\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 56, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/56\hfil Existence of solutions for elliptic systems] {Existence of solutions for a class of elliptic systems in $\mathbb{R}^N$ involving the $p$-Laplacian} \author[Ali Djellit \& Saadia Tas\hfil EJDE--2003/56\hfilneg] {Ali Djellit \& Saadia Tas} \address{Ali Djellit \hfill\break University of Annaba, Faculty of Sciences \\ Department of Mathematics \\ B.P. 12, 23000, Annaba, Algeria} \email{a\_djellit@hotmail.com} \address{Saadia Tas \hfill\break University of Annaba, Faculty of Sciences \\ Department of Mathematics \\ B.P. 12, 23000, Annaba, Algeria} \email{tas\_saadia@yahoo.fr} \date{} \thanks{Submitted March 24, 2003. Published Maay 8, 2003.} \subjclass[2000]{35P65, 35P30} \keywords{$p$-Laplacian, nonlinear elliptic system, mountain pass theorem, \hfill\break\indent Palais-Smale condition} \begin{abstract} Using a variational approach, we study a class of nonlinear elliptic systems derived from a potential and involving the $p$-Laplacian. Under suitable assumptions on the nonlinearities, we show the existence of nontrivial solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In this paper, we deal with the nonlinear elliptic system \begin{equation} \begin{gathered} -\Delta_pu=\frac{\partial F}{\partial u}(x,u,v)\quad\text{in } \mathbb{R}^N,\\ -\Delta_qv=\frac{\partial F}{\partial v}(x,u,v)\quad\text{in } \mathbb{R}^N .\end{gathered} \label{S} \end{equation} The nonlinearities on the right hand side are the gradient of a $C^{1}$% -functional $F$ and $\triangle_p$ is the so-called $p$-Laplacian operator i.e. $\Delta_pu=\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)$; $u$ and $v$ are unknown real-valued functions defined in $\mathbb{R}^N $ and belonging to appropriate function spaces; $10$, there exists $\delta =\delta (\varepsilon ,u,v)>0$ such that $(\| w\|_{1,p}+\| z\|_{1,q})\leq \delta $ implies \begin{equation*} |K(u+w,v+z)-K(u,v)-K'(u,v)(w,z)|\leq \varepsilon (\| w\| _{1,p}+\| z\|_{1,q}). \end{equation*} Let $B_{R}$ be the ball of radius $R$, centered at the origin of $\mathbb{R}^N $. We put $B_{R}'=\mathbb{R}^N -B_{R}$ and we define a functional $K_{R}$ on $D^{1,p}(B_{R})\times D^{1,q}(B_{R})$ by $K_{R}(u,v)=\int_{B_{R}}F(x,u(x),v(x))dx$. Taking (H1) and (H2) into account, it is well-known that $K_{R}\in C^{1}(D^{1,p}(B_{R})\times D^{1,q}(B_{R}))$ and for any $(w,z)\in D^{1,p}(B_{R})\times D^{1,q}(B_{R})$, we have \begin{equation*} K_{R}'(u,v)(w,z)=\int_{B_{R}}(\frac{\partial F}{\partial u}(x,u,v)w+% \frac{\partial F}{\partial v}(x,u,v)z)dx. \end{equation*} Moreover, $K_{R}'$ is compact from $Z$ to $Z^{*}$ (see \cite{o1,r1,s1}). On the other hand, for all $(u,v)$ , $(w,z)\in Z$, we have \begin{align*} & \big|K(u+w,v+z)-K(u,v)-K'(u,v)(w,z)\big| \\ & \leq \big|K_{R}(u+w,v+z)-K_{R}(u,v)-K_{R}'(u,v)(w,z)\big| \\ & +\big|\int_{B_{R}'}(F(x,u+w,v+z)-F(x,u,v) -\frac{\partial F}{\partial u}(x,u,v)w-\frac{\partial F}{\partial v}(x,u,v)z)dx\big|. \end{align*} By the Mean-value theorem, we can write \begin{equation*} F(x,u+w,v+z)-F(x,u,v)=\frac{\partial F}{\partial u}(x,u+\theta_1w,v)w+% \frac{\partial F}{\partial v}(x,u,v+\theta_2 z)z, \end{equation*} for $\theta_1,\theta_2 \in ]0,1[$. By the growth condition (H2) and the fact that for $i=1,2$, \begin{equation} \begin{gathered} \| a_{i}\|_{L^{\alpha_{i}}(B'_{R})}+\| a_{i}\| _{L^{\beta_{i}}(B'_{R})}\to 0, \\ \| b_{i}\|_{L^{\gamma_{i}}(B'_{R})}+\| b_{i}\|_{L^{\delta_{i}}(B'_{R})}\to 0, \end{gathered} \label{9} \end{equation} as $R\to \infty$, we obtain for $R$ sufficiently large that \begin{align*} & \big|\int_{B_{R}'}(F(x,u+w,v+z)-F(x,u,v)-\frac{\partial F}{% \partial u}(x,u,v)w-\frac{\partial F}{\partial v}(x,u,v)z)dx\big| \\ & \leq \varepsilon \big(\| w\|_{1,p}+\| z\| _{1,q}\big). \end{align*} We have only to show that $K'$ is continuous on $Z$. Let $% (u_n ,v_n )\to (u,v)$ in $Z$. For $(w,z)\in Z$ , we have \begin{align*} & |K'(u_n ,v_n )(w,z)-K'(u,v)(w,z)| \\ & =|K_{R}'(u_n ,v_n )(w,z)-K_{R}'(u,v)(w,z)| \\ & \quad +|\int_{B_{R}'}(\frac{\partial F}{\partial u}% (x,u_n ,v_n )+\frac{\partial F}{\partial u}(x,u,v))wdx| \\ & \quad +|\int_{B_{R}'}(\frac{\partial F}{\partial v}% (x,u_n ,v_n )+\frac{\partial F}{\partial v}(x,u,v))zdx|. \end{align*} Then $K_{R}'$ is continuous on $D^{1,p}(B_{R})\times D^{1,q}(B_{R})$ (see \cite{o1,r2}). The first expression on the right hand side of the above equation tends to 0 as $n\to +\infty $; we use (H2) and \eqref{9} to prove that both the second and the third expressions tend also to 0 as $R$ sufficiently large. \end{proof} \noindent\textbf{Remark } The functional $J$ is of class $C^{1}$ on $Z$ and its derivative is \begin{equation*} J'(u,v)(w,z)=\int_{\mathbb{R}^N }|\nabla u|^{p-2}\nabla u\nabla wdx+\int_{\mathbb{R}^N }|\nabla v|^{q-2}\nabla v\nabla zdx. \end{equation*} \begin{lemma} \label{lm2} Under assumptions (H1) and (H2), $K'$ is compact from $Z$ to $Z^*$. \end{lemma} \begin{proof} Let $(u_n ,v_n )$ be a bounded sequence in $Z$. Then there is a subsequence denoted again $(u_n ,v_n )$ weakly convergent to $(u,v)$ in $Z$. As before, we write \begin{align*} & |K'(u_n ,v_n )(w,z)-K'(u,v)(w,z)| \\ & =|K_{R}'(u_n ,v_n )(w,z)-K_{R}'(u,v)(w,z)| \\ & \quad +|\int_{B_{R}'}(\frac{\partial F}{\partial u}% (x,u_n ,v_n )-\frac{\partial F}{\partial u}(x,u,v))w\,dx| \\ & \quad +|\int_{B_{R}'}(\frac{\partial F}{\partial v}% (x,u_n ,v_n )-\frac{\partial F}{\partial v}(x,u,v))z\,dx|. \end{align*} Since the restriction operator is continuous, we have $(u_n ,v_n )% \rightharpoonup (u,v)$ in $D^{1,p}(B_{R})\times D^{1,q}(B_{R})$. Because of the compactness of $K_{R}'$, the first expression on the right hand side of the equation tends to 0 as $n\to +\infty $; as above both the second and the third expressions tend also to 0 as $R$ sufficiently large. \end{proof} \begin{lemma} \label{lm3} If (H1), (H2), and (H3) hold then $I=J-K$ satisfies the condition (C). \end{lemma} \begin{proof} Let $( u_n ,v_n ) \subset Z$ such that \begin{itemize} \item[(i)] $|I(u_n ,v_n )|\leq c$. \item[(ii)] $(1+\| u_n \|_{1,p}+\| v_n \|_{1,q})I'(u_n ,v_n )\to 0$ in $Z^{^{\ast }}$, as $n\to +\infty $. \end{itemize} From (ii), we have $I'(u_n ,v_n )(w,z)\leq \varepsilon _n \to 0$ as $n\to +\infty $, $\forall $ $(w,z)\in Z$. In particular, for $(w,z)=(u_n ,v_n )$, we get \begin{align*} & I'(u_n ,v_n )(u_n ,v_n ) \\ & =\| u_n \|_{1,p}^p +\| v_n \|_{1,q}^q -\int_{\mathbb{R}^N } (\frac{\partial F}{\partial u}(x,u_n ,v_n )u_n +\frac{\partial F}{\partial v}(x,u_n ,v_n )v_n )dx\leq \varepsilon_n . \end{align*} On the other hand, \begin{equation*} I(u_n ,v_n )=\frac{1}{p}\| u_n \|_{1,p}^p +\frac{1}{q}\| v_n \| _{1,q}^q -\int_{\mathbb{R}^N }F(x,u_n ,v_n )dx\leq c. \end{equation*} Then, taking (H2) into account, we get \begin{align*} \varepsilon_n +c& \geq I'(u_n ,v_n )(u_n ,v_n )-I(u_n ,v_n )\\ & =(1-\frac{1}{p})\| u_n \|_{1,p}^p +(1-\frac{1}{q})\| v_n \|_{1,q}^q \\ & \quad +\int_{\mathbb{R}^N }(F(x,u_n ,v_n )-\frac{\partial F}{\partial u}% (x,u_n ,v_n )u_n -\frac{\partial F}{\partial v}(x,u_n ,v_n )v_n )dx \\ & \geq (1-\frac{1}{p})\| u_n \|_{1,p}^p +(1-\frac{1}{q})\| v_n \|_{1,q}^q . \end{align*} Hence, $(u_n ,v_n )$ is bounded in $Z$. There is a subsequence denoted again $(u_n ,v_n )$ weakly convergent in $Z$. Since $K'$ is compact, $K'(u_n ,v_n )$ is a Cauchy's sequence in $Z^{^{\ast }}$. We have $J'(u,v)=I'(u,v)+K'(u,v),\forall (u,v)\in Z$ and \begin{align*} & \big(J'(u_n ,v_n )-J'(u_m ,v_m )\big)(u_n -u_m ,0)\\ & =\int_{\mathbb{R}^N }(|\nabla u_n |^{p-2}\nabla u_n -|\nabla u_m |^{p-2}\nabla u_m )(\nabla u_n -\nabla u_m )dx. \end{align*} Observe that for all $\lambda ,\mu \in \mathbb{R}^N $, \begin{equation*} |\lambda -\mu |^p \leq \begin{cases} (|\lambda |^{p-2}\lambda -|\mu |^{p-2}\mu )(\lambda -\mu ) & \text{if }% p\geq 2, \\ \left[ (|\lambda |^{p-2}\lambda -|\mu |^{p-2}\mu )(\lambda -\mu )\right] ^{p/2}(|\lambda |+|\mu |)^{(2-p)p/2} & \text{if }10$ such that $\| u\| _{1,p}+\| v\|_{1,q}=\rho $ implies $I(u,v)\geq \sigma >0$. \item[(I2)] There exists $E\in Z$ such that $\| E\|_{Z}>\rho $ and $% I(E)\leq 0$. \end{itemize} \end{lemma} \begin{proof} By (H4), there exists $\rho >0$ such that \begin{equation*} \| u\|_{1,p}+\| v\|_{1,q}=\rho \Longrightarrow F(x,u,v)<\lambda _1(\frac{1}{p}a(x)|u|^p +\frac{1}{q}b(x)|v|^p ). \end{equation*} The variational characterization of $\lambda_1$ (see \cite{f1}) gives \begin{equation*} \int_{\mathbb{R}^N }F(x,u,v)dx<\frac{1}{p}\| u\|_{1,p}^p +\frac{1}{q% }\| v\|_{1,q}^q . \end{equation*} Then there exist $\rho ,\sigma >0$ such that $\| u\| _{1,p}+\| v\|_{1,q}=\rho $ implies $I(u,v)\geq \sigma >0$. Let $(\varphi ,\psi )$ be an eigenfunction associated with $\lambda_1$. In view of (H4), we get for $\varepsilon >0$ and $t$ sufficiently large, \begin{equation*} F(x,t^{\frac{1}{p}}\varphi ,t^{\frac{1}{q}}\psi )\geq (\lambda _1+\varepsilon )(\frac{t}{p}a(x)|\varphi |^p +\frac{t}{q}b(x)|\psi |^p ). \end{equation*} Hence \begin{align*} I(t^{\frac{1}{p}}\varphi ,t^{\frac{1}{q}}\psi ) & =\frac{t}{p}\int_{\mathbb{R}^N }|\nabla \varphi |^p dx +\frac{t}{q}\int_{\mathbb{R}^N }|\nabla\psi |^q dx -\int_{\mathbb{R}^N }F(x,t^{\frac{1}{p}}\varphi,t^{\frac{1}{q}}\psi)dx \\ & \leq \frac{t}{p}\int_{\mathbb{R}^N }|\nabla \varphi |^p dx+\frac{t}{q} \int_{\mathbb{R}^N }|\nabla \psi |^q dx \\ & \quad -(\lambda_1+\varepsilon )\Big(\frac{t}{p}\int_{\mathbb{R} ^N }a(x)|\varphi |^p dx+\frac{t}{q}\int_{\mathbb{R}^N }b(x)|\psi |^p dx\Big) \\ & \leq -t\varepsilon (\frac{1}{p}\int_{\mathbb{R}^N }a(x)|\varphi |^p dx +\frac{1}{q}\int_{\mathbb{R}^N }b(x)|\psi |^p dx). \end{align*} we deduce that $\lim_{t\to +\infty }I(t^{\frac{1}{p}}\varphi ,t^{1/q} \psi )=-\infty $. So, for $t$ large, $I(t^{1/p}\varphi ,t^{1/q}\psi )\leq 0$. Consequently, the functional $I$ has a critical value. Note that the critical points of $I$ are precisely the weak solutions of System \eqref{S}. \end{proof} Now, we can state the main theorem. \begin{theorem}\label{thm1} System \eqref{S} has at least one nontrivial solution $(u,v)$. \end{theorem} \begin{proof} In view of Lemmas \ref{lm3} and \ref{lm4}, we can apply the Mountain-Pass theorem (see \cite {k1,r1,m1}) to conclude that system \eqref{S} has a nontrivial weak solution. \end{proof} \subsection*{Acknowledgments} The authors want to express their gratitude to ANDRU for providing support through the grant $CU39904$, and to the anonymous referee for his/her helpful comments. \begin{thebibliography}{99} \bibitem{b1} S. M. Berger, \textit{Nonlinearity and Functional Analysis. }% Academic Press, New York, San Francisco, London, 1977. \bibitem{b2} P. Bartolo, V. Benci and D. Fortunato, \textit{Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. }Nonlinear Analysis TMA 7 (1983), 981-1012. \bibitem{b3} V. Benci and P. H. Rabinowitz, \textit{Critical point theorems for indefinite functionals. }Invent. Math. 52 (1979), 241-273. \bibitem{c1} D. G. Costa, \textit{On a class of elliptic systems in }$% \mathbb{R}^N $. E. J. D. E, Vol. 1994 (1994), No. 07, 1-14. \bibitem{c2} G. Cerami, \textit{Un criterio de esistenza per i punti critici su variet\`{a} ilimitate.} Istituto Lombardo di Scienze e Lettere 112 (1978), 332-336. \bibitem{d1} G. Dinca and P. Jebelean, \textit{Some existence results for a class of nonlinear equations involving a duality mapping. }Nonlinear analysis 46 (2001), 347-363. \bibitem{f1} J. Ffleckinger, R. F. Man\'{a}sevich, N. M. Stavrakakis, F. de Th\'{e}lin, \textit{Principal eigenvalues for some quasilinear elliptic equation on }$R^N $. V.2, N.6, November 1997,pp.981-1003. \bibitem{k1} O. Kavian, \textit{Introduction \`{a} la th\'{e}orie des points critiques et applications aux probl\`{e}mes elliptiques}. Springer-Verlag France, Paris, 1993. \bibitem{o1} J. M. B. do O, \textit{Solutions to perturbed eigenvalue problems of the p-Laplacian in }$\mathbb{R}^N $. Electronic J. Diff. Eqns., Vol. 11 (1997), 1-15. \bibitem{r1} P. H. Rabinowitz, \textit{Minimax Methods in Critical Point Theory with Applications to Differential Equations. }CBMS Regional Conf. Ser. in Math. 65, AMS, Providence, RI, 1986. \bibitem{r2} P. H. Rabinowitz, \textit{On a class of Nonlinear Schr\"{o}dinger Equations}. z. angew. Math. Phys. 43 (1992), 270-291. \bibitem{s1} N. M. Stavrakakis and N. B. Zographopoulos, \textit{Existence results for quasilinear elliptic systems in }$\mathbb{R}^N $. Electronic J. Diff. Eqns., Vol. 1999 (1999), No. 39, 1-15. \bibitem{m1} M. Willem, \textit{Minimax Theorems, }Bikhauser, Boston-Basel-Berlin, 1996. \bibitem{y1} L. S. Yu, \textit{Nonlinear p-Laplacian Problems on Unbounded domains}. Proc. Amer. Math. Soc. 115 (1992) No. 4, 1037-1045. \bibitem{z1} E. Zeidler, \textit{Nonlinear Functional Analysis and its Applications, Vol III Variational Methods and Optimization}. Springer Verlag, Berlin 1990. \end{thebibliography} \end{document}