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STABILITY OF THE INTERFACE BETWEEN TWO
IMMISCIBLE FLUIDS IN POROUS MEDIA

CERASELA I. CALUGARU, DAN-GABRIEL CALUGARU,

JEAN-MARIE CROLET, & MICHEL PANFILOV

Abstract. A generalized model has been recently proposed in [3] to describe

deformations of the mobile interface separating two immiscible and compress-
ible fluids in a deformable porous medium. This paper deals with a few ap-

plications of this model in realistic situations where it can be supposed that

gravity perturbations are propagating much slower than elastic perturbations.
Among these applications, one can include the classical well-known case of

groundwater flow with free surface, but also more complex phenomena, as

gravitational instability with finger growth.

1. Introduction

Evolution of the interface between two immiscible fluids is one of the more com-
plicated problem in mathematical analysis. It is usually described by a system of
partial differential equations which are true on either side of the interface. The
closure of the system is assured by some dynamic and kinetic conditions on the
interface. The principal difficulty of this kind of problem is to transform such
a system into an explicit closed differential equation which governs the interface
movement.

For instance, if we deal with two superposed fluids and if h(x1, x2; t) denotes the
thickness of the lower fluid, then the problem is to deduce the closed differential
equation for the function h(x1, x2; t) (here x1, x2 are the coordinates in horizontal
plane, t is the time variable and z = h(x1, x2; t) is the equation of the interface
considered as a mobile surface).

In natural gas-oil reservoirs, such a model is basic to describe behavior of the
stratified pair ”gas-oil” or ”oil-water”. Indeed, before any recovery, the natural
non perturbed system is generally a porous medium composed of three superposed
layers (gas, oil and water, in downward direction). The pumping of oil leads to
an ascent of water from below or/and to an overlapping of the oil layer by broken
gas which is coming from above. Then, for an optimized recovery, it is absolutely
necessary to have a good modelling of the evolution of both interfaces (gas-oil and
oil-water).
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Explicit differential equations describing the evolution of such an interface have
been already obtained for the case when the viscosity of one of the two fluids can
be neglected, as for instance in the case of water-air flow [10] in the framework of
shallow water theory, or in the case of the groundwater flow in unconfined aquifers
[1], [2], [4], [5], [7]. Whitham [10] has considered the case where the viscous forces
can be neglected for both fluids, but this situation is rarely encountered in porous
media. When both fluids are viscous, some explicit equations were deduced in [9].

In all previous studies, some hypotheses (as vanishing of vertical flow velocity
(gravity equilibrium condition), constant horizontal flow velocity along z, or steady-
state flow) are imposed. Such assumptions seem to be reasonable if the interface
deformation is rather small, if the boundary is free and if the transition phenomena
are not taken into account, but become excessively strong in the case of two-liquids
flow.

A new model has been recently proposed in [3] for two viscous fluids in porous
media. It generalizes previous models by removing the classical condition of gravity
equilibrium and by considering a non-stationary flow (the compressibility of the
fluids and of the porous medium is not neglected). Instead of previous hypotheses, a
more general assumption about linear behavior of the vertical velocity along vertical
coordinate is used. This generalized model has been already applied to describe
the flow of rather compressible fluids, when an elastic perturbation is propagating
in the domain much slower than a gravity perturbation.

However, the previous model is able to describe many other situations, corre-
sponding, for instance, to the case when an elastic perturbation is propagating
much faster than a gravity perturbation. This paper deals with a few applications
of the model in this last case. The outline is as follows: in Section 1, we give a brief
description of the physical problem and recall the general model deduced in [3]. For
the particular case investigated here, i.e. fast elastic perturbations and slow gravity
perturbations, a reduced model is obtained in Section 2. It can be converted into
one nonlinear equation of third order. In particular, a generalization of Boussinesq
equation is obtained for groundwater flow with free surface. Stable flow is taken
into account when the upper fluid is more light. If this condition is not true, the
evolution of instability is described.

2. General model

We consider an orthogonal coordinate system (x1, x2, z), where z is the vertical
coordinate and (x1, x2) are coordinates of the horizontal plane. In this system, a
horizontal porous medium with constant height H is considered. Its inferior and
superior limits are some impermeable media. The voids of the porous medium
are filled with two immiscible fluids which are separated one from other by an
interface. Let the value h(x1, x2; t) denotes the height of the interface with respect
to the bottom of the porous stratum (Figure 1).

The initial position of the interface is supposed to be known (as for instance, a
horizontal surface) and denoted by h0. At this time, we suppose there is no flow in
the domain. The initial state is perturbed by an external factor (as pumping by a
well or seismic waves). The objective is to find the evolution of the interface, i.e.
of the function h(x1, x2; t), generated by such a perturbation. It is supposed that
the interface does not cross the top and bottom boundaries of the domain and it
remains always non perturbed at the lateral extremities.
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Figure 1. Schematization of the physical situation

2.1. Physical parameters. The porous medium is assumed to be homogeneous
(its constant porosity is denoted by m), but anisotropic, the permeability tensor
K≡{Kij}3i,j=1 being diagonal with Kx≡K11 = K22, Kz≡K33.

Let the indexes i = I, II correspond to the lower and the upper fluid. For
each fluid, ρi denotes the density, µi denotes the viscosity and βi

∗ is a measure of
fluid/medium compressibility.

We need also to introduce the following parameters: L is the horizontal scale of
the domain, P0 and P(x1, x2; t) are respectively the common pressure of the two
fluids on the interface at initial state and for an arbitrary instant time, g is the
gravity acceleration.

2.2. Closed system in dimensionless formulation. The time variable and the
space variables are replaced by some dimensionless variables:

τ≡t/t∗, y1≡x1/L, y2≡x2/L

and the unknowns are the thickness of the two fluids and the common pressure on
the interface, all of them in dimensionless form:

ϕ≡h/h0, ψ≡(H−h)/(H−h0), ξ≡P/P0

Then the dimensionless system deduced in [3] is:(
τ∗
∂

∂τ
−∆yy

) (
ϕ2+

λ2
1ωτ∗
3εz

ϕ2 ∂ϕ

∂τ
+λ2ξ

)
= −ωτ∗

∂ϕ

∂τ
, (2.1a)(

τ∗β

µ

∂

∂τ
−∆yy

) (
−ψ2+

λ2
1ρωτ∗

3εzµλ0
ψ2 ∂ψ

∂τ
+λ2λ0ρξ

)
= −ρλ0ωτ∗

µ

∂ψ

∂τ
, (2.1b)

ψ = −λ0ϕ+λ0+1 (2.1c)
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with the following notation

λ0 ≡
h0

H − h0
, λ1 ≡

h0

L
, λ2 ≡

2P0

ρIgh0

β ≡ βI
∗

βII
∗
, µ ≡ µI

µII
, ρ ≡ ρI

ρII
, εz ≡

Kz

Kx

tel =
µIL2

KxβI
∗
, tgr =

2µImL2

KxρIgh0
, ω ≡ 2mβI

∗
ρIgh0

=
tgr

tel
, τ∗ ≡

tel

t∗
,

where ∆yy denotes the Laplace’s operator with respect to the variable y = (y1, y2).
Two characteristic times have been introduced: tel signifies the time of propa-

gation of an elastic perturbation within the scale L and tgr is the time required for
the complete emptying of the medium occupied by a fluid (say the fluid I) if the
gravity drop is the only phenomenon taken into account.

In the general case, the scale of the time (t∗) used to get the dimensionless time
variable (τ) can be arbitrary chosen. However, for two particular but important
cases, it can be defined according to the relationship between previous characteristic
times, as follows:

t∗ =

{
tel, when tgr � tel, or ω � 1
tgr, when tel � tgr, or ω � 1

(2.2)

The first case, i.e. tgr � tel has been already investigated in [3].

3. Gravity dominated flow. Fast elastic perturbations

In this section, we deal with the case where the time of elastic wave propagation
is very small with respect to the gravity time, i.e. tel � tgr. Therefore, we have:
ω � 1 In this case, compressibility of fluid/medium does not play any role and
then, the non-stationarity is involved only by gravity phenomena.

According to (2.2), the scale of the time t∗ is chosen as equal to tgr. Then:

ωτ∗ = 1, τ∗ = ω−1 � 1

3.1. General nonlinear equation for gravitational waves. Taking into ac-
count previous relations, the general model (2.1a)-(2.1c) becomes:

∆yy

(
ϕ2+

λ2
1

3εz
ϕ2 ∂ϕ

∂τ
+λ2ξ

)
=
∂ϕ

∂τ
, (3.1a)

∆yy

(
−ψ2+

λ2
1ρ

3εzµλ0
ψ2 ∂ψ

∂τ
+λ2λ0ρξ

)
=
ρλ0

µ

∂ψ

∂τ
, (3.1b)

ψ = −λ0ϕ+λ0+1 (3.1c)

This system can be converted into one equation with respect to the function ϕ,
after excluding the functions ξ and ψ:

∆yy

(
ϕ2−2αϕ+γ1

[
ϕ2+γ2

(
1+λ0−λ0ϕ

)2
] ∂ϕ
∂τ

)
= β

∂ϕ

∂τ
(3.2)

where

α≡
(
1+λ0

)
λ0+ρ

, β≡
ρ
(
λ0+µ

)
µ
(
ρ+λ0

) , γ1≡
λ2

1ρ

3εz(λ0+ρ)
, γ2≡

1
λ0µ

(3.3)

Due to the presence of a mixed derivative of third order, it is difficult to determine
the type of this equation, but in some particular cases it can be analyzed.
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3.2. One-fluid flow with free boundary. The following generalization of the
classical nonlinear Boussinesq equation can be deduced from equation (3.2) for
single-phase flow of the lower liquid with free boundary. In fact, assuming that the
upper fluid has no density and viscosity, i.e. ρ→∞ and µ→∞, we get: α = 0,
β = 1, γ1 = λ2

1/
(
3εz

)
, γ2 = 0, and then

∆yy

(
ϕ2+γ1ϕ

2 ∂ϕ

∂τ

)
=
∂ϕ

∂τ
(3.4)

When the porous layer is very thin, i.e. its horizontal dimension is much larger
than the vertical dimension, we have

λ1 � 1 (3.5)

and then, the Boussinesq equation is obtained:

∆yyϕ
2 =

∂ϕ

∂τ
(3.6)

which is the classical object of the theory of shallow water flow in porous layers
[1, 2, 5, 9].

3.3. Two fluids, thin layer. Gravitational instability. Let us examine two
fluids in a thin porous layer, such as the assumption (3.5) holds. Then (3.2) becomes

∆yy

(
ϕ2−2αϕ

)
= β

∂ϕ

∂τ
, or

∂

∂yi

((
ϕ−α

) ∂ϕ
∂yi

)
=
β

2
∂ϕ

∂τ
(3.7)

where parameters α and β are defined according to (3.3), and the summation is
made on the index i.

This equation is parabolic when ϕ > α. Otherwise, when ϕ<α, this is a nonlinear
anti-diffusion equation, which can describe the evolution of instability.

To check the nature of these phenomena, let us examine stability of the unper-
turbed state of the interface, basing on the 1D self-similar solutions of (3.7). In
fact, in 1D case, (3.7) has solutions in the form of ϕ = ϕ(y/

√
τ), which correspond

to a boundary-value problem of the interface evolution in an infinite horizontal do-
main. It is easy to show that self-similar solutions satisfy the following ordinary
differential equation

d2

dξ2
(
ϕ2−2αϕ

)
= −1

2
βξ
dϕ

dξ
, ξ≡ y√

τ
(3.8)

Let us examine small perturbation of the unperturbed state, i.e., ϕ = 1+εζ,
where ε is assumed to be small. Then, using the perturbation method, we get:

ζ ′′ = − βξ

4− 4α
ζ ′, or ζ(ξ) = C1+C2

ξ∫
∞

e
βu2

8(α−1) du

where the prime denotes derivation with respect to ξ, and C1, C2 are some inte-
gration constants.

The evolution of perturbations is unlimited in time, when

α≡
(
1+λ0

)
λ0+ρ

> 1 (3.9)

or ρ<1. Then, when the upper liquid is heavier than the lower liquid, (3.7) can
describe the classical phenomenon of gravitational instability.
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3.4. Stable flow. In the case when the condition (3.9) is not satisfied, i.e. the
upper fluid is more light, the flow is stable. In fact, since α<1, then the ”diffusion
coefficient” ϕ−α is positive in the vicinity of the initial state (ϕ≡1), and then (3.7)
is parabolic.

Figure 2 illustrates the evolution of an initial perturbation defined as a single
loop of sinus. The initial wave tends to be dissipated, with finite rate of the wave
propagation, as usual for nonlinear parabolic equations.

Figure 2. Evolution of the interface perturbation in stable case;
α = 0.888888...

More precisely speaking, the following initial problem was considered:

β
∂ϕ

∂τ
=

∂

∂y

(
2
(
ϕ− α

)∂ϕ
∂y

)
, y∈(0, 1), τ > 0

ϕ|τ=0 =

{
1, y /∈J
1+a sin (by + c), y∈J
ϕ|y=0;1 = 1

where J⊂(0, 1) is a small support located far from the boundaries; a, b, c are some
constant parameters.

The time evolution of ϕ has been obtained by numerical simulation. For the
time discretization, a semi-implicit scheme has been employed. The discrete time
instants are denoted by τn = n∆τ , where τ0 = 0 and ∆τ is the time step. If the
function ϕn(y) ≡ ϕ(y; τn) is already computed at time step τn, then one computes
the corresponding values at the time instant τn+1 by solving the following semi-
discretized problem

β
ϕn+1 − ϕn

∆τ
=

∂

∂y

(
2
(
ϕn − α

)∂ϕn+1

∂y

)
, y∈(0, 1), ∀n ≥ 0 (3.10)

For the space discretization, a conventional scheme of order 2, obtained by a finite
difference method, has been used.

The numerical values used to obtain the evolution shown in Figure 2 are

α =
8
9
, β =

55
9
, a =

1
10
, b = 10π , c = −4π
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These values of α and β are obtained for the case of the pair water-oil, i.e. for
ρ = 5/4 (ρI = 1000 kg/m3, ρII = 800 kg/m3), µ = 1/10 (µI = 0.001 Pa · s, µII =
0.01 Pa · s) and by considering that the initial thickness is the same for the two
fluids (λ0 = 1). The consecutive time instants described in Figure 2 correspond to
the value of the characteristic time t∗ = tgr = 1 hour.

3.5. Evolution of the instability. If condition (3.9) is true, then the function
2(ϕ−α) is negative in the vicinity of the initial state ϕ = 1, and Eq. (3.7) is anti-
parabolic. However, if the function ϕ becomes larger than α, then this equation
becomes parabolic, as shown in Fig. 3.

Figure 3. Variation of the parabolicity direction for (3.7) when
α > 1

Thus, the evolution of a perturbation follows three basic stages:

i) the linear unstable stage, when ϕ is in the vicinity of the initial state (ϕ ∼
1); anti-diffusion equation governs the evolution;

ii) the nonlinear unstable stage, when ϕ→α; the spatial derivative ∂ϕ/∂y be-
comes unlimited;

iii) the final stable stage, when ϕ becomes greater than α; diffusion equation
describes this stage.

Equations with variation of the parabolicity direction were considered in [8], as the
model of hysteresis phenomena in theory of phase transitions. However, this theory
cannot be applied to (3.7), since the structure of nonlinearity is very different. On
the other part, some regularization methods for equations similar to (3.7) were
examined there. According to [8], the best regularization is obtained by adding
the term ∆yy∂τϕ. Then, the full equation (3.2) is expected to regularize unstable
solutions.

The linear unstable stage. Let us examine, in 1D framework, a small perturbation
of the initial plate interface, ϕ = 1+εf(t, y), where ε is the small amplitude of
the perturbation, f(y, t) is a function equal to zero everywhere, excluding a small
support J = {y : y∈[y0, y1]}. Let the function f behaves as f ∼ ε(y−y0)2, when
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y→y0, in such a way that the perturbation is smooth in the vicinity of the point
y0. Since the equation (3.7) can be expressed as:

2
(
ϕ−α

)∂2ϕ

∂y2
+

(
∂ϕ

∂y

)2

= β
∂ϕ

∂τ

then, the evolution of such a perturbation may be easily analyzed. Consequent
time phases are shown in Fig. 4.

Figure 4. Evolution of a smooth monotonous perturbation of the
interface in the unstable case

At initial time, for the point A = (ϕ, y) = (1, y0) it is true:

∂ϕ/∂y = 0, ∂2ϕ/∂y2 > 0, then (ϕ−α)∂2ϕ/∂y2<0, → ∂τϕ<0

Then, in Figure 4, the plot I becomes the plot II. The point A is lowered downwards
and then, the extreme point with zeroth spatial derivative is displacing to the left
(to the point B). The next step of the evolution leads to the plot III, etc.

Thus, collecting all the results obtained about the unstable evolution, it may
be concluded that a small localized smooth and monotonous perturbation of the
interface leads to arising of three types of phenomena:

a) lateral propagation of the perturbation along the interface;
b) fast development of the spatial and time oscillations of the interface;
c) fast grow of the amplitude of the oscillations.

Figure 5 illustrates the evolution of an initial perturbation defined as a single
loop of sinus.

Growth of the oscillations is qualitatively equivalent to the finger growth ob-
served in the experimental research, as for instance in [6]. We have used the same
numerical scheme (3.10) as for the stable flow, but with other numerical values,
corresponding to the case when the oil is the lower fluid and the water is the upper
fluid. In particular, the value of α is now 1.1111... > 1. The support of the initial
perturbation (the loop of the sinus) has been enlarged to get a better representation
of the finger growth. On the other part, it must be mentioned that, using the same
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Figure 5. Unstable evolution of the interface perturbation

value for the gravitational time tgr, the evolution of the interface is much faster.
Indeed, the consequent instant times shown in Figure 5 are respectively 0.2 s, 0.4 s,
0.6 s, 0.8 s.

The nonlinear unstable stage. Growth of the fingers leads to the instant when the
finger approaches to the critical value ϕ = α. This is possible only if |∂ϕ

∂y |→∞
in this point, that follows from (3.7). Hence, each finger crossing the critical line
ϕ = α has there an infinite spatial derivative. From this property, it follows that a
finger can cross the critical line, only if it becomes a delta-function.

These results correspond well to the experimental results obtained by Maxworthy
[6], where a similar behavior of fingers growth has been observed.

Conclusion. Applications of the general model developed in [3] in the case where
gravity perturbations are propagating much slower than elastic perturbations have
been investigated. In this case, the model can be reduced to a nonlinear evolution
equation with varying sense of parabolicity. This equation becomes the well-known
Boussinesq equation if the upper fluid has not viscosity and density and can describe
the gravity unstable system if the lower fluid is more light.
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