tϕ(t) =
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ

is a strict contraction. Then we prove the existence of an almost periodic clas-
sical solution over R of (1.1). See Theorem 3.1 below. Our main theorem com-
plements the results in [13] by considering almost periodic classical solutions
instead of almost periodic mild solutions.

Our work is organized as follows. Section 2 is devoted to a review of some
results on fractional powers of operators and almost periodic functions with
values in a Banach space. In section 3, we state and prove our main result. The
last section is devoted to giving an example of a function satisfying hypothesis
(F).

2 Preliminary results

Throughout this work, we use the following notation: X denotes a real or com-
plex Banach space endowed with the norm | · | and L(X) stands for the Banach
algebra of bounded linear operators defined on X. For A a linear operator with
domain D(A), we denote by R(A) the range of A.

Fractional powers of operators

We start by a brief outline of the theory of fractional powers as developed in
[6, 10]. Let −A is the infinitesimal generator of an analytic semigroup in a
Banach space and 0 ∈ ρ(A). For α > 0 we define the fractional power A−α by

A−α =
1

Γ(α)

∫ ∞
0

tα−1S(t)dt

Since A−α is one to one, Aα = (A−α)−1.
For 0 < α ≤ 1, Aα is a closed linear operator whose domain D(Aα) ⊃ D(A)

is dense in X. The closedness of Aα implies that D(Aα) endowed with the graph
norm

|x|D(A) = |x|+ |Aαx|, x ∈ D(Aα)
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is a Banach space. Since 0 ∈ ρ(A), Aα is invertible, and its graph norm is
equivalent to the norm |x|α = |Aαx|. Thus D(Aα) equipped with the norm | · |α
is a Banach space which we denote Xα.

Lemma 2.1 Let −A be the infinitesimal generator of an analytic semigroup
S(t). If 0 ∈ ρ(A) then

(a) S(t) : X → D(Aα) for every t > 0 and α ≥ 0

(b) For every x ∈ D(Aα), we have S(t)Aαx = AαS(t)x

(c) For every t > 0 the operator AαS(t) is bounded and |AαS(t)|L(X) ≤
Mαt

−αe−δt

(d) For 0 < α ≤ 1 and x ∈ D(Aα), we have |S(t)x− x| ≤ Cαtα|Aαx|.

For more details, see [10, section 2.6].

Almost periodic functions in Banach spaces

The theory of almost periodic functions with values in a Banach space was
developed by H. Bohr, S. Bochner, J. von Neumann, and others; cf., e.g., [1, 5].
From their results, we will mention several results which will be used in this
work.

Let Cb(R, X) denote the usual Banach space of bounded continuous functions
from R into X under the supremum norm | · |∞. Given a function f : R → X
and ω ∈ R, we define the ω-translate of f as fω(t) = f(t + ω), t ∈ R. We will
denote by H(f) = {fω : ω ∈ R} the set of all translates of f .

Definition. (Bochner’s characterization of almost periodicity) A function f ∈
Cb(R, X) is said to be almost periodic if and only if H(f) is relatively compact
in Cb(R, X).

Of course, almost periodic functions can as well be characterized in terms of
relatively dense sets in R of τ -almost periods.

Definition. A function f : R→ X is called almost periodic if

(i) f is continuous, and

(ii) for each ε > 0 there exists l(ε) > 0, such that every interval I of length
l(ε) contains a number τ such that |f(t+ τ)− f(t)| < ε for all t ∈ R.

Let Y denote a Banach space and Ω an open subset of Y .
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Definition. A continuous function f : R× Ω→ X is called uniformly almost
periodic if for every ε > 0 and every compact set K ⊂ Ω there exists a relatively
dense set Pε in R such that |f(t + τ, x)− f(t, x)| ≤ ε for all t ∈ R, τ ∈ Pε and
all y ∈ K.

The following is essential for our results and is proven in [11, Theorem I.2.7].

Lemma 2.2 Let f : R×Ω→ X be uniformly almost periodic and y : R→ Ω be
an almost periodic function such that R(y) ⊂ Ω, then the function t→ f(t, y(t))
also is almost periodic.

We are now in position to state and prove the main result of this paper.

3 Main Result

Definition. A function x : [0, T [→ X is a (classical) solution of (1.1) on [0, T [
if x is continuous on [0, T [, continuously differentiable on ]0, T [, x(t) ∈ D(A) for
0 < t < T and (1.1) is satisfied.

Definition. A continuous solution x of the integral equation

x(t) = S(t− t0)x(t0) +
∫ t

t0

S(t− σ)f(σ, x(σ))dσ (3.1)

will be called a mild solution of (1.1).

Remark. When A generates a semigroup with negative exponent, it is easy
to see that if x(.) is a bounded mild solution of (1.1) on R. Then we can take
the limit as t0 → −∞ on the right-hand of (3.1) to obtain

x(t) =
∫ t

−∞
S(t− σ)f(σ, x(σ))dσ . (3.2)

Conversely, if x(.) is a bounded continuous function and (3.2) is verified, then
x(.) is a mild solution of (1.1).

The main result of this paper is the following theorem.

Theorem 3.1 Let −A be the infinitesimal generator of an analytic semigroup
{S(t)}t≥0 satisfying |S(t)|L(X) ≤ M exp(βt), for all t > 0 (β < 0). If f :
R×X → X is uniformly almost periodic and f satisfies the assumption (F) Then
for L sufficiently small enough, there exists one and only one almost periodic
solution over R of the semilinear equation (1.1).

Remark. Assumption (F) is commonly used for this type of equations, as seen
in [9, 10]).

In the proof of our main result, we will need the following technical lemma.

Lemma 3.2 If g : R → X is almost periodic and locally Hölder continuous,
then there exists one and only one almost periodic (classical) solution over R of
the equation (1.2). The solution is x(t) =

∫ t
−∞ S(t− σ)g(σ)dσ.
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Proof. In [12], it is proved the existence of the almost periodic mild solution
of (1.2). It is known, see [10], that in the case of Hölder continuity of g and if
A generates an analytic semigroup, then the mild solution is a classical solution
of the differential equation (1.2). �

We define the set

AP (X) = {ϕ : R→ X, ϕ is almost periodic }

with the usual supremum norm over R which we denote by | · |∞. On the set
AP (X), we define a mapping

Tϕ(t) =
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ (3.3)

First, we show that T is well defined. Let ϕ ∈ AP (X), using a standard
properties of the almost-periodicity, we have

N = sup
t∈R
|f(t, A−αϕ(t))| <∞.

by Lemma 2.1.c, we have

|Tϕ(t)| ≤MαN

∫ t

−∞
(t− σ)−α exp(−δ(t− σ))dσ.

With the change variable s = t− σ, we obtain

|Tϕ(t)| ≤MαN

∫ +∞

0

s−α exp(−δs)ds

which shows that Tϕ exists.

Lemma 3.3 The operator T is well defined, and maps AP (X) into itself.

Proof. For ϕ ∈ AP (X), it follows from Lemma 2.2 that t→ f(t, A−αϕ(t)) is
almost periodic. Hence, for each ε > 0 there exists a set Pε relatively dense in
R such that

|f(t+ τ,A−αϕ(t+ τ))− f(t, A−αϕ(t))| ≤ ε
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for all t ∈ R and τ ∈ Pε. Therefore, the map T defined by (3.3) satisfies

|Tϕ(t+ τ)− Tϕ(t)|

=
∣∣∣ ∫ t+τ

−∞
AαS(t+ τ − σ)f(σ,A−αϕ(σ))dσ

−
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ

∣∣∣
=
∣∣∣ ∫ t

−∞
AαS(t− σ)f(σ + τ,A−αϕ(σ + τ))dσ

−
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ

∣∣∣
≤
∫ t

−∞
|AαS(t− σ)|L(X)|f(σ + τ,A−αϕ(σ + τ))− f(σ,A−αϕ(σ))|dσ

≤εMα

∫ t

−∞
(t− σ)−α exp(−δ(t− σ))dσ

Which shows that the function Tϕ also is almost periodic and that T : AP (X)→
AP (X). �

Proof of Theorem 3.1 Consider the mapping from the Banach space AP (X)
into itself defined by

Tϕ = ψ(t) =
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ.

We will show that T has a fixed point. Let ϕ1, ϕ2 ∈ AP (X). Then

|Tϕ1(t)−Tϕ2(t)| ≤
∫ t

−∞
|AαS(t−σ)|L(X)|f(σ,A−αϕ1(σ))−f(σ,A−αϕ2(σ))|dσ.

From assumption (F), we have

|Tϕ1(t)− Tϕ2(t)| ≤L|ϕ1 − ϕ2|∞
∫ t

−∞
|AαS(t− σ)|L(X)dσ

≤L|ϕ1 − ϕ2|∞
∫ t

−∞
(t− σ)−α exp(−δ(t− σ))dσ

and by the change of variable s = t− σ, we have

|Tϕ1 − Tϕ2|∞ ≤LMα|ϕ1 − ϕ2|∞
∫ +∞

0

s−αe−δsds

=LMαδ
αΓ(1− α)|ϕ1 − ϕ2|∞,

where Γ(.) is the classical gamma function. We use the well known identity

Γ(α)Γ(1− α) =
π

sinπα
for 0 < α < 1.
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Then, we can deduce that T is a strict contraction, provided L is sufficiently
small, L < sinπα

α
Γ(α)
Mαδα

. By the contraction mapping theorem there exists ϕ ∈
AP (X) such that

ϕ =
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ. (3.4)

Since Aα is closed,

ϕ = Aα
∫ t

−∞
S(t− σ)f(σ,A−αϕ(σ))dσ. (3.5)

Applying the operator A−α on both sides of (3.5),

A−αϕ =
∫ t

−∞
S(t− σ)f(σ,A−αϕ(σ))dσ. (3.6)

Next, we show that t → f(t, A−αϕ(t)) is Hölder continuous on R. To this end
we show first that the solution ϕ of (3.6) is Hölder continuous on R. By Lemma
2.1.d We note that for every β satisfying 0 < β < 1−α and for every h > 0, we
have

|(S(h)− I)AαS(t− σ)| ≤ Cβhβ |Aα+βS(t− σ)| (3.7)

and

|ϕ(t+ h)− ϕ(t)| ≤
∣∣∣ ∫ t

−∞
(S(h)− I)AαS(t− σ)f(σ,A−αϕ(σ))dσ

∣∣∣
+
∣∣∣ ∫ t+h

t

AαS(t+ h− σ)f(σ,A−αϕ(σ))dσ
∣∣∣ (3.8)

Let K = A−αϕ(R) and N = sup(t,x)∈R×K |f(t, x)|. Clearly K is compact. Using
Lemma 2.1.c and (3.7) we can estimate each of the terms of (3.8) separately:

∣∣∣ ∫ t

−∞
(S(h)− I)AαS(t− σ)f(σ,A−αϕ(σ))dσ

∣∣∣
≤Mα+βNCβh

β

∫ t

−∞
(t− σ)−(α+β) exp(−δ(t− σ)) dσ.

By Lemma 2.1.c,∣∣∣ ∫ t+h

t

AαS(t+ h− σ)f(σ,A−αϕ(σ))dσ
∣∣∣ ≤MαN

∫ t+h

t

(t+ h− σ)−αdσ

≤MαN
h1−α

1− α
.

Combining (3.10) with these estimates, it follows that there is a constant C such
that

|ϕ(t+ h)− ϕ(t)| ≤ Chβ
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and therefore ϕ is Hölder continuous on R.
Finally, it remains to proved that t→ f(t, A−αϕ(t)) is Hölder continuous on

R. From assumption (F ) we have

|f(t, A−αϕ(t))− f(s,A−αϕ(s))| ≤ L
(
|t− s|θ + |ϕ(t)− ϕ(s)|

)
;

therefore, t → f(t, A−αϕ(t)) is Hölder continuous on R. Let ϕ be the solution
of (3.4) and consider the equation

dx(t)
dt

+Ax(t) = f(t, A−αϕ(t)). (3.9)

From Lemma 3.2 this equation has a unique solution given by

ψ(t) =
∫ t

−∞
S(t− σ)f(σ,A−αϕ(σ))dσ. (3.10)

Moreover, we have ψ(t) ∈ D(A) for all t ∈ R and a fortiori ψ(t) ∈ D(Aα).
Applying the operator Aα on both sides of (3.10), we have

Aαψ(t) =
∫ t

−∞
AαS(t− σ)f(σ,A−αϕ(σ))dσ = ϕ(t) (3.11)

From (3.9) and (3.11) we readily see that ψ(t) = A−αϕ(t) is solution of (1.1).
The uniqueness of ψ follows easily from the uniqueness of the solution of (3.4)
and (3.9). Therefore, the proof of Theorem 3.1 is complete. �

4 Example

Let X = L2((0, 1);R) and

Au = −u′′ with u ∈ D(A) = {u ∈ H1
0 ((0, 1);R);u′′ ∈ X}. (4.1)

Then A is self-adjoint, with compact resolvent and is the infinitesimal generator
of an analytic semigroup S(t). We take α = 1/2, that isX1/2 = (D(A1/2), |·|1/2).
Define the function f : R×X1/2 → X, by f(t, u) = h(t)g(u′) for each t ∈ R and
u ∈ X1/2, where h : R→ R is almost periodic in R and there exist k1 > 0 and
θ ∈]0, 1[ such that

|h(t)− h(s)| ≤ k1|t− s|θ, for all t, s ∈ R. (4.2)

and g : X → X is Lipschitz continuous on X. Concrete example of the function
g are

g(u) = sin(u), g(u) = ku, g(u) = arctan(u)

We give first some known results for the operators A and A1/2 defined by (4.1).
Let u ∈ D(A) and λ ∈ R, such that Au = −u′′ = λu; that is,

u′′ + λu = 0 (4.3)
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We have 〈Au, u〉 = 〈λu, u〉; that is,

〈−u′′, u〉 = |u′|2L2 = λ|u|2L2

so λ ∈ R∗+. The solutions of (4.3) have the form

u(x) = C cos(
√
λx) +D sin(

√
λx)

we have u(0) = u(1), so, C = 0 and
√
λ = nπ, n ∈ N∗. Put λn = n2π2. The

solutions of equation (4.3) are

un(x) = D sin(
√
λnx), n ∈ N∗.

We have 〈un, um〉 = 0, for n 6= m and 〈un, un〉 = 1. So D =
√

2 and

un(x) =
√

2 sin(
√
λnx).

For u ∈ D(A), there exists a sequence of reals (αn) such that

u(x) =
∑
n∈N∗

αnun(x),∑
n∈N∗

(αn)2 < +∞,
∑
n∈N∗

(λn)2(αn)2 < +∞

We have
A1/2u(x) =

∑
n∈N∗

√
λnαnun(x)

with u ∈ D(A1/2); that is,
∑
n∈N∗(αn)2 < +∞ and

∑
n∈N∗ λn(αn)2 < +∞.

We show now that f satisfies the hypothesis (F). In fact, for t1, t2 ∈ R and
u1, u2 ∈ X1/2, we have

f(t1, u1)− f(t2, u2) =h(t1)g(u′1)− h(t2)g(u′2)
=[h(t1)− h(t2)]g(u′1) + h(t2)[g(u′1)− g(u′2)]

So,

|f(t1, u1)− f(t2, u2)|L2 ≤|h(t1)− h(t2)||g(u′1)|L2 + |h(t2)||g(u′1)− g(u′2)|L2

≤|g|∞|h(t1)− h(t2)|+ |g|Lip|h(t2)||u′1 − u′2|L2 .
(4.4)

Since h is almost periodic, there exists k2 > 0, such that

|h(t2)| ≤ k2 (4.5)

Therefore, from (4.2), (4.4), (4.5), and the fact that g(u′) is Lipschitz on X1/2

(see for instance [8, p. 75]), we have

|f(t1, u1)− f(t2, u2)|X ≤k1|g|∞|t1 − t2|θ + k2|g|Lip|u1 − u2|1/2
≤L(|t1 − t2|θ + |u1 − u2|1/2).

Therefore, f satisfies the hypothesis (F), with L = max(k1|g|∞, k2|g|Lip).
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