\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 47, pp. 1--25.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/47\hfil Oscillation for equations with \dots ] {Oscillation for equations with positive and negative coefficients and distributed delay II: Applications} \author[Leonid Berezansky \& Elena Braverman\hfil EJDE--2003/47\hfilneg] {Leonid Berezansky \& Elena Braverman} \address{Leonid Berezansky \hfill\break Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel} \email{brznsky@cs.bgu.ac.il} \address{Elena Braverman \hfill\break Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N. W., Calgary, Alberta, Canada, T2N 1N4 \hfill\break Fax: (403)-282-5150, phone: (403)-220-3956} \email{maelena@math.ucalgary.ca} \date{} \thanks{Submitted February 14, 2003. Published April 24, 2003.} \thanks{L. Berezansky was partially supported by the Israeli Ministry of Absorption} \thanks{E. Braverman was partially supported by an URGC Research Grant} \subjclass[2000]{34K11, 34K15} \keywords{Oscillation, non-oscillation, distributed delay, equations with \hfill\break\indent several delays, integrodifferential equations} \begin{abstract} We apply the results of our previous paper ``Oscillation of equations with positive and negative coefficients and distributed delay I: General results" to the study of oscillation properties of equations with several delays and positive and negative coefficients $$ \dot{x}(t) + \sum_{k=1}^n a_k(t) x(h_k(t)) - \sum_{l=1}^m b_l(t) x(g_l(t)) = 0, \quad a_k(t) \geq 0, b_l(t) \geq 0, $$ integrodifferential equations with oscillating kernels and mixed equations combining two above equations. Comparison theorems, explicit non-oscillation and oscillation results are presented. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{proposition}{Proposition}[section] \numberwithin{equation}{section} \allowdisplaybreaks \section{Introduction} The study of oscillation properties of delay differential equations with positive and negative coefficients began in the eighties \cite{kulfirst,p1} and was inspired by the study of equations with oscillating coefficients. This research was later developed in \cite{l2,l1}, neutral equations with positive and negative coefficients were studied in \cite{p4,p9,p10}, see also recent publications \cite{p800,p801,p8}. In \cite{p1,p2,l2} the first order equation with two constant concentrated delays and a positive and a negative coefficient was studied, while paper \cite{p901} considered oscillation of integrodifferential equations with oscillatory kernels. In \cite{p2} for the equation \begin{equation} \label{01} \dot{x}(t)+a(t)x(t-\tau)-b(t)x(t-\sigma)=0, \quad t\geq t_0, \end{equation} where $a(t)\geq 0,~b(t)\geq 0$ are continuous functions, $\tau>\sigma>0$, the following result was obtained: Suppose \begin{gather} \label{02} \int _{t-\tau+\sigma}^t b(s)ds \leq 1,\quad a(t)\geq b(t-\tau+\sigma),\\ \label{03} \liminf_{t\to\infty} \int_{t-\tau}^t [a(s)- b(s-\tau+\sigma)]ds >\frac{1}{e}. \end{gather} Then all solutions of (\ref{01}) are oscillatory. In \cite{p10} the inequality (\ref{03}) was improved: \begin{equation} \label{03imp} \liminf_{t\to\infty} \Big( \int_{t-\tau}^t [a(s)- b(s-\tau+\sigma)]ds +\frac{1}{e}\int_{t-\tau+\sigma}^t b(s-\tau)ds \Big) > \frac{1}{e}. \end{equation} Recently numerous publications on the oscillation of delay equations with positive and negative coefficients have appeared (in addition to \cite{p800,jmaa,p11,p801,p7,p8} see \cite{EHS} and references therein). However all the publications except \cite{p13,jmaa} consider equations with constant delays only. Paper \cite{jmaa} deals with a more general case when the delays are not constant. Our previous paper \cite{previous} gave a general insight into the problem. In \cite{previous} we considered the equation with a distributed delay \begin{equation} \label{1} \dot{x}(t)+ \int_{0}^t x(s)\,d_s R(t,s)- \int_{0}^t x(s)\,d_s T(t,s)= 0,~~t\geq 0, \end{equation} where both $R(t,s)$ and $T(t,s)$ are nondecreasing in $s$ for each $t$. As special cases, (\ref{1}) includes delay differential equations with variable concentrated delays, integrodifferential equations and mixed differential equations. The basic result of the paper \cite{previous} was the relation between the following properties for (\ref{1}): the existence of a nonoscillatory solution of (\ref{1}), the existence of an eventually positive solution of the corresponding differential inequality and the existence of a nonnegative solution of some nonlinear integral inequality which is explicitly constructed by (\ref{1}). Theorems of this kind are well known and widely applied for delay differential equations with positive coefficients. In the present paper we apply general results obtained in \cite{previous} to specific classes of equations. Section \ref{section2} contains preliminaries and relevant results from paper \cite{previous}. In Section \ref{section3} equations with positive and negative coefficients and several concentrated delays are considered. In Section \ref{section4} oscillation and nonoscillation results are deduced for integrodifferential equations with oscillatory kernels. Section \ref{section5} deals with mixed equations containing both several concentrated delays and an integral term. \section{Preliminaries and General Results} \label{section2} We consider a scalar delay differential equation (\ref{1}) under the following conditions: \begin{itemize} \item[(a1)] $R(t,\cdot)$, $T(t,\cdot)$ are left continuous functions of bounded variation and for each $s$ their variations on the segment $[0,s]$ \begin{equation} \label{P} P_R(t,s) = var_{\tau \in [0,s]} R(t,\tau), ~P_T(t,s) = var_{\tau \in [0,s]} T(t,\tau) \end{equation} are locally integrable functions in $t$, $R(t,s) = R(t,t+)$, $T(t,s) = T(t,t+)$, $tt_1$, $T(t,s) = 0$ for $s t_1$; in addition, functions $s(t)$, $r(t)$ satisfy $$\lim_{t \to \infty} s(t) = \infty, \lim_{t \to \infty} r(t) = \infty.$$ \end{itemize} If (a3) holds then we can introduce the following functions \begin{equation} \label{h} h(t) = \inf_s \big\{s : R(t,s) \neq 0 \big\}, \quad g(t)= \inf_s \big\{s : T(t,s) \neq 0 \big\}, \end{equation} such that $\lim_{t \to \infty} h(t) = \infty$, $\lim_{t \to \infty} g(t) = \infty$, and (\ref{1}) can be rewritten as \begin{equation} \label{1star} \dot{x}(t)+ \int_{h(t)}^t x(s)\,d_s R(t,s)- \int_{g(t)}^t x(s)\,d_s T(t,s)= 0,~~t\geq 0. \end{equation} If (a2) and (a3) hold, then obviously $h(t) \leq g(t)$. Together with (\ref{1star}) we consider for each $t_0\geq 0$ an initial-value problem \begin{equation} \label{2} \dot{x}(t)+ \int_{h(t)}^t x(s)\,d_s R(t,s) - \int_{g(t)}^t x(s)\,d_s T(t,s) = 0,~~t\geq t_0. \end{equation} \begin{equation} \label{3} x(t)=\varphi(t), ~ t0, ~t\geq s\geq t_2$; \item Equation (\ref{1star}) has a nonoscillatory solution; \item Inequality (\ref{6}) has an eventually positive solution. \end{enumerate} Then the implication $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ is valid. \end{lemma} Necessary nonoscillation (sufficient oscillation) conditions require some more constraints on $R,T$. Let \begin{itemize} \item[(a4)] for any $t$ $R(t,s) - T(t,s-h(t)+g(t))$ is nondecreasing in $s$ and $$ \limsup_{t \to \infty} T(t,t+)[g(t)-h(t)] \leq l < 1.$$ \end{itemize} \begin{lemma}[\cite{previous}] \label{theorem2} Suppose (a1)--(a4) hold. Then hypotheses (1)--(4) of Theorem 1 are equivalent. \end{lemma} To obtain other necessary oscillation conditions we consider the following form of equation (\ref{1star}): \begin{equation} \label{1starnew} \dot{x}(t)+ \sum_{k=1}^n \int_{h_k(t)}^t x(s)\,d_s R_k(t,s)- \sum_{l=1}^m \int_{g_l(t)}^t x(s)\,d_s T_l(t,s) = 0,~~t\geq 0, \end{equation} where $R_k,T_l,h_k,g_l$ satisfy the following conditions: \begin{itemize} \item[(a1$^\star$)] $R_k(t,\cdot)$, $T_l(t,\cdot)$ are left continuous functions of bounded variation and for each $s$ their variations on the segment $[0,s]$ $P_{R_k}(t,s)$, $P_{T_l}(t,s)$ are locally integrable functions in $t$, $R_k(t,s) = R_k(t,t+)$, $T_l(t,s) = T_l(t,t+)$, $t T(t,s), R(t,s) - T(t,s-h(t)+g(t))$ is nondecreasing in $s$ for any $t$ and \begin{equation} \label{add2formula} \begin{split} \limsup_{t\to \infty} \big[& T(t,t+)[g(t)-h(t)] + \sum_{k=1}^n R_k(t,t+) \big( h(t)-h_k(t)\big)\\ &+ \sum_{l=1}^m T_l(t,t+) \big( g_l(t)-g(t) \big) \big] < 1. \end{split} \end{equation} \end{itemize} Consider together with (\ref{1starnew}) the delay differential inequality \begin{equation} \label{6starnew} \dot{y}(t)+ \sum_{k=1}^n \int_{h_k(t)}^t y(s)\,d_s R_k(t,s)- \sum_{l=1}^m \int_{g_l(t)}^t y(s)\,d_s T_l(t,s) \leq 0,\; t\geq 0. \end{equation} The next lemma establishes non-oscillation criteria for (\ref{1starnew}). \begin{lemma} \label{theorem3} {\rm \cite{previous}} Suppose $R_k,T_l,h_k,g_k$ satisfy (a1$^\star$)-(a3$^\star$) and at least one of conditions (add1), (add2) hold. Then the following hypotheses are equivalent: \begin{enumerate} \item There exists $t_1\geq 0$ such that the inequality \begin{equation} \label{7starnew} \begin{split} u(t)&\geq \sum_{k=1}^n \int_{h_k(t)}^t \exp\big\{\int_{s}^t u(\tau)d \tau \big\}\,d_s R_k(t,s)\\ &\quad - \sum_{l=1}^m \int_{g_l(t)}^t \exp\big\{\int_{s}^t u(\tau) d\tau \big\} \,d_s T_l(t,s),\quad t\geq t_1, \end{split} \end{equation} has a nonnegative locally integrable solution (we assume $u(t)=0$ for $t0, ~t\geq s\geq t_2$; \item Equation (\ref{1starnew}) has a nonoscillatory solution; \item Inequality (\ref{6starnew}) has an eventually positive solution. \end{enumerate} \end{lemma} Lemmas \ref{theorem1}--\ref{theorem3} yield the following comparison result. Let us compare the oscillation properties of the equation \begin{equation} \label{ampersand} \dot{x}(t)+ \sum_{k=1}^n \int_{\tilde{h}_k(t)}^t x(s)\,d_s L_k(t,s)- \sum_{l=1}^m \int_{\tilde{g}_l(t)}^t x(s)\,d_s D_l(t,s) = 0, \end{equation} to the oscillation properties of (\ref{1starnew}). \begin{lemma}[\cite{previous}] \label{theorem4} \begin{enumerate} \item If $(a1^{\star})-(a3^{\star})$ and anyone of the conditions (add1), (add2) hold for (\ref{ampersand}) (where $R_k,T_l$ are changed by $L_k,D_l$), $L_k(t,s) \geq R_k(t,s)$, $D_l(t,s) \leq T_l(t,s)$ and (\ref{ampersand}) has a nonoscillatory solution, then (\ref{1starnew}) has a nonoscillatory solution. \item If $(a1^{\star})-(a3^{\star})$ and any one of the conditions (add1),(add2) hold for (\ref{1starnew}), $L_k(t,s) \leq R_k(t,s)$, $D_l(t,s) \geq T_l(t,s)$ and all solutions of (\ref{ampersand}) are oscillatory, then all solutions of (\ref{1starnew}) are oscillatory. \end{enumerate} \end{lemma} Lemma \ref{theorem5} describes the asymptotic behavior of nonoscillatory solutions of (\ref{1starnew}). \begin{lemma}[\cite{previous}] \label{theorem5} Suppose (a1$^\star$)-(a3$^\star$) and anyone of the following conditions holds: \begin{enumerate} \item (add1) is satisfied and for some $k$ \begin{equation} \label{int1} \int_{0}^{\infty} \big[ R_k(t,t+) - T_k(t,t+) \big] dt = \infty; \end{equation} \item (add2) is satisfied and \begin{equation}\label{int2} \int_{0}^{\infty} \big[ R(t,t+) - T(t,t+) \big] dt = \infty. \end{equation} \end{enumerate} Then any nonoscillatory solution $x$ of (\ref{1starnew}) satisfies $\lim_{t \to \infty} x(t) = 0$. \end{lemma} Consider the following two equations \begin{equation} \label{compare1} \begin{aligned} \dot{x}(t) + \int_{h(t)}^t x(s) \,d_s \big[ R(t,s) - T(t,s-h(t)+g(t)) \big]& \\ + \int_{g(t)}^{t} x(s) \big( \exp\big\{\int_{s+h(t)-g(t)}^s [R(\tau,\tau+)- T(\tau,\tau+)] d \tau \big\} - 1 \big) \,d_s T(t,s) &= 0 \end{aligned} \end{equation} and \begin{equation} \label{compare2} \begin{aligned} \dot{x}(t) + \int_{g(t)}^t x(s) \Big( \exp\big\{\int_{s-g(t)+h(t)}^s [R(\tau,\tau+)- T(\tau,\tau+)] d\tau \big\} - 1 \Big)& \\ \times d_s R(t,s-g(t)+h(t)) + \int_{g(t)}^t x(s) \,d_s \big[ R(t,s-g(t)+h(t)) - T(t,s) \big]& = 0. \end{aligned} \end{equation} If (a1)-(a4) hold, then equations (\ref{compare1}),(\ref{compare2}) contains terms with positive coefficients only. The oscillation properties of these equations will be compared to the properties of (\ref{1star}). \begin{lemma}[\cite{previous}] \label{theorem6} Suppose (a1)-(a4) hold for (\ref{1star}). If all solutions of either (\ref{compare1}) or (\ref{compare2}) are oscillatory, then all solutions of (\ref{1star}) are also oscillatory. \end{lemma} \begin{corollary} \label{cortheorem61} Suppose (a1)-(a4) hold for (\ref{1star}) and at least one of the following four inequalities is satisfied: \begin{multline*} \llap{\rm (1)}\quad \liminf_{t \to \infty}\Big\{ \int_{h(t)}^t \big[ R(t,\tau) - T(t,\tau-h(t)+g(t)) \big]d \tau \\ +\int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \Big( \exp\big\{ \int_{s+h(t)-g(t)}^s [R(u,u+)- T(u,u+)] d u \big\} - 1\Big) \,d_s T(t,s) \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm (2)}\quad \liminf_{t \to \infty}\Big\{ \int_{h(t)}^t \big[ R(t,\tau+) - T(t,\tau-h(t)+g(t)) \big] \,d\tau\\ +\int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \Big(\int_{s+h(t)-g(t)}^s [R(u,u+)- T(u,u+)] d u \Big) \,ds T(t,s) \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm (3)}\quad \liminf_{t \to \infty} \Big\{ \int_{g(t)}^t d\tau \int_{g(\tau)}^{\tau} \Big( \exp\big\{\int_{s-g(t)+h(t)}^s [R(u,u+)- T(u,u+)] du \big\} - 1\Big)\\ \times d_s R(t,s-g(t)+h(t))+ \int_{g(t)}^t \big[ R(t,\tau-g(t)+h(t)) - T(t,\tau) \big] \,d \tau \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm (4)}\quad \liminf_{t \to \infty} \Big\{ \int_{g(t)}^t d\tau \int_{g(\tau)}^{\tau} \Big( \int_{s-g(t)+h(t)}^s [R(u,u+)- T(u,u+)]d u \Big) \\ \times d_s R(t,s-g(t)+h(t)) + \int_{g(t)}^t \big[ R(t,\tau-g(t)+h(t)) - T(t,\tau) \big] \big\} > \frac{1}{e} \end{multline*} Then all solutions of (\ref{1star}) are oscillatory. \end{corollary} Similar results can be obtained for (\ref{1starnew}). \begin{lemma}[\cite{previous}] \label{theorem7} Suppose $R_k,T_l,h_k,g_l$ satisfy (a1$^\star$)-(a3$^\star$) and (add1) holds. If all solutions of either \begin{equation}\label{compare5} \begin{split} &\dot{x}(t) + \sum_{k=1}^n \int_{h_k(t)}^t x(s) \,d_s \big[ R_k(t,s) - T_k(t,s-h_k(t)+g_k(t)) \big]\\ &+ \sum_{k=1}^n \int_{g_k(t)}^{t} x(s) \Big( \exp\big\{\int_{s+h_k(t)-g_k(t)}^s [R_k(\tau,\tau+)- T_k(\tau,\tau+)] d \tau \big\} - 1\Big)\\ &\times d_s T_k(t,s) = 0 \end{split} \end{equation} or \begin{equation} \label{compare6} \begin{split} &\dot{x}(t) +\sum_{k=1}^n \int_{g_k(t)}^t x(s) \Big( \exp\big\{\int_{s-g_k(t)+h_k(t)}^s [R_k (\tau,\tau+) - T_k(\tau,\tau+)] \times d\tau \big\} - 1 \Big)\\ &\quad \times d_s R_k(t,s-g_k(t)+h_k(t)) \\ &+ \sum_{k=1}^n \int_{g_k(t)}^t x(s) \,d_s \Big[ R_k(t,s-g_k(t)+h_k(t)) - T_k(t,s) \Big] = 0 \end{split} \end{equation} are oscillatory, then all solutions of (\ref{1starnew}) are also oscillatory. \end{lemma} \begin{corollary} \label{cortheorem71} Suppose (a1$^\star$)-(a3$^\star$) and (add1) hold for (\ref{1starnew}) and at least one of the following inequalities is satisfied: \begin{multline*} \llap{\rm(1)}\quad \liminf_{t \to \infty} \sum_{k=1}^n \big\{ \int_{h_k(t)}^t\big[ R_k(t,\tau) - T(t,\tau-h_k(t)+g_k(t)) \big] d \tau + \int_{g_k(t)}^{t} d \tau \\ \times \int_{h_k(\tau)}^{\tau} \big( \exp\big\{\int_{s+h_k(t)-g_k(t)}^s [R_k(u,u+)- T_k(u,u+)]d u \big\} - 1 \big) \,d_s T_k(t,s) \big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm(2)}\quad \liminf_{t \to \infty} \sum_{k=1}^n \big\{ \int_{h_k(t)}^t \big[ R_k(t,\tau+) - T_k(t,\tau-h_k(t)+g_k(t)) \big] \,d\tau \\ + \int_{g_k(t)}^{t} d \tau \int_{h_k(\tau)}^{\tau} \big( \int_{s+h_k(t)-g_k(t)}^s [R_k(u,u+)- T_k(u,u+)] d u \big) \,ds T_k(t,s) \big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm(3)}\quad \liminf_{t \to \infty} \sum_{k=1}^n \big\{ \int_{g_k(t)}^t d\tau \int_{g_k(\tau)}^{\tau} \Big( \exp\big\{\int_{s-g_k(t)+h_k(t)}^s [R_k(u,u+)- T_k(u,u+)] \\ \times du \big\} - 1 \Big) d_s R_k(t,s-g_k(t)+h_k(t))\\ + \int_{g_k(t)}^t \big[ R_k(t,\tau-g_k(t)+h_k(t)) - T_k(t,\tau) \big] \,d \tau \big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm(4)}\quad \liminf_{t \to \infty} \sum_{k=1}^n \big\{ \int_{g_k(t)}^t d\tau \int_{g_k(\tau)}^{\tau} \big( \int_{s-g_k(t)+h_k(t)}^s [R_k(u,u+)- T_k(u,u+)] d u \big)\\ \times d_s R_k(t,s-g_k(t)+h_k(t)) + \int_{g_k(t)}^t \big[ R_k(t,\tau-g_k(t)+h_k(t)) - T_k(t,\tau) \big] \big\} > \frac{1}{e} \end{multline*} Then all solutions of (\ref{1star}) are oscillatory. \end{corollary} Let us proceed with nonoscillation conditions. \begin{lemma}[\cite{previous}]\label{theorem8} Suppose (a1)-(a4) hold for (\ref{1star}) and there exists $\lambda,~0<\lambda<1$, such that \begin{gather} \label{17new} \limsup_{t\to \infty} \int_{h(t)}^{g(t)} [R(s,s+)-\lambda T(s,s+)] \,ds <\frac{1}{e}\ln \frac{1}{\lambda},\\ \label{18new} \limsup_{t\to\infty} \int_{h(t)}^t [R(s,s+)-\lambda T(s,s+)]ds<\frac{1}{e}. \end{gather} Then (\ref{1star}) has a nonoscillatory solution. \end{lemma} \begin{lemma}[\cite{previous}]\label{theorem9} Suppose $n=m$, conditions (a1$^{\star}$)-(a3$^{\star}$), (add1) and the following inequality \begin{equation} \label{eq26} \limsup_{t\to\infty} \sum_{k=1}^n \int_{h_k(t)}^t \big[ R_k(s,s+)- \frac{1}{e} T_k(s,s+)\big] ds <\frac{1}{e} \end{equation} hold. Then (\ref{1starnew}) has a nonoscillatory solution. \end{lemma} \section{Equations with Concentrated Delays} \label{section3} Let us study oscillation properties of a delay differential equation with several variable concentrated delays \begin{equation} \label{3zaa} \dot{x}(t) + \sum_{k=1}^n a_k(t) x(h_k(t)) - \sum_{l=1}^m b_l(t) x(g_l(t)) = 0, t \geq 0. \end{equation} This equation is a special case of (\ref{1}) when we assume \begin{equation} \label{4zaa} R(t,s) = \sum_{k=1}^n a_k (t) \chi_{[h_k(t),\infty)} (s), \quad T(t,s) = \sum_{l=1}^m b_l(t) \chi_{[g_l(t),\infty)} (s), \end{equation} where $\chi_{[c,d]}$ is a characteristic function of segment $[c,d]$. An initial value problem, definitions of a solution, the fundamental solution, oscillatory and nonoscillatory solutions for equation (\ref{3zaa}) are the same as for (\ref{1starnew}). The hypotheses of Lemma \ref{theorem1} are satisfied for the delay equation (\ref{3zaa}) if the following conditions hold: \begin{itemize} \item[(C1)] $a_k(t) \geq 0$, $b_l(t) \geq 0$ are Lebesgue measurable essentially locally bounded functions; \item[(C2)] For any $t\geq s\geq 0$ $$ \sum_{k=1}^n a_k (t) \chi_{[h_k(t),\infty)} (s)\geq \sum_{l=1}^m b_l(t) \chi_{[g_l(t),\infty)} (s). $$ \item[(C3)] $h_k(t),g_l(t):[0,\infty) \rightarrow {\bf R}$ are Lebesgue measurable functions, $h_k(t) \leq t, g_l(t) \leq t$, $\lim_{t \to \infty} h_k(t) =\infty$, $\lim_{t \to \infty} g_l(t) =\infty$. \end{itemize} Consider the inequality \begin{equation} \label{6anewstar} \dot{y}(t) + \sum_{k=1}^n a_k(t) y(h_k(t)) - \sum_{l=1}^m b_l(t) y(g_l(t)) \leq 0, t \geq 0. \end{equation} The following proposition is an immediate consequence of Lemma \ref{theorem1}. \begin{proposition} \label{prop31} Suppose (C1)--(C3) hold. Consider the following hypotheses: \begin{enumerate} \item There exists $t_1 \geq 0$ such that the inequality \begin{equation}\label{20starnew} u(t) \geq \sum_{k=1}^n a_k(t) \exp \big\{ \int_{h_k(t)}^t u(s)ds \big\} - \sum_{l=1}^m b_l(t) \exp \big\{ \int_{g_l(t)}^t u(s)ds \big\}, ~t \geq t_1 \end{equation} has a nonnegative locally integrable solution (we assume $u(t)=0$ for $t0$, $t\geq s \geq t_2$; \item Equation (\ref{3zaa}) has a nonoscillatory solution; \item Inequality (\ref{6anewstar}) has an eventually positive solution. \end{enumerate} Then the implications $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4)$ are valid. \end{proposition} Oscillation criteria for equations with several concentrated delays can be obtained as corollaries of Lemma \ref{theorem3}. To this end denote $$h(t) = \max_k h_k(t), \quad g(t) = \min_l g_l(t), \quad a(t) = \sum_{k=1}^n a_k(t), \quad b(t)) = \sum_{l=1}^m b_l(t). $$ Proposition \ref{prop32} provides oscillation criteria. \begin{proposition} \label{prop32} Suppose (C1), (C3) and anyone of the following conditions \begin{itemize} \item[(C4)] $m=n$, $a_k \geq b_k$, $h_k(t) \leq g_k(t)$ for $k=1, \dots, n$, $t \geq 0$, $$\limsup_{t \to \infty} \big\{ \sum_{k=1}^n b_k(t) [g_k(t) - h_k(t) ] \big\}< 1$$ \item[(C5)] $h(t) \leq g(t)$, $a(t) \geq b(t)$, $$\limsup_{t \to \infty} \big\{ b(t)[g(t) - h(t) ] + \sum_{k=1}^n a_k(t) [h(t) - h_k(t)] + \sum_{l=1}^m b_l(t) [g_l(t) - g(t)] \big\} < 1 $$ \end{itemize} hold. Then all four hypotheses of Proposition \protect{\ref{prop31}} are equivalent. \end{proposition} \noindent{\bf Remark.} It is to be noted that (C5) is a special case of (C4), if we rewrite the left hand side of (\ref{3zaa}) as a sum of $(n+m+1)$ positive and $(n+m+1)$ negative terms: \begin{align*} &\dot{x}(t) + \sum_{k=1}^n a_k(t) x(h_k(t)) - \sum_{l=1}^m b_l(t) x(g_l(t))\\ &= \dot{x}(t) + \sum_{k=1}^n a_k(t) x(h_k(t)) - \sum_{k=1}^n a_k(t) x(h(t)) + \sum_{k=1}^n a_k(t) x(h(t)) \\ &\quad -\sum_{l=1}^m b_l(t) x(g(t)) + \sum_{l=1}^m b_l(t) x(g(t)) - \sum_{l=1}^m b_l(t) x(g_l(t))\\ &= \dot{x}(t) + a(t) x(h(t)) - b(t) x(g(t)) + \sum_{k=1}^n a_k(t) \big[ x(h_k(t)) - x(h(t))\big] \\ &\quad + \sum_{l=1}^m b_l(t) \big[ x(g(t)) - x(g_l(t)) \big] \end{align*} We proceed with comparison results which are deduced from Lemma \ref{theorem4}. To this end consider the equation \begin{equation} \label{6comp} \dot{x}(t) + \sum_{k=1}^n \tilde{a}_k(t) x(\tilde{h}_k(t)) - \sum_{l=1}^m \tilde{b}_l(t) x(\tilde{g}_l(t)) = 0, t \geq 0. \end{equation} \begin{proposition}\label{prop34} \begin{enumerate} \item Suppose (C1), (C3) and either (C4) or (C5) hold for (\ref{6comp}), where $a_k,b_l,h_k,g_l$ are changed by $\tilde{a}_k,\tilde{b}_l,\tilde{h}_k,\tilde{g}_l$, respectively. If $\tilde{a}_k (t) \geq a_k(t)$, $\tilde{b}_l (t) \leq b_l(t)$, $\tilde{h}_k (t) \leq h_k(t)$, $\tilde{g}_l(t)\geq g_l(t)$ and (\ref{6comp}) has a nonoscillatory solution, then (\ref{3zaa}) also has a nonoscillatory solution. \item Suppose (C1), (C3) and either (C4) or (C5) hold. If $\tilde{a}_k (t) \leq a_k(t)$, $\tilde{b}_l (t) \geq b_l(t)$, $\tilde{h}_k (t) \geq h_k(t)$, $\tilde{g}_l(t)\leq g_l(t)$ and all solutions of (\ref{6comp}) are oscillatory, then all solutions of (\ref{3zaa}) are also oscillatory. \end{enumerate} \end{proposition} To apply Proposition \ref{prop34} consider the autonomous delay equation \begin{equation} \label{autonom} \dot{y} + \sum_{i=1}^n c_i y(t-\delta_i) - \sum_{l=1}^m d_l y(t-\sigma_l) =0, ~t \geq 0, \end{equation} where the following conditions hold: \begin{itemize} \item[(A1)] $c_i\geq 0, d_l\geq 0, \delta_i\geq 0, \sigma_l\geq 0$ \end{itemize} and one of the two following conditions satisfied: \begin{itemize} \item[(A2)] $ n=m, c_i\geq d_i, \delta_i\geq \sigma_i, \sum_{i=1}^n d_i(\delta_i-\sigma_i)<1$; \item[(A3)] $c= \sum_{i=1}^n c_i\geq d=\sum_{l=1}^m d_l, \delta=\min \delta_i\geq \sigma=\max \sigma_l$, $$ d(\delta-\sigma)+\sum_{i=1}^n c_i(\delta_i-\delta)+\sum_{l=1}^m d_l( \sigma- \sigma_l)<1; $$ \end{itemize} \begin{corollary} \begin{enumerate} \item Suppose (C1)-(C3), (A1) and at least one of (A2), (A3) hold. If $a_k(t) \leq c_k, h_k(t) \geq t-\delta_k, b_l(t) \geq d_l, g_l(t) \leq t-\sigma_l$ and (\ref{autonom}) has a nonoscillatory solution, then (\ref{3zaa}) also has a nonoscillatory solution. \item Suppose (C1), (C3), (A1) and at least one of (C4), (C5) hold. If $a_k(t) \geq c_k, h_k(t) \leq t-\delta_k, b_l(t) \leq d_l, g_l(t) \geq t-\sigma_l$ and all solutions of (\ref{autonom}) are oscillatory, then all solutions of (\ref{3zaa}) are also oscillatory. \end{enumerate} \end{corollary} Lemma \ref{theorem5} immediately implies the following result on the asymptotic behaviour of solutions. \begin{proposition} \label{prop35} Suppose(C1),(C3) and one of the following two conditions is satisfied \begin{enumerate} \item (C4) holds and there exists such $k$ that ${ \int_{0}^{\infty} [ a_k(t) - b_k(t)] dt = \infty}$. \item (C5) holds and ${ \int_{0}^{\infty} [ a(t) - b(t)] dt = \int_{0}^{\infty} \big[ \sum_{k=1}^n a_k(t) - \sum_{l=1}^m b_l(t) \big] dt = \infty}$. \end{enumerate} Then any nonoscillatory solution of (\ref{3zaa}) satisfies $\lim_{t\to \infty} y(t) =0$. \end{proposition} \begin{proposition}\label{prop36} Suppose the hypotheses (C1), (C3), (C4) hold. If all solutions of anyone of the following equations are oscillatory \begin{gather} \label{24new} \begin{aligned} &\dot{x}(t) + \sum_{k=1}^n [a_k(t)-b_k(t)]x(h_k(t))\\ &+ \sum_{k=1}^n b_k(t) \Big( \exp \big\{ \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \big\} - 1 \Big) x(g_k(t))=0, \end{aligned}\\ \label{25new} \dot{x}(t) + \sum_{k=1}^n \big[ a_k(t)-b_k(t) + a_k(t)\Big( \exp \big\{ \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \big\} - 1 \Big) \big] x(g_k(t))=0, \\ \label{24newstop} \dot{x}(t) + \sum_{k=1}^n [a_k(t)-b_k(t)]x(h_k(t)) + \sum_{k=1}^n b_k(t) x(g_k(t)) \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds = 0,\\ \label{25newstop} \dot{x}(t) + \sum_{k=1}^n \Big( a_k(t)-b_k(t) + a_k(t) \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \Big) x(g_k(t)) = 0, \end{gather} then all solutions of (\ref{3zaa}) are also oscillatory. \end{proposition} \noindent{\bf Remark.} Since (C5) is a special case of (C4), similar equations can be presented if (C1),(C3),(C5) are satisfied. \begin{corollary} \label{corprop361} Suppose (C1), (C3), (C4) are satisfied and at least one of the following conditions holds: \begin{multline*} \llap{\rm (1)}\quad \liminf_{t \to \infty} \Big\{ \sum_{k=1}^n [a_k(t)-b_k(t)](t-h_k(t))\\ + \sum_{k=1}^n b_k(t) \Big( \exp \big\{ \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \big\}- 1 \Big)(t-g_k(t)) \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm (2)}\quad \liminf_{t \to \infty} \Big\{ \sum_{k=1}^n [a_k(t)-b_k(t)](t-h_k(t))\\ + \sum_{k=1}^n b_k(t)(t-h_k(t)) \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm (3)}\quad \liminf_{t \to \infty} \Big\{ \sum_{k=1}^n \int_{g_k(t)}^t \big[ a_k(s)-b_k(s)\\ + a_k(s)\big( \exp \big\{ \int_{h_k(s)}^{g_k(s)} [a_k(\tau)-b_k(\tau)] d\tau \big\}- 1 \big) \big] ds \Big\} > \frac{1}{e} \end{multline*} \[ \llap{\rm (4)} \quad \liminf_{t \to \infty} \Big\{ \sum_{k=1}^n \int_{g_k(t)}^t\big[ a_k(s)-b_k(s) + a_k(s) \int_{h_k(s)}^{g_k(s)} [a_k(\tau)-b_k(\tau)] d\tau \big] ds \Big\} > \frac{1}{e}, \] then all solutions of (\ref{3zaa}) are oscillatory. \end{corollary} \begin{corollary} Suppose (A1), (A2) and at least one of the following conditions hold: \begin{enumerate} \item $ \sum_{k=1}^n \big[ (a_k-b_k)\delta_k + b_k \big( e^{(a_k-b_k)(\delta_k-\sigma_k)} - 1 \big) \sigma_k \big] > 1/e$; \item $\sum_{k=1}^n (a_k-b_k) \big[ \delta_k + b_k \sigma_k (\delta_k-\sigma_k)\big] > 1/e$; \item $\sum_{k=1}^n \big[a_k-b_k+a_k \big(e^{(a_k-b_k)(\delta_k-\sigma_k)} - 1 \big) \big] \sigma_k > 1/e$; \item $\sum_{k=1}^n (a_k-b_k)\big[ 1+ a_k (\delta_k-\sigma_k) \big] \sigma_k > 1/e$. \end{enumerate} Then all solutions of (\ref{autonom}) are oscillatory. \end{corollary} Now we proceed with explicit nonoscillation conditions. \begin{proposition} \label{prop38} Suppose either (C1), (C3), (C4) hold and the following inequality is satisfied $$ \limsup_{t \to \infty} \sum_{k=1}^n \int_{h_k(t)}^t \big[ a_k(s) - \frac{1}{e} b_k(s) \big] ds <\frac{1}{e}. $$ or (C1), (C3), (C5) hold and \begin{align*} &\limsup_{t \to \infty} \Big\{\big( 1 - \frac{1}{e} \big) \sum_{k=1}^n \int_{h_k(t)}^t a_k(s)\,ds\\ & + \int_{h(t)}^t \big[ \sum_{k=1}^n a_k(s) - \frac{1}{e} \sum_{l=1}^m b_k(s) \big] ds + \big( 1 - \frac{1}{e} \big) \sum_{l=1}^m \int_{g(t)}^t b_l(s)\,ds \Big\} < \frac{1}{e}. \end{align*} Then (\ref{3zaa}) has a nonoscillatory solution. \end{proposition} Denote $$H(t)=\min_k h_k(t),\quad G(t)=\max_l g_l(t).$$ \begin{proposition} \label{prop39} Suppose there exist $\tilde{a}(t)$, $\tilde{b}(t)$, such that $$\tilde{b}(t) \leq b(t) \leq a(t) \leq \tilde{a}(t),\quad\mbox{where}\quad a(t)= \sum_{k=1}^n a_k(t), ~b(t) = \sum_{l=1}^m b_l(t),$$ there exist finite limits \begin{gather} \label{system1a} B_{11}= \lim_{t \to \infty} \int_{H(t)}^t \tilde{a}(s)\,ds, \quad { B_{12}= \lim_{t \to \infty} \int_{H(t)}^t \tilde{b}(s)\,ds,}\\ \label{system1b} B_{21}= \lim_{t \to \infty} \int_{G(t)}^t \tilde{a}(s)\,ds, \quad { B_{22}= \lim_{t \to \infty} \int_{G(t)}^t \tilde{b}(s)\,ds,} \end{gather} and (C1)--(C3) hold. Suppose, in addition, that the system \begin{gather} \label{system2a} \ln x_1 > x_1 B_{11} - x_2 B_{12} \\ \label{system2b} \ln x_2 < x_1 B_{21} - x_2 B_{22} \end{gather} has a positive solution $(x_1,x_2)$ such that eventually $x_1\tilde{a}(t) \geq x_2\tilde{b}(t)$. Then (\ref{3zaa}) has a nonoscillatory solution. \end{proposition} \begin{proof} Consider the function $u(t) = x_1\tilde{a}(t) - x_2\tilde{b}(t)$. Then $u(t)$ is nonnegative and the system (\ref{system2a})-(\ref{system2b}) yields $$x_1 > \exp \{ x_1 B_{11} - x_2 B_{12} \}, \quad x_2 < \exp \{ x_1 B_{21} - x_2 B_{22} \}. $$ Thus by definitions (\ref{system1a})-(\ref{system1b}) there exists $t_1 > 0$, such that for $t \geq t_1$ \begin{gather*} x_1 \geq \exp \big\{ x_1 \int_{H(t)}^t \tilde{a}(s)\,ds - x_2 \int_{H(t)}^t \tilde{b}(s)\,ds \big\} = \exp \big\{ \int_{H(t)}^t u(s)\,ds \big\} \\ -x_2 \geq - \exp \big\{ x_1 \int_{G(t)}^t \tilde{a}(s)\,ds - x_2 \int_{G(t)}^t \tilde{b}(s)\,ds \big\} = -\exp \big\{ \int_{G(t)}^t u(s)\,ds \big\} \end{gather*} After multiplying the first inequality by $\tilde{a}(t)$, the second one by $\tilde{b}(t)$ and summation we have \begin{align*} u(t) &= x_1\tilde{a}(t) - x_2\tilde{b}(t)\\ &\geq \tilde{a}(t) \exp \big\{ \int_{H(t)}^t u(s)\,ds \big\} - \tilde{b}(t)\exp \big\{\int_{G(t)}^t u(s)\,ds \big\} \\ &\geq a(t)\exp \big\{ \int_{H(t)}^t u(s)\,ds \big\} - b(t)\exp \big\{ \int_{G(t)}^t u(s)\,ds \big\} \\ &= \sum_{k=1}^n a_k(t) \exp \big\{ \int_{H(t)}^t u(s)\,ds \big\} - \sum_{l=1}^m b_l(t)\exp \big\{ \int_{G(t)}^t u(s)\,ds \big\}\\ &\geq \sum_{k=1}^n a_k(t) \exp \big\{ \int_{h_k(t)}^t u(s)\,ds \big\} - \sum_{l=1}^m b_l(t)\exp \big\{ \int_{g_l(t)}^t u(s)\,ds \big\}. \end{align*} By Proposition \ref{prop31}, (\ref{3zaa}) has a nonoscillatory solution. \end{proof} \noindent {\bf Example 1.} Consider the equation \begin{equation} \label{ex1} \dot{x}(t) + \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\mu_k} \big) - \sum_{k=1}^n \frac{b_k}{t}x \big( \frac{t}{\nu_k} \big) =0, ~t \geq t_0>0, \end{equation} where $a_k \geq b_k \geq 0$, $\mu_k \geq \nu_k > 1$. We apply Corollary \ref{corprop361} (Ineq. 4): \begin{align*} &\liminf_{t \to \infty} \big\{ \sum_{k=1}^n \int_{t/\nu_k}^t \big( \frac{a_k-b_k}{s} + \frac{a_k}{s} \int_{s/\mu_k}^{s/\nu_k} \frac{a_k-b_k}{\tau}\,d\tau \big) ds \big\} \\ &= \liminf_{t \to \infty} \big\{ \sum_{k=1}^n \int_{t/\nu_k}^t \big( \frac{a_k-b_k}{s} + \frac{a_k}{s} \big[ \ln \frac{s}{\nu_k} - \frac{s}{\mu_k} \big] (a_k-b_k) \big) ds \big\}\\ &= \liminf_{t \to \infty} \big\{ \sum_{k=1}^n (a_k-b_k) \int_{t/\nu_k}^t \big( \frac{1}{s} + \frac{a_k}{s} \ln \frac{\mu_k}{\nu_k}\big) ds\big\}\\ &= \liminf_{t \to \infty} \big\{ \sum_{k=1}^n (a_k-b_k) \big( 1+a_k\ln\frac{\mu_k}{\nu_k}\big) \big[ \ln t - \ln\frac{t}{\nu_k} \big] \big\} \\ &= \sum_{k=1}^n (a_k-b_k)\big( 1+a_k\ln\frac{\mu_k}{\nu_k}\big) \ln\nu_k \end{align*} Thus if $$ \sum_{k=1}^n (a_k-b_k)\big( 1+a_k\ln\frac{\mu_k}{\nu_k}\big) \ln\nu_k > \frac{1}{e}, $$ then all solutions of (\ref{ex1}) are oscillatory. For nonoscillation results, we apply Proposition \ref{prop38}. \begin{align*} \limsup_{t \to \infty} \big\{ \sum_{k=1}^n \int_{t/\mu_k}^t \big[ \frac{a_k}{s} - \frac{1}{e} \frac{b_k}{s}\big] ds \big\} &=\limsup_{t \to \infty} \big\{ \sum_{k=1}^n \big( a_k - \frac{1}{e} b_k \big) \big( \ln t - \ln \frac{t}{\mu_k} \big) \big\}\\ &= \sum_{k=1}^n \big( a_k - \frac{1}{e} b_k \big)\ln \mu_k \end{align*} Thus if $\sum_{k=1}^n \big( a_k - \frac{1}{e} b_k \big)\ln \mu_k < 1/e$, then (\ref{ex1}) has a nonoscillatory solution. \smallskip \noindent {\bf Example 2.} Consider the equation \begin{equation} \label{ex2} \dot{x}(t) + \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\mu_k} \big) - \frac{b}{t}x \big( \frac{t}{\nu} \big) =0, \quad t \geq t_0>0, \end{equation} where ${ \sum_{k=1}^n a_k \geq b \geq 0}$, $\mu_k \geq \nu > 1$. Unlike in Example 1, here the number of positive terms is not equal to the number of negative terms. This equation can be rewritten in one of the following forms: \begin{enumerate} \item ${\dot{x}(t) + \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\mu_k} \big) - \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\nu} \big) + \big( \sum_{k=1}^n \frac{a_k}{t} \big) x \big( \frac{t}{\nu} \big) - \frac{b}{t}x \big( \frac{t}{\nu} \big) =0}$ \item ${\dot{x}(t) + \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\mu_k} \big)- \sum_{k=1}^n \frac{b_k}{t}x \big( \frac{t}{\nu} \big) =0}$, where $b_1=b, ~ b_k=0, k>1$ and $a_1 \geq b$. \item ${\dot{x}(t) + \sum_{k=1}^n \frac{a_k}{t}x \big( \frac{t}{\mu_k} \big) - \sum_{k=1}^n \frac{\lambda_k b}{t}x \big( \frac{t}{\nu} \big) =0}$, where $\lambda_k>0$, $ \sum_{k=1}^n \lambda_k=1$ and $a_k \geq \lambda_k b$. \end{enumerate} A computation similar to Example 1 yields that if anyone of the following three conditions holds \begin{enumerate} \item ${ \big( \sum_{k=1}^n a_k-b \big) \ln \nu >\frac{1}{e}}$ \item $a_1 \geq b$ and ${(a_1-b)\big( 1+a_1 \ln \frac{\mu_1}{\nu} \big) \ln \nu + \big( \sum_{k=2}^n a_k \big) \big( 1+a_k\ln \frac{\mu_k}{\nu} \big) \ln \nu > 1/e}$ \item For each $k$ $a_k \geq \lambda_k b$ and $\sum_{k=1}^n \big( a_k - \lambda_k b \big) \big( 1+ a_k\ln \frac{\mu_k}{\nu} \big) \ln \nu > 1/e$. \end{enumerate} then all solutions of (\ref{ex2}) are oscillatory. If anyone of the following three conditions holds \begin{enumerate} \item $\sum_{k=1}^n a_k \big( 1 - \frac{1}{e} \big)\ln \mu_k + \big( \sum_{k=1}^n a_k-b \big) \ln \nu < 1/e$, \item $a_1 \geq b$ and ${ \big( a_1 - \frac{1}{e} b \big) \ln \mu_1 + \sum_{k=2}^n a_k \ln \mu_k < \frac{1}{e}}$, \item For each $k$ $a_k \geq \lambda_k b$ and $ \sum_{k=1}^n \big( a_k - \frac{1}{e} \lambda_k b \big) \ln \mu_k < 1/e$, \end{enumerate} then (\ref{ex2}) has a nonoscillatory solution. \section{Integrodifferential Equations} \label{section4} In this section we will study the following integrodifferential equation \begin{equation} \label{5zaa} \dot{x}(t) + \int_{0}^t K(t,s) x(s) ~ ds - \int_{0}^t M(t,s) x(s)~ ds = 0, \end{equation} (\ref{5zaa}) is a special case of (\ref{1}) if we assume \begin{equation} \label{6zaa} R(t,s) = \int_{0}^s K(t,\zeta) \,d\zeta, \quad T(t,s) = \int_{0}^s M(t,\zeta) \,d\zeta. \end{equation} The hypotheses of Lemma \ref{theorem1} are satisfied for the delay equation (\ref{5zaa}) if the following conditions hold: \begin{itemize} \item[(I1)] $K(t,s)$, $M(t,s)$ are Lebesgue integrable over each finite square $[0,b] \times [0,b]$ functions; \item[(I2)] There exist finite functions $h(t),g(t)$ such that $h(t) = \inf\{ s| K(t,s) \geq 0 \}$, $g(t) = \inf\{ s| M(t,s) \geq 0 \}$ and $\lim_{t \to \infty} h(t) = \infty$, $\lim_{t \to \infty} g(t) = \infty$; \item[(I3)] For each $t,s$ $K(t,s) \geq 0$, $M(t,s) \geq 0$ and $$ \int_{h(s)}^s K(t,\tau)\,d \tau \geq \int_{g(s)}^s M(t,\tau)\,d \tau .$$ \end{itemize} For $t_0\geq 0$ consider an initial-value problem \begin{gather} \label{*} \dot{x}(t) + \int_{h(t)}^t K(t,s) x(s)\, ds - \int_{g(t)}^t M(t,s)x(s) \, ds = 0, \quad t > t_{0}. \\ \label{initsec4} x(t)=\varphi(t), \quad t0$, $t\geq s\geq t_2$, where $X(t,s)$ is a fundamental function of (\ref{5zaa}); \item (\ref{5zaa}) has a nonoscillatory solution; \item Inequality \begin{equation} \label{5zaaineq} \dot{y}(t) + \int_{t_0}^t K(t,s) y(s) ~ ds - \int_{t_0}^t M(t,s)y(s) ~ ds \leq 0 \end{equation} has an eventually positive solution. \end{enumerate} Then the implications $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4)$ are valid. \end{proposition} Now let us apply Lemma \ref{theorem2} to (\ref{5zaa}). Let us introduce the following additional assumption \begin{itemize} \item[(I4)] $K(t,s) \geq M(t,s-h(t)+g(t))$ for each $t,s$ and $$ \limsup_{t \to \infty} [g(t)-h(t)] \int_{g(t)}^t M(t,s) \,ds < 1. $$ \end{itemize} \begin{proposition} \label{prop42} Suppose (I1)--(I4) hold. Then all four hypotheses of Proposition \protect{\ref{prop41}} are equivalent. \end{proposition} In addition to (\ref{5zaa}) consider the integrodifferential equation \begin{equation} \label{intdif} \dot{x}(t) + \sum_{i=1}^n \int_{h_i(t)}^t K_i(t,s)x(s)\,ds - \sum_{l=1}^m \int_{g_l(t)}^t M_l(t,s)x(s)\,ds =0, \end{equation} where the following conditions hold: \begin{itemize} \item[(I1$^\star$)] $K_i(t,s)$, $M_l(t,s)$ are Lebesgue integrable over each finite square $[0,b] \times [0,b]$ functions; \item[(I2$^\star$)] There exist finite functions $h_i(t) = \inf\{ s| K_i(t,s) \geq 0 \}$, \\ $g_l(t) = \inf\{ s| M_l(t,s) \geq 0 \}$ and $\lim_{t \to \infty} h_i(t) = \infty$, $\lim_{t \to \infty} g_l(t) = \infty$; \item[(I3$^\star$)] For each $t,s,i,l$ ~~~ $K_i(t,s) \geq 0$, $M_l(t,s) \geq 0$, $$ \sum_{i=1}^n \int_{h_i(t)}^t K_i(t,\tau)\,d \tau \geq \sum_{l=1}^m \int_{g_l(t)}^t M_l(t,\tau)\,d \tau $$ and one of two following conditions is satisfied: \item[(I4$^\star$)] $m=n$, $K_i(t,s) \geq M_i(t,s)$ for each $t,s$, $i=1, \dots,n$, for any $t,i$ $K_i(t,s) \geq M_i(t,s-h_i(t)+g_i(t))$ and $$ \limsup_{t \to \infty} \sum_{i=1}^n [g_i(t)-h_i(t)] \int_{g_i(t)}^t M_i(t,s) \,ds < 1.$$ \item[(I5$^\star$)] For each $i,l,t,s$ $h(t) \leq g(t)$, where $h,g$ are defined in (\ref{hgnotation}) and $$ K(t,s) = \sum_{i=1}^m K_i(t,s) \geq \sum_{l=1}^l M_l(t,s) = M(t,s), $$ we have $K(t,s) \geq M(t,s-h(t)+g(t))$ and \begin{equation} \label{add2formulaint} \begin{aligned} &\limsup_{t\to \infty} \Big[ (g(t)-h(t)) \int_{g(t)}^t M(t,s) \,ds + \sum_{i=1}^n (h(t)-h_i(t)) \int_{h_i(t)}^{t} K_i(t,s)\,ds \\ &+ \sum_{l=1}^m (g_l(t)-g(t)) \int_{g_l(t)}^{t} M_l(t,s)\,ds \Big] < 1. \end{aligned} \end{equation} \end{itemize} \begin{proposition} \label{prop43} Suppose (I1$^\star$)--(I3$^\star$) and one of (I4$^\star$),(I5$^\star$) hold. Then the following hypotheses are equivalent: \begin{enumerate} \item Inequality \begin{equation} \label{intdifineq} \dot{y} + \sum_{i=1}^n \int_{h_i(t)}^t K_i(t,s)y(s)\,ds - \sum_{l=1}^m \int_{g_l(t)}^t M_l(t,s)y(s)\,ds \leq 0, \quad t \geq 0, \end{equation} has an eventually positive solution; \item There exists $t_2\geq 0$ such that $X(t,s)>0, ~t\geq s\geq t_2$, where $X(t,s)$ is a fundamental function of (\ref{intdif}); \item (\ref{intdif}) has a nonoscillatory solution. \item There exists $t_3\geq 0$ such that for $t \geq t_3$ the inequality \begin{equation} \label{intdif44star} \begin{aligned} u(t)&\geq \sum_{i=1}^n \int_{h_i(t)}^t K_i(t,s) \exp \big\{\int_{s}^t u(\tau)d \tau \big\}\,ds\\ &\quad - \sum_{l=1}^m \int_{g_l(t)}^t M_l(t,s) \exp\big\{\int_{s}^t u(\tau)d \tau \big\}\,ds \end{aligned} \end{equation} has a nonnegative locally integrable solution. \end{enumerate} \end{proposition} We proceed with comparison results which are deduced from Lemma \ref{theorem4}. To this end consider the equation \begin{equation} \label{intdifcomp} \dot{x}(t) + \sum_{i=1}^n \int_{\tilde{h}_k(t)}^t \tilde{K}_i(t,s) x(s) ~ ds - \sum_{l=1}^m \int_{\tilde{g}_l(t)}^t \tilde{M}_l(t,s) x(s) ~ ds = 0. \end{equation} For (\ref{intdifcomp}) $h_i$,$g_l$ are changed by $\tilde{h}_i, \tilde{g}_l$, respectively. \begin{proposition} \label{prop44} \begin{enumerate} \item Suppose (I1$^{\star}$)--(I3$^{\star}$) and at least one of (I4$^{\star}$),(I5$^{\star}$) hold, where $K_i$,$M_l$,$h$,$g$ are changed by $\tilde{K}_i, \tilde{M}_l, \tilde{h}, \tilde{g}$, respectively. If $\tilde{K}_i(t,s) \geq K_i(t,s)$, $\tilde{M}_l(t,s) \leq M_l(t,s)$ and (\ref{intdifcomp}) has a nonoscillatory solution, then (\ref{intdif}) also has a nonoscillatory solution. \item Suppose (I1$^{\star}$)-(I3$^{\star}$) and at least one of (I4$^{\star}$),(I5$^{\star}$) hold. If $\tilde{K}_i(t,s) \leq K_i(t,s)$, $\tilde{M}_l(t,s) \geq M_l(t,s)$ and all solutions of (\ref{intdifcomp}) are oscillatory, then all solutions of (\ref{intdif}) are also oscillatory. \end{enumerate} \end{proposition} \begin{corollary} \label{corprop441} \begin{enumerate} \item Suppose (I1$^\star$)--(I3$^\star$), (A1) and at least one of (A2), (A3) hold. If for each $t,i,l$ $$ \int_{h_i(t)}^t K_i(t,s) \,ds \leq c_i,~~ \int_{g_l(t)}^t M_l(t,s) \,ds \geq d_l$$ and (\ref{autonom}) has a nonoscillatory solution, then (\ref{intdif}) also has a nonoscillatory solution. \item Suppose (I1$^\star$), (I3$^\star$), (A1) and at least on of (I4$^\star$), (I5$^\star$) hold. If for each $t,i,l$ $$ \int_{h_i(t)}^t K_i(t,s) \,ds \geq c_i,~~ \int_{g_l(t)}^t M_l(t,s) \,ds \leq d_l$$ and all solutions of (\ref{autonom}) are oscillatory, then all solutions of (\ref{intdif}) are also oscillatory. \end{enumerate} \end{corollary} Lemma \ref{theorem5} immediately implies the following result on the asymptotic behaviour of solutions. \begin{proposition} \label{prop45} Suppose (I1$^{\star}$)--(I3$^{\star}$) is satisfied and anyone of the following conditions holds: \begin{enumerate} \item (I4$^{\star}$) is satisfied and for some $l$, $\int_{0}^{\infty} \big[ \int_{t_0}^t (K_l(t,s)- M_l(t,s))\,ds \big]\,dt = \infty$ \item (I5$^{\star}$) is satisfied and $\int_{0}^{\infty} \big[ \int_{t_0}^t (K(t,s)-M(t,s))\,ds \big]\,dt = \infty$. \end{enumerate} Then any nonoscillatory solution $y$ of (\ref{intdif}) satisfies ${ \lim_{t \to \infty} y(t) = 0}$. \end{proposition} Lemma \ref{theorem7} yields oscillation conditions for (\ref{intdif}). \begin{proposition} \label{prop46} Suppose hypotheses (I1$^{\star}$)--(I4$^{\star}$) hold. If all solutions of anyone of the following two equations are oscillatory \begin{equation} \label{24intdif} \begin{aligned} &\dot{x}(t) + \sum_{l=1}^n \int_{h_l(t)}^t \big[ K_l(t,s) - M_l(t,s-h_l(t) + g_l(t)) \big] x(s)\,ds + \sum_{l=1}^n \int_{g_l(t)}^t M_l(t,s) x(s) \\ &\times \Big( \exp \big\{ \int_{s+h_l(t) -g_l(t)}^s \!\!\!\! d\tau \int_{h_l(\tau)}^{\tau} \big[ K_l(\tau,\zeta) - M_l(\tau,\zeta) \big] d\zeta \big\} - 1 \Big) ds=0\,, \end{aligned} \end{equation} \begin{equation} \label{25intdif} \begin{aligned} &\dot{x}(t) + \sum_{l=1}^n \int_{g_l(t)}^t K_l(t,s+h_l(t) -g_l(t))x(s)\\ &\times \Big( \exp \big\{ \int_{s+h_l(t) -g_l(t)}^s d\tau \int_{h_l(\tau)}^{\tau} \big[ K_l(\tau,\zeta) - M_l(\tau,\zeta) \big] d\zeta \big\} - 1 \Big) \\ &+ \sum_{l=1}^n \int_{g_l(t)}^t \big[ K_l(t,s+h_l(t) -g_l(t)) - M_l(t,s) \big] x(s)\,ds =0\,, \end{aligned} \end{equation} then all solutions of (\ref{intdif}) are also oscillatory. \end{proposition} \noindent{\bf Remark.} Since (I5$^{\star}$) is a special case of (I4$^{\star}$), similar equations can be presented if (I1$^{\star}$)-(I3$^{\star}$),(I5$^{\star}$) are satisfied. \smallskip The oscillation conditions for integrodifferential equations with nonnegative kernels \cite{ZAA} lead to the following result. \begin{corollary}\label{corprop461} Suppose the hypotheses (I1)-(I4) hold for (\ref{5zaa}) and at least one of the following inequalities is valid: \begin{multline*} \llap{\rm 1)}\quad \liminf_{t \to \infty}\Big\{ \int_{h(t)}^t \big[ \int_{h(s)}^s K(t,\tau)\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau \big] ds \\ + \int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \big( \exp\big\{\int_{s+h(t)-g(t)}^s \big[ \int_{h(u)}^u K(u,\tau)d\tau\\ - \int_{g(u)}^u M(u,\tau)d\tau \big] d u \big\} - 1 \big) M(t,s)ds \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm 2)}\quad \liminf_{t \to \infty} \Big\{ \int_{h(t)}^t \big[ \int_{h(s)}^s K(t,\tau)\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau \big] \,ds\\ + \int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \big( \int_{s+h(t)-g(t)}^s \big[ \int_{h(u)}^u K(u,\tau)\,d\tau\\ - \int_{g(u)}^u M(u,\tau)\,d\tau \big] d u \big) M(t,s) \,ds \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm 3)}\quad \liminf_{t \to \infty} \Big\{ \int_{g(t)}^t d\tau \int_{g(\tau)}^{\tau} \Big( \exp\big\{\int_{s-g(t)+h(t)}^s \big[ \int_{h(u)}^u K(u,\tau)d\tau \\ - \int_{g(u)}^u M(u,\tau)d\tau \big] du \big\} - 1\Big)K(t,s-g(t)+h(t))ds \\ + \int_{g(t)}^t \big[ \int_{h(s)}^s K(t,\tau-g(t)+h(t))\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau \big] ds \Big\} > \frac{1}{e} \end{multline*} \begin{multline*} \llap{\rm 4)}\quad \liminf_{t \to \infty} \Big\{ \int_{g(t)}^t d\tau \int_{g(\tau)}^{\tau}\Big( \int_{s-g(t)+h(t)}^s \Big[ \int_{h(u)}^u K(u,\tau)d\tau\\ -\int_{g(u)}^u M(u,\tau)d\tau \Big] d u \Big) K(t,s-g(t) +h(t))ds \\ + \int_{g(t)}^t \big[ \int_{h(s)}^s K(t,\tau-g(t)+h(t))\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau \big] ds \Big\} > \frac{1}{e} \end{multline*} Then all solutions of (\ref{5zaa}) are oscillatory. \end{corollary} Lemma \ref{theorem9} implies the following nonoscillation results for (\ref{intdif}). \begin{proposition}\label{prop47} Suppose (I1$^{\star}$)--(I4$^{\star}$) and the following inequality \begin{equation}\label{eq25} \limsup_{t \to \infty} \sum_{l=1}^n \int_{h_l(t)}^t \big[ \int_{h_l(s)}^s K_l (s, \tau)\,d\tau - \frac{1}{e} \int_{g_l(s)}^s M_l (s, \tau)\,d\tau \big] ds < \frac{1}{e} \end{equation} hold. Then (\ref{intdif}) has a nonoscillatory solution. \end{proposition} \begin{proposition} \label{prop48} Suppose (I1$^{\star}$)--(I3$^{\star}$),(I5$^{\star}$) and the following inequality \begin{align*} &\limsup_{t \to \infty} \big\{ \sum_{l=1}^n \big( 1 - \frac{1}{e} \big) \int_{h_l(t)}^t ds \int_{h_l(s)}^s K_l (s, \tau)\,d\tau \int_{0}^t ds \big[ \int_{0}^s K(s, \tau)\,d\tau\\ &- \frac{1}{e} \int_{0}^s M(s, \tau)\,d\tau \big] +\big( 1 - \frac{1}{e} \big) \int_{g_l(t)}^t ds \int_{g_l(s)}^s M_l (s, \tau)\,d\tau \big\} < \frac{1}{e} \end{align*} hold. Then (\ref{intdif}) has a nonoscillatory solution. \end{proposition} Similar to Proposition \ref{prop39} the following result can be obtained. Let $H(t) = \min_i h_i(t), G(t) = \max_l g_l (t)$. \begin{proposition} \label{prop49} Suppose there exist $\tilde{K}(t,s)$, $\tilde{M}(t,s)$, such that $$ \tilde{M}(t,s) \leq M(t,s) \leq K(t,s) \leq \tilde{K}(t,s), $$ where $K(t,s)= \sum_{i=1}^n K_i(t,s)$, $M(t,s) = \sum_{l=1}^m M_l(t,s)$, the following limits exist and are finite: \begin{gather} \label{system1aintdif} B_{11}= \lim_{t \to \infty} \int_{H(t)}^t ds \int_{H(s)}^s \tilde{K}(s,\tau)\,d\tau, { B_{12}= \lim_{t \to \infty} \int_{H(t)}^t ds \int_{H(s)}^s \tilde{M}(s,\tau)\,d\tau,} \\ \label{system1bintdif} B_{21}= \lim_{t \to \infty} \int_{G(t)}^t ds \int_{G(s)}^s \tilde{K}(s,\tau)\,d\tau, { B_{22}= \lim_{t \to \infty} \int_{G(t)}^t ds \int_{G(s)}^s \tilde{M}(s,\tau)\,d\tau,} \end{gather} and (I1)--(I4) hold for $\tilde{K}(t,s)$, $\tilde{M}(t,s)$. Suppose, in addition, that the system \begin{gather} \label{system2aintdif} \ln x_1 > x_1 B_{11} - x_2 B_{12} \\ \label{system2bintdif} \ln x_2 < x_1 B_{21} - x_2 B_{22} \end{gather} has a positive solution $(x_1,x_2)$ such that eventually $$ x_1 \int_{h(t)}^t \tilde{K}(t,s)\,ds \geq x_2 \int_{g(t)}^t \tilde{M}(t,s)\,ds. $$ Then (\ref{intdif}) has a nonoscillatory solution. \end{proposition} \noindent{\bf Example 3.} Consider the integrodifferential equation \begin{equation} \label{newloc1} \dot{x}(t) + \int_0^t L(t,s) x(s)\,ds=0. \end{equation} Let $\alpha >0$, \begin{gather*} L(t,s) = \begin{cases} \alpha \sin(s-t), & 0 \leq t-s \leq 2\pi, \\ 0, & \mbox{otherwise}, \end{cases} \\ K(t,s) = L^+(t,s)=\frac{1}{2} (|L(t,s)|+L(t,s))=\alpha \sin(s-t) \chi_{[t-2\pi,t-\pi]}(s),\\ M(t,s) = L^-(t,s)=\frac{1}{2} (|L(t,s)|-L(t,s))= -\alpha \sin(s-t)\chi_{[t-\pi,t]}(s). \end{gather*} Then $h(t)=t-2\pi, ~g(t)= t-\pi, M(t,s+\pi)=K(t,s)$ and \begin{align*} &\limsup_{t \to \infty} \big\{ [g(t)-h(t)] \int_{g(t)}^t M(t,s)\,ds \big\}\\ &= \limsup_{t \to \infty} \big\{ [g(t)-h(t)] \int_{t-\pi}^t \alpha (-\sin(s-t))\,ds \big\} \\ & = \limsup_{t \to \infty} \big\{ \pi \alpha \big( \cos 0 - \cos(-\pi) \big) \big\} = 2\pi \alpha. \end{align*} Thus the hypothesis (I4) holds for (\ref{newloc1}) if $\alpha < 1/(2\pi)$. Let us proceed to nonoscillation conditions for this equation. To this end we will apply Proposition \ref{prop47}. We have \begin{gather*} \int_{h(t)}^t K(t,s)\,ds = \int_{t-2\pi}^{t-\pi} \alpha \sin(s-t)\,ds = 2\alpha, \\ \int_{g(t)}^t M(t,s)\,ds = - \int_{t-\pi}^{t} \alpha \sin(s-t)\,ds = 2 \alpha, \end{gather*} which after the substitution in (\ref{eq25}) yields \begin{align*} \limsup_{t \to \infty} \int_{h(t)}^t \Big[ \int_{h(s)}^s K (s, \tau)\,d\tau - \frac{1}{e} \int_{g(s)}^s M (s, \tau)\,d\tau \Big] ds &= [t-h(t)] 2\alpha \big(1 - \frac{1}{e} \big)\\ &= 2 \pi 2\alpha \frac{e-1}{e} < \frac{1}{e}, \end{align*} which is satisfied when $4\pi \alpha (e-1) < 1$. Consequently, if $\alpha < \frac{1}{4\pi (e-1)}$, then (\ref{newloc1}) has a nonoscillatory solution. \smallskip \noindent {\bf Example 4.} Let $0<\alpha < \beta$. Consider equation (\ref{newloc1}) with $$ L(t,s) = \begin{cases} \alpha \sin(s-t), & 0 \leq t-s \leq \pi, \\ \beta \sin(s-t), & \pi \leq t-s \leq 2\pi, \\ 0, & \mbox{otherwise}, \end{cases} $$ Then $K(t,s) = \beta \sin(s-t) \chi_{[t-2\pi,t-\pi]}(s)$, $M(t,s) = \alpha \sin(s-t) \chi_{[t-\pi,t]}(s)$ and $$ \limsup_{t \to \infty} \big\{ [g(t)-h(t)] \int_{g(t)}^t M(t,s)\,ds\big\} = 2\pi \alpha . $$ The hypothesis (I4) holds for (\ref{newloc1}) if in addition $\alpha<\frac{1}{2\pi}$. Similarly to Example 1, if $4 \pi (\beta e-\alpha)< 1$, we have \begin{align*} \int_{h(t)}^t \big[ \int_{h(s)}^s K(s,\tau)\,d\tau -\frac{1}{e} \int_{g(s)}^s M(s,\tau)\,d\tau \big] \,ds &= 2\pi 2 \big( \beta - \frac{\alpha}{e} \big) \\ &= \frac{4 \pi}{e} (\beta e-\alpha)< \frac{1}{e}\,. \end{align*} Consequently, if $\beta e-\alpha< \frac{1}{4 \pi}$, then (\ref{newloc1}) has a nonoscillatory solution. For this kernel we can also obtain oscillation conditions. Since $$ \int_{h(s)}^s K(t,\tau)\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau = 2 (\beta - \alpha) $$ for $t-\pi \leq \tau \leq t$, we have $$ \int_{h(u)}^u K(u,\tau)\,d\tau -\int_{g(u)}^u M(u,\tau)\,d\tau = 2(\beta - \alpha). $$ Then after substituting these results into the first formula in Corollary \ref{corprop461} we have \begin{align*} &\liminf_{t \to \infty}\Big\{ \int_{h(t)}^t \Big[ \int_{h(s)}^s K(t,\tau)\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau\Big] ds \\ &+ \int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \Big( \exp\Big\{\int_{s+h(t)-g(t)}^s \big[ \int_{h(u)}^u K(u,\tau)\,d\tau \\ &- \int_{g(u)}^u M(u,\tau)\,d\tau \big]d u \Big\} - 1 \Big) M(t,s) \,ds\Big\}\\ & \geq \int_{t-\pi}^t \Big[\int_{h(s)}^s K(t,\tau)\,d\tau - \int_{g(s)}^s M(t,\tau-h(t)+g(t))\,d\tau \Big]ds\\ &\quad + 2(\beta -\alpha) \int_{g(t)}^{t} d \tau \int_{h(\tau)}^{\tau} \big( e^{2\pi (\beta-\alpha)} -1 \big) \,d_s T(t,s) \\ &= 2\pi(\beta -\alpha) + \big( e^{2\pi (\beta-\alpha)} -1 \big) 2\pi. \end{align*} Thus if $2\pi(\beta -\alpha + \exp \{ 2\pi (\beta-\alpha) \} -1 ) > 1/e$, then all solutions of (\ref{newloc1}) are oscillatory. \section{Mixed Equations} \label{section5} In this section we will consider mixed equations \begin{equation} \label{11zaa} \begin{aligned} &\dot{x}(t) + \sum_{k=1}^n a_k(t) x(h_k(t)) - \sum_{l=1}^mb_l(t) x(g_l(t)) + \sum_{i=1}^r \int_{0}^t K_i(t,s) x(s)ds \\ &-\sum_{j=1}^p \int_{0}^t M_j(t,s) x(s)ds =0, \quad t \geq t_0\geq 0, \end{aligned} \end{equation} with the initial conditions \begin{equation} \label{initsec5} x(t)=\varphi(t), \quad t0$, $t \geq s \geq t_2$; \item Equation (\ref{11zaa}) has a nonoscillatory solution; \item The inequality \begin{equation} \label{11zaaineq} \begin{aligned} &\dot{y}(t) + \sum_{k=1}^n a_k(t) y(h_k(t)) - \sum_{l=1}^m b_l(t) y(g_l(t))\\ &+ \sum_{i=1}^r \int_{0}^t K_i(t,s) y(s)\,ds - \sum_{j=1}^p \int_{0}^t M_j(t,s) x(s)\,ds \leq 0 \end{aligned} \end{equation} has an eventually positive solution. \end{enumerate} \end{proposition} The comparison result for equation (\ref{11zaa}) combines Propositions \ref{prop34} and \ref{prop44}. Consider the comparison equation \begin{equation} \label{11zaacomp} \begin{aligned} &\dot{x}(t) + \sum_{k=1}^n \tilde{a}_k(t) x(\bar{h}_k(t)) - \sum_{l=1}^m \tilde{b}_l(t) x(\bar{g}_l(t)) \\ &+ \sum_{i=1}^r \int_{0}^t \tilde{K}_i(t,s) x(s)\,ds - \sum_{j=1}^p \int_{0}^t \tilde{M}_j(t,s) x(s)\,ds = 0. \end{aligned} \end{equation} \begin{proposition} \label{prop52} 1) Suppose (C1)-(C3),(I1$^{\star}$)-(I3$^{\star}$) and either (M1) or (M2) hold for (\ref{11zaacomp}), where $a_k,b_l,h_k,g_l$,$K_i$,$M_l$ are changed by $\tilde{a}_k,\tilde{b}_l,\bar{h}_k,\bar{g}_l, \tilde{K}_i,\tilde{M}_l$, respectively. If $\tilde{a}_k (t) \geq a_k(t)$, $\tilde{b}_l (t) \leq b_l(t)$, $\bar{h}_k (t) \leq h_k(t)$, $\bar{g}_l(t)\geq g_l(t)$, $\tilde{K}_i(t,s) \geq K_i(t,s)$, $\tilde{M}_l(t,s) \leq M_l(t,s)$ and (\ref{11zaacomp}) has a nonoscillatory solution, then (\ref{11zaa}) also has a nonoscillatory solution. \\ 2) Suppose (C1)-(C3),I1$^{\star}$)-(I3$^{\star}$) and either (M1) or (M2) hold for (\ref{11zaa}). If $\tilde{a}_k (t) \leq a_k(t)$, $\tilde{b}_l (t) \geq b_l(t)$, $\bar{h}_k (t) \geq h_k(t)$, $\bar{g}_l(t)\leq g_l(t)$, $\tilde{K}_i(t,s) \leq K_i(t,s)$, $\tilde{M}_l(t,s) \geq M_l(t,s)$ and all solutions of (\ref{11zaacomp}) are oscillatory, then all solutions of (\ref{11zaa}) are also oscillatory. \end{proposition} \begin{proposition} \label{prop53} Suppose (C1)--(C3), (I1$^{\star}$)--(I3$^{\star}$), (M1) hold and either there exists such $k$ that ${ \int_{0}^{\infty} \big[ a_k(t) - b_k(t) \big] dt =\infty } $ or there exists such $i$ that $$ \int_{0}^{\infty} \Big[ \int_{\tilde{h}_i(t)}^t K_i(t,s)\,ds - \int_{\tilde{g}_i(t)}^t M_i(t,s)\,ds \Big] dt = \infty. $$ Then any nonoscillatory solution of (\ref{11zaa}) tends to zero at infinity. \end{proposition} \noindent{\bf Remark.} Similar result can be obtained if (C1)--(C3), I1$^{\star}$)--(I3$^{\star}$), (M2) are satisfied. Proposition \ref{prop54} presents oscillation conditions for (\ref{11zaa}). \begin{proposition} \label{prop54} Suppose (C1)--(C3), (I1$^{\star}$)--(I3$^{\star}$), (M1) and the following inequality hold \begin{align*} &\liminf_{t \to \infty} \Big\{ \sum_{k=1}^n [a_k(t)-b_k(t)](t-h_k(t)) \\ &+ \sum_{k=1}^n b_k(t) \Big( \exp \big\{ \int_{h_k(t)}^{g_k(t)} [a_k(s)-b_k(s)] ds \big\} - 1 \Big) (t-g_k(t)) \\ &+ \sum_{i=1}^r \int_{\tilde{h}_i(t)}^t \Big[ \int_{\tilde{h}_i(s)}^s K_i(t,\tau)\,d\tau - \int_{\tilde{g}_i(s)}^s M_i(t,\tau-\tilde{h}_i(t)+\tilde{g}_i(t))\,d\tau \Big] ds\\ &+ \sum_{i=1}^r \int_{\tilde{g}_i(t)}^{t} \!\!\!\! d \tau \int_{\tilde{h}_i(\tau)}^{\tau} \Big( \exp\Big\{\int_{s+\tilde{h}_i(t)-\tilde{g}_i(t)}^s \Big[ \int_{\tilde{h}_i(u)}^u K_i(u,\tau)d\tau \\ & -\int_{\tilde{g}_i(u)}^u \!\! M_i(u,\tau)d\tau \Big] d u \Big\} - 1 \Big) M_i(t,s)ds\Big\} > \frac{1}{e} \end{align*} Then all solutions of (\ref{11zaa}) are oscillatory. \end{proposition} \noindent{\bf Remark.} Similarly to inequality 1) in Corollary \ref{cortheorem71} other oscillation conditions for (\ref{11zaa}) can be deduced using inequalities 2)-4) of this corollary. Proposition \ref{prop55} present nonoscillation conditions. \begin{proposition} \label{prop55} Suppose (C1)--(C3), (I1$^{\star}$)--(I3$^{\star}$), (M1) and the following inequality holds \begin{align*} &\limsup_{t \to \infty} \Big\{ \sum_{k=1}^n \int_{h_k(t)}^t \big[ a_k(s)- \frac{1}{e} b_k(s) \big]ds\\ &+ \sum_{i=1}^r \int_{\tilde{h}_i(t)}^{t} ds \Big[\int_{\tilde{h}_i(s)}^s K_i(s,\tau)\,d\tau - \frac{1}{e}\int_{\tilde{g}_i(s)}^s M_i(s,\tau)\,d\tau \Big] \Big\} < \frac{1}{e}. \end{align*} Then (\ref{11zaa}) has a nonoscillatory solution. \end{proposition} \noindent {\bf Remark.} Similar results are obtained (see Propositions \ref{prop38}, \ref{prop47} and \ref{prop48}) if (M2) is satisfied instead of (M1). As a final example, consider the following equation of the mixed type \begin{equation} \label{11zaastar} \dot{x}(t) + \sum_{k=1}^n a_k(t)x(h_k(t)) - \int_{0}^t K(t,s)x(s)\,ds =0, \end{equation} under the following conditions: \begin{itemize} \item[(m1)] $a_k \geq 0$ are Lebesgue measurable bounded functions, $K$ is Lebesgue integrable over each finite square $[0,b] \times [0,b]$; \item[(m2)] There exists finite function $g(t) = \inf \{ s| K(t,s) > 0 \}$ and $\lim_{t \to \infty} g(t) = \infty$; $\lim_{t \to \infty} h_k(t)= \infty$ for each $k$; \item[(m3)] For any $t\geq s\geq 0$, $\sum_{k=1}^n a_k(t) \chi_{[h_k(t), \infty) (s) \geq \int_{g(s)}^s K(t,\tau) \,d\tau }$. \end{itemize} Consider also the following hypothesis \begin{itemize} \item[(m4)] There exist constants $c_1, \dots, c_n$, ${ \sum_{k=1}^n c_k=1} $ such that $$ a_k(t) \chi_{[h_k(t), \infty)} (s) \geq c_k \int_{s-h_k(t)}^{s-h_k(t)+g(t)} K(t,\tau)\,d\tau $$ and $$ \limsup_{t \to \infty} \big\{ \big[ \sum_{k=1}^n c_k(g(t)-h_k(t)) \big] \int_{g(t)}^t K(t,s)\,ds \big\} < 1 . $$ \end{itemize} \begin{proposition} \label{prop56} Suppose (m1)--(m3) hold. Consider the following hypotheses \begin{enumerate} \item There exists $t_1 \geq 0$ such that the inequality $$ u(t) \geq \sum_{k=1}^n a_k(t) \exp \big\{ \int_{h_k(t)}^t u(s)ds \big\} - \int_{g(t)}^t K(t,s) \exp \big\{ \int_{s}^t u(\tau)d\tau \big\}, ~t \geq t_1 $$ has a nonnegative locally integrable solution (we assume $u(t)=0$ for $t0$, $t\geq s \geq t_2$; \item Equation (\ref{11zaastar}) has a nonoscillatory solution; \item The inequality \begin{equation} \label{11zaastarineq} \dot{y}(t) + \sum_{k=1}^n a_k(t)y(h_k(t)) - \int_{0}^t K(t,s)y(s)\,ds \leq 0 \end{equation} has an eventually positive solution. \end{enumerate} Then the implications $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 4)$ are valid. If in addition (m4) holds then hypotheses 1)--4) are equivalent. \end{proposition} To deduce a comparison result we introduce the equation \begin{equation} \label{11starcomp} \dot{x}(t) + \sum_{k=1}^n b_k(t)x(\tilde{h}_k(t)) - \int_{0}^t M(t,s)x(s)\,ds =0. \end{equation} \begin{proposition} \label{prop57} 1) Suppose (m1)-(m4) hold, where $a_k,h_k,K$ are changed by $b_k,\tilde{h}_k, M$, respectively. If $b_k(t) \geq a_k(t), \tilde{h}_k(t) \leq h_k(t), M(t,s) \geq K(t,s)$ for each $t,s,k$ and (\ref{11starcomp}) has a nonoscillatory solution, then (\ref{11zaastar}) also has a nonoscillatory solution.\\ 2) Suppose (m1)-(m4) hold. If $b_k(t) \leq a_k(t), \tilde{h}_k(t) \geq h_k(t), M(t,s) \leq K(t,s)$ for each $t,s,k$ and all solutions of (\ref{11starcomp}) are oscillatory, then all solutions of (\ref{11zaastar}) are also oscillatory. \end{proposition} \begin{proposition} \label{prop58} Suppose (m1)--(m4) hold and $$ \int_{0}^{\infty} \Big[ \sum_{k=1}^n a_k(t) - \int_{g(t)}^t K(t,s)\,ds \Big] dt = \infty. $$ Then any nonoscillatory solution $x$ of (\ref{11zaastar}) satisfies ${ \lim_{t \to \infty} x(t) = 0} $. \end{proposition} Note that Corollary \ref{cortheorem71}, 1) implies the following result. \begin{proposition} \label{prop59} Suppose (m1)--(m4) and the following inequality hold \begin{align*} &\liminf_{t \to \infty} \Big\{ \sum_{k=1}^n \int_{h_k(t)}^t \big[ a_k(s) - c_k \int_{s-h_k(t)}^{s-h_k(t)+g(t)} K(t,\tau)\,d\tau \big] ds + \sum_{k=1}^n c_k \int_{g(t)}^t d\tau \\ &\times \int_{h_k(\tau)}^{\tau} \Big( \exp\big\{ \int_{s+h_k(t)-g(t)}^s \big[ a_k(u) - \int_{g(u)}^u K(u,\zeta)\,d\zeta \big] du \big\} - 1 \Big) K(t,s)ds \Big\} > \frac{1}{e}. \end{align*} Then all solutions of (\ref{11zaastar}) are oscillatory. \end{proposition} \noindent{\bf Remark.} Similarly inequalities 2)-4) in Corollary \ref{cortheorem71} can be rewritten for (\ref{11zaastar}). \begin{proposition}\label{prop510} Suppose (m1)--(m4) and the inequality $$ \limsup_{t \to \infty} \Big\{ \sum_{k=1}^n \int_{h_k(t)}^t \big[ a_k(s) - \frac{c_k}{e} \int_{g(s)}^s K(s,\tau)\,d\tau \big] ds \Big\} < \frac{1}{e} $$ holds. Then (\ref{11zaastar}) has a nonoscillatory solution. \end{proposition} \begin{thebibliography} {00} \bibitem{p800} R. Agarwal and S. Saker, Oscillation of solutions to neutral delay differential equations with positive and negative coefficients, {\em Int. J. Differ. Equ. Appl.} {\bf 2} (2001), no. 4, 449--465. \bibitem{ZAA} L. Berezansky and E. Braverman, On oscillation of equations with distributed delay, {\it Zeitschrift f\"{u}r Analysis und ihre Anwendungen} {\bf 20} (2001), no. 2, 489-504. \bibitem{previous} L. Berezansky and E. Braverman, On Oscillation of Equations with Positive and Negative Coefficients and Distributed Delay I: General results, {\em Electronic Journal of Differential Equations} {\bf 2003} (2003), No 12, 1-21. \bibitem{jmaa} L. Berezansky, Y. Domshlak and E. Braverman, On oscillation properties of delay differential equations with positive and negative coefficients, {\em J. Math. Anal. Appl.} {\bf 274} (2002), 81-101. \bibitem{p11} S.S. Cheng, X.-P. Guan, and J.Yang, Positive solutions of a nonlinear equation with positive and negative coefficients, {\em Acta Math. Hungar.} {\bf 86} (2000), 169-192. \bibitem{p2} Q. Chuanxi and G. Ladas, Oscillation in differential equations with positive and negative coefficients, {\em Canad. Math. Bull.} {\bf 33} (1990), 442-451. \bibitem{l2} Q. Chuanxi and G. Ladas, Linearized oscillations for equations with positive and negative coefficients, {\em Hiroshima Math. J.} {\bf 20} (1990), 331--340. \bibitem{p13} Yu.I. Domshlak and A.I. Aliev, On oscillatory properties of the first order differential equations with one or two arguments, {\em Hiroshima Math. J.} {\bf 18} (1988), 31-46. \bibitem{EHS} E.M. Elabbasy, A.S. Hegazi and S. H. Saker, Oscillation of solutions to delay differential equations with positive and negative coefficients. {\em Electron. J. Differential Equations} {\bf 2000}, no. 13, 13 pp. \bibitem{p4} K. Farrell, E.A. Grove and G. Ladas, Neutral delay differential equations with positive and negative coefficients, {\em Appl. Anal.} {\bf 27} (1988), 181--197. \bibitem{p801} W.S. He and W.T. Li, Nonoscillation and oscillation for neutral differential equations with positive and negative coefficients, {\em Int. J. Appl. Math.} {\bf 6} (2001), no. 2, 183-198. \bibitem{kulfirst} M. R. Kulenovi\'c and M. K. Grammatikopoulos, On the asymptotic behavior of second order differential inequalities with alternating coefficients, {\em Math. Nachr.} {\bf 98} (1980), 317-327. \bibitem{l1} G. Ladas and C. Qian, Oscillation in differential equations with positive and negative coefficients, {\em Canad. Math. Bull.} {\bf 33} (1990), no. 4, 442-451. \bibitem{p1} G. Ladas and Y.G. Sficas, Oscillation of delay differential equations with positive and negative coefficients. Proceedings of the International Conference on Qualitative Theory of Differential Equations, University of Alberta, June 18-20, 1984, 232-240. \bibitem{p9} W. Li and H.S. Quan, Oscillation of higher order neutral differential equations with positive and negative coefficients, {\em Ann. Differential Equations} {\bf 11} (1995), 70-76. \bibitem{p7} W. Li, H. Quan, and J.Wu, Oscillation of first order differential equations with variable coefficients, {\em Comm. in Appl. Anal.} {\bf 3} (1999), 1-13. \bibitem{p10} W. Li and J. Yan, Oscillation of first order neutral differential equations with positive and negative coefficients, {\em Collect. Math.} {\bf 50} (1999), 199-209. \bibitem{p5} L. Liao and A. Chen, Necessary and sufficient conditions for oscillations of neutral delay differential equations with several positive and negative coefficients, {\em Ann. Differential Equations} {\bf 12} (1996), 297-303. \bibitem{p901} G.A. Wang, Oscillations of integrodifferential equations with oscillating kernel, {\em Ann. Differential Equations} {\bf 8} (1992), no. 3, 361-366. \bibitem{p8} X. Zhang and J. Yan, Oscillation criteria for first order neutral differential equations with positive and negative coefficients, {\em J. Math. Anal. Appl.} {\bf 253} (2001), 204-214. \end{thebibliography} \end{document}