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HOPF-TYPE ESTIMATES FOR SOLUTIONS TO
HAMILTON-JACOBI EQUATIONS WITH CONCAVE-CONVEX

INITIAL DATA

NGUYEN HUU THO & TRAN DUC VAN

Abstract. We consider the Cauchy problem for the Hamilton-Jacobi equa-
tions with concave-convex initial data. A Hopf-type formula for global Lip-

schitz solutions and estimates for viscosity solutions of this problem are ob-

tained using techniques of multifunctions and convex analysis.

1. Introduction

This paper is a continuation of the works [10] and [8], where the explicit solu-
tions via Hopf-type formulas of the Cauchy problem to the Hamilton-Jacobi equa-
tions with concave-convex hamiltonians were considered. Namely, we consider the
Cauchy problem for the Hamilton-Jacobi equation

∂u

∂t
+H(t,

∂u

∂x
) = 0 in U := {t > 0, x ∈ Rn} (1.1)

u(0, x) = φ(x) on {t = 0, x ∈ Rn}. (1.2)

Here ∂/∂x = (∂/∂x1, . . . , ∂/∂xn), the Hamiltonian H = H(t, p) and φ = φ(x) are
given functions, and u = u(t, x) is unknown.

In this paper we shall assume that n = n1 + n2 and that the variable x ∈ Rn is
separated as x = (x′, x′′) with x′ ∈ Rn1, x′′ ∈ Rn2, similarly for p, q, · · · ∈ Rn. In
particular, the zero-vector in Rn will be 0 = (0′, 0′′), where 0′ and 0′′ stand for the
zero-vectors in Rn1 and Rn2, respectively.
Definition. A function g = g(x′, x′′) is called concave-convex if it is concave in
x′ ∈ Rn1 for each x′′ ∈ Rn2 and convex in x′′ ∈ Rn2 for each x′ ∈ Rn1.
For results on the concave-convex functions the reader is referred to [7], [8], [10].

In [10, Chapter 10], Van, Tsuji and Thai Son proposed to examine a class of
concave-convex functions in a more general framework where the discussion of the
global Legendre transformation still make sense.
Bardi and Faggian [2] found explicit pointwise upper and lower bounds of Hopf-
type for the viscosity solutions under the following hypotheses: H depends only on
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p and is a concave-convex function given by the difference of convex functions,

H(p′, p′′) := H1(p′)−H2(p′′),

and φ is uniformly continuous. Also if H ∈ C(Rn) and φ = φ(x) is concave-convex
function given by special representation φ(x) = φ1(x) − φ2(x), where φ1, φ2 are
convex and Lipschitz continuous.
Barron, Jensen and Liu [3] and Van, Thanh [11] found Hopf-type estimates for
viscosity solutions to the corresponding Cauchy problem when the Hamiltonian
H(γ, p), (γ, p) ∈ R× Rn, is a D. C. function in p, i.e.,

H(γ, p) = H1(γ, p)−H2(γ, p), (γ, p) ∈ R× Rn,

where Hi(γ, p), i = 1, 2, is a convex function in p.
Ngoan [6], Thai Son [8], Van, Tsuji and Thai Son [10] obtained explicit global Lip-
schitz solutions and upper and lower bounds of viscosity solutions to the Hamilton-
Jacobi equations with concave-convex hamiltonians via Hopf-type formulas.

The aim of this paper is to look for explicit global Lipschitz solution of the
Cauchy problem (1.1)–(1.2) and to establish pointwise upper and lower bounds of
Hopf-type for viscosity solutions when the initial function φ = φ(x) = φ(x′, x′′) is
concave-convex on Rn1 × Rn2.
Definition. A function u = u(t, x) in Lip(Ū) will be called a global Lipschitz
solution of the Cauchy problem (1.1)–(1.2) if it satisfies (1.1) almost everywhere
(a. e.) in U , with u(0, x) = φ(x) for all x ∈ Rn.

2. Hopf-type formula for global Lipschitz solutions

We consider the Cauchy problem for the Hamilton-Jacobi equation

ut +H(t,Du) = 0 in U := {t > 0, x ∈ Rn} (2.1)

u(0, x) = φ(x) on {t = 0, x ∈ Rn}, (2.2)

where the Hamiltonian H depends on the variable t and the spatial derivatives Du.
We note that Van, Tsuji, Hoang and Thai Son [9], [10] have obtained a Hopf-type

formula with the initial function φ = φ(x) nonconvex and H merely continuous.
Moreover, a global Lipschitz solution of (2.1)–(2.2) is given by an explicit Hopf-
type formula in the following case (see Chap. 9, [10]): The Hamiltonian (depends
explicitly on t) H = H(t, p) is continuous in UG := {(t, p) : t ∈ (0,+∞)\G, p ∈
Rn} where G is closed subset of R with Lebesgue measure zero; and, for each
N ∈ (0,+∞) corresponds a function gN := gN (t) ∈ L∞loc(R) so that

sup
|p|≤N

|H(t, p)| ≤ gN (t) for almost t ∈ (0,+∞);

while the initial function φ = φ(x) satisfies one of the following two conditions:

(1) φ = φ1 − φ2, where φ1, φ2 are convex functions;
(2) φ is minimum of a family of convex functions.

In this section, we look for explicit global Lipschitz solutions of problem (2.1)–
(2.2), where x ∈ Rn, n = n1 + n2, x = (x′, x′′) ∈ Rn1 × Rn2 and the initial-valued
function φ = φ(x) := φ(x′, x′′) is a strictly concave-convex function on Rn1 × Rn2
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satisfying the following conditions:

lim
|x′′|→+∞

φ(x′, x′′)
|x′′|

= +∞ for each x′ ∈ Rn1 , (2.3)

lim
|x′|→+∞

φ(x′, x′′)
|x′|

= −∞ for each x′′ ∈ Rn2 . (2.4)

We now consider the Cauchy problem (2.1)–(2.2) with the following hypotheses:

(M1) The Hamiltonian H = H(t, p) is continuous in

UG := {(t, p) : t ∈ (0,+∞)\G, p ∈ Rn}

with G be a closed subset of R with Lebesgue measure 0. Moreover, for
each N ∈ (0,+∞) there corresponds a function gN := gN (t) ∈ L∞loc(R) so
that

sup
|p|≤N

|H(t, p)| ≤ gN (t) for almost t ∈ (0,+∞);

(M2) The equality

sup
p′′∈Rn2

inf
p′∈Rn1

ϕ(t, x, p) = inf
p′∈Rn1

sup
p′′∈Rn2

ϕ(t, x, p)

is satisfied in U , where

ϕ(t, x, p) := 〈p, x〉 − φ∗(p)−
∫ t

0

H(τ, p)dτ (2.5)

for (t, x) = (t, x′, x′′) ∈ U , p = (p′, p′′) ∈ Rn1 × Rn2 . Here, φ∗ denotes the
conjugate of φ which is defined as in Section 3 later.

(M3) To each bounded subset V of U there corresponds a positive number N(V )
so that

max
|q′′|≤N(V )

q′′∈Rn2

inf
q′∈Rn1

ϕ(t, x, q′, q′′) > inf
q′∈Rn1

ϕ(t, x, q′, p′′),

min
|q′|≤N(V )

q′∈Rn1

sup
q′′∈Rn2

ϕ(t, x, q′, q′′) < sup
q′′∈Rn2

ϕ(t, x, p′, q′′),

whenever (t, x) ∈ V , p = (p′, p′′) ∈ Rn1 × Rn2 and min{|p′|, |p′′|} > N(V ).

The main result of this Section is as follows.

Theorem 2.1. Let φ be a strictly concave-convex function on Rn with (2.3)–(2.4)
and assume M1–M3. Then the formula

u(t, x) := sup
p′′∈Rn2

inf
p′∈Rn1

ϕ(t, x, p) = inf
p′∈Rn1

sup
p′′∈Rn2

ϕ(t, x, p), (2.6)

for (t, x) ∈ U , determines a global Lipschitz solution of the Cauchy problem (2.1)–
(2.2).

To prove this theorem, we need the following lemmas, which are similar to the
lemmas 10.5 and 10.6 in [10].

Lemma 2.2. Let O be an open subset of Rm, and η = η(ξ, p) = η(ξ, p′, p′′) be a
continuous function on O × Rn1 × Rn2 with the following properties:
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(1) The equality

sup
p′′∈Rn2

inf
p′∈Rn1

η(ξ, p) = inf
p′∈Rn1

sup
p′′∈Rn2

η(ξ, p)

is satisfied in O;
(2) There is a nonempty subset E ⊂ Rn1 × Rn2 such that η(ξ, p) is finite on

O × E and η(ξ, p) ≡ −∞ on O × Ec, where Ec = Rn \ E. Moreover, for
each bounded subset V of O, corresponds a positive number N(V ) such that

max
|q′′|≤N(V )

q′′∈Rn2

inf
q′∈Rn1

η(ξ, q′, q′′) > inf
q′∈Rn1

η(ξ, q′, p′′),

and
min

|q′|≤N(V )

q′∈Rn1

sup
q′′∈Rn2

η(ξ, q′, q′′) < sup
q′′∈Rn2

η(ξ, p′, q′′),

whenever ξ ∈ V , p = (p′, p′′) ∈ Rn1 × Rn2 and min{|p′|, |p′′|} > N(V );
(3) For each fixed p of E, η = η(ξ, p) is differentiable in ξ ∈ O with continuous

gradient
∂η/∂ξ = ∂η(ξ, p)/∂ξ

on O × Rn1 × Rn2 .
Then we have:

i. The function

ψ = ψ(ξ) := sup
p′′∈Rn2

inf
p′∈Rn1

η(ξ, p) = inf
p′∈Rn1

sup
p′′∈Rn2

η(ξ, p)

is a locally Lipschitz continuous on O.
ii. ψ = ψ(ξ) is directionally differentiable in O with

∂eψ(ξ) = max
p′′∈L′′(ξ)

min
p′∈L′(ξ)

〈∂η(ξ, p′, p′′)/∂ξ, e〉

= min
p′∈L′(ξ)

max
p′′∈L′′(ξ)

〈∂η(ξ, p′, p′′)/∂ξ, e〉, ξ ∈ O, e ∈ Rm

where

L′(ξ) := {p′ ∈ Rn1 : sup
p′′∈Rn2

η(ξ, p′, p′′) = ψ(ξ)} (2.7)

L′′(ξ) := {p′′ ∈ Rn2 : inf
p′∈Rn1

η(ξ, p′, p′′) = ψ(ξ)}. (2.8)

Lemma 2.3. Suppose that the conditions 1–2 in Lemma 2.2 are satisfied for a
continuous function η = η(ξ, p′, p′′) on O×Rn1×Rn2 . Then (2.7)–(2.8) determines
the non-empty valued, closed, locally bounded multifunction L = L(ξ) := L′(ξ) ×
L′′(ξ), ξ ∈ O.

Proof of Theorem 2.1. . We can verify that the function

η = η(ξ, p) := ϕ(t, x, p)

satisfies all the assumptions of Lemma 2.2, where

E := domφ∗ 6= ∅, m := 1 + n = 1 + n1 + n2, ξ := (t, x).

Here we put O := Ū and conclude that

L(t, x) = L′(t, x)× L′′(t, x) = {p ∈ E : ϕ(t, x, p) = u(t, x)}
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determines a nonempty-valued, locally bounded, closed multifunction L = L(t, x)
of (t, x) ∈ Ū . Take arbitrary an r ∈ (0,+∞) and denote

Vr = {(t, x) ∈ Ū : t+ |x| < r}, Nr = N(Vr).

Let gNr
= gNr

(t) as be in the condition M1. Then for any two points (t1, x1) and
(t2, x2) are in Vr, we may choose an element p = (p

′1, p
′′2) ∈ L′(t1, x1)×L′′(t2, x2)

of the nonempty set

L′(t1, x1)× L′′(t2, x2) ⊂ B̄n1(0′, Nr)× B̄n2(0′′, Nr)

and get

u(t2, x2)− u(t1, x1) = inf
p′∈Rn1

ϕ(t2, x2, p′, p
′′2)− sup

p′′∈Rn2

ϕ(t1, x1, p
′1, p′′)

≤ ϕ(t2, x2, p
′1, p

′′2)− ϕ(t1, x1, p
′1, p

′′2)

= ϕ(t2, x2, p)− ϕ(t1, x1, p)

= 〈p, x2 − x1〉+
∫ t1

t2

H(τ, p)dτ

≤ Nr · |x2 − x1|+ sr · |t2 − t1|
where sr = ess sup t∈(0,r)gNr

(t). Dually,

u(t1, x1)− u(t2, x2) ≤ Nr · |x2 − x1|+ sr · |t2 − t1|.
Hence, u = u(t, x) is a locally Lipschitz continuous in Ū and thus it be long
to Lip(Ū). Next, let eo := (1, 0, 0, . . . , 0, 0), e1 := (0, 1, 0, . . . , 0, 0), . . . , en :=
(0, 0, 0, . . . , 0, 1) ∈ Rn+1. We now replace in Lemma 2.2 the set O := UG. From
this lemma we see that u = u(t, x) is directionally differentiable in UG with

∂eou(t, x) = max
p′′∈L′′(t,x)

min
p′∈L′(t,x)

{−H(t, p), p ∈ L(t, x)}

= min
p′∈L′(t,x)

max
p′′∈L′′(t,x)

{−H(t, p), p ∈ L(t, x)},

∂−eou(t, x) = max
p′′∈L′′(t,x)

min
p′∈L′(t,x)

{H(t, p), p ∈ L(t, x)}

= min
p′∈L′(t,x)

max
p′′∈L′′(t,x)

{H(t, p), p ∈ L(t, x)};

and for 1 ≤ i ≤ n:
∂eiu(t, x) = max

p′′∈L′′(t,x)
min

p′∈L′(t,x)
{pi, p ∈ L(t, x)}

= min
p′∈L′(t,x)

max
p′′∈L′′(t,x)

{pi, p ∈ L(t, x)},

∂−eiu(t, x) = max
p′′∈L′′(t,x)

min
p′∈L′(t,x)

{−pi, p ∈ L(t, x)}

= min
p′∈L′(t,x)

max
p′′∈L′′(t,x)

{−pi, p ∈ L(t, x)}.

(2.9)

Since u = u(t, x) is locally Lipschitz continuous in Ū , according to Rademacher’s
Theorem, there exists a set Q ⊂ U of ((n + 1) dimensional) Lebesgue measure 0
such that u = u(t, x) is differentiable with

∂u(t, x)
∂t

= ∂eou(t, x) = −∂−eou(t, x),

∂u(t, x)
∂xi

= ∂eiu(t, x) = −∂−eiu(t, x) (2.10)
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at any point (t, x) ∈ U \ Q. Hence, (2.9)–(2.10) show that the equalities for 1 ≤
i ≤ n,

∂u(t, x)
∂xi

= max
p′′∈L′′(t,x)

min
p′∈L′(t,x)

{pi, p ∈ L(t, x)}

= min
p′∈L′(t,x)

max
p′′∈L′′(t,x)

{pi, p ∈ L(t, x)}

= min
p′′∈L′′(t,x)

max
p′∈L′(t,x)

{pi, p ∈ L(t, x)}

= max
p′∈L′(t,x)

min
p′′∈L′′(t,x)

{pi, p ∈ L(t, x)}

hold for all (t, x) ∈ U \ {P := (G× Rn) ∪Q} =: UP , this implies

L(t, x) =
{∂u(t, x)

∂x

}
, (t, x) ∈ UP ;

and we obtain
∂u(t, x)
∂t

= {−H(t, p), p ∈ L(t, x)}.

Thus,

∂u(t, x)
∂t

+H(t,
∂u(t, x)
∂x

) = −H(t,
∂u(t, x)
∂x

) +H(t,
∂u(t, x)
∂x

) = 0

hold almost everywhere in U . Furthermore

u(0, x) = u(0, x′, x′′)

= sup
p′′∈Rn2

inf
p′∈Rn1

{〈p′, x′〉+ 〈p′′, x′′〉 − φ∗(p′, p′′)}

= inf
p′∈Rn1

sup
p′′∈Rn2

{〈p′, x′〉+ 〈p′′, x′′〉 − φ∗(p′, p′′)}

=
(
φ∗(p′, p′′)

)∗ = φ(x′, x′′) = φ(x)

for all x = (x′, x′′) ∈ Rn1 ×Rn2 . From what has already been proved, we conclude
that u = u(t, x) is a global Lipschitz solution of the Cauchy problem (2.1)–(2.2). �

Remark 2.4. If n2 = 0, we obtain the Hopf-type formulas of the Cauchy problem
for the convex initial data as in Chapter 8 [10].

Remark 2.5. Assume (M1), (M2). Then (M3) is satisfied if

inf
p′∈Rn1

ϕ(t, x, p′, p′′) → −∞ locally uniformly in (t, x) ∈ Ū as |p′′| → +∞

and

sup
p′′∈Rn2

ϕ(t, x, p′, p′′) → +∞ locally uniformly in (t, x) ∈ Ū as |p′| → +∞

i.e, if the following statement holds:
For any λ and µ ∈ R and any bounded subset V of Ū , there exists positive numbers
N(λ, V ) and N(µ, V ), respectively, so that

inf
q′∈Rn1

ϕ(t, x, q′, p′′) < λ whenever (t, x) ∈ V, |p′′| > N(λ, V )

and
sup

q′′∈Rn2

ϕ(t, x, p′, q′′) > µ whenever (t, x) ∈ V, |p′| > N(µ, V ).
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Indeed, fix an arbitrary q0 = (q0
′
, q0

′′
) in the domain of φ∗, which is not empty.

Since the finite function Ū 3 (t, x) 7→ ϕ(t, x, q0) is continuous, it follows that: for
any bounded subset V of Ū ,

λV := inf
(t,x)∈V

ϕ(t, x, q0) > −∞,

µV := sup
(t,x)∈V

ϕ(t, x, q0) < +∞.

Under the hypothesis above, we certainly find a number N(λ, V ) ≥ |q0′′ | (for each
such V ) so that

inf
q′∈Rn1

ϕ(t, x, q′, p′′) < λV = inf
(t,x)∈V

ϕ(t, x, q0
′
, q0

′′
)

when (t, x) ∈ V and |p′′| > N(λ, V ),

inf
q′∈Rn1

ϕ(t, x, q′, p′′) < ϕ(t, x, q0
′
, q0

′′
)

when (t, x) ∈ V , |p′′| > N(λ, V ),

inf
q′∈Rn1

ϕ(t, x, q′, p′′) < inf
q′∈Rn1

ϕ(t, x, q′, q0
′′
)

when (t, x) ∈ V , |p′′| > N(λ, V ),

inf
q′∈Rn1

ϕ(t, x, q′, p′′) < max
|q′′|≤N(λ,V )

q′′∈Rn2

inf
q′∈Rn1

ϕ(t, x, q′, q′′)

when (t, x) ∈ V , |p′′| > N(λ, V ).
Analogously, we also obtain

sup
q′′∈Rn2

ϕ(t, x, p′, q′′) > min
|q′|≤N(µ,V )

q′∈Rn1

sup
q′′∈Rn2

ϕ(t, x, q′, q′′)

when (t, x) ∈ V , |p′| > N(µ, V ), where N(µ, V ) ≥ |q0′ |. Hence (M3) is satisfied.

3. Hopf-type estimates for viscosity solutions

Consider the Cauchy problem for the Hamilton-Jacobi equation

∂u

∂t
+H(

∂u

∂x
) = 0 in U := {t > 0, x ∈ Rn} (3.1)

u(0, x) = φ(x) on {t = 0, x ∈ Rn}. (3.2)

When H = H(p) is continuous and φ = φ(x) is uniformly continuous, the Cauchy
problem (3.1)–(3.2) has a unique viscosity solution u = u(t, x) which is in the
space of continuous functions that are uniformly continuous in x uniformly in t,
UCx([0,+∞) × Rn) (see [5]). We also refer the readers to [4,5] for the definition
and properties of viscosity solutions.

In the case of Lipschitz continuous and convex (or concave) initial data φ and
merely continuous Hamiltonian H, or for convex φ and Lipschitz continuous H, the
formula

u(t, x) = sup
p∈Rn

{〈p, x〉 − φ∗(p)− tH(p)}

determines a (unique) viscosity solution u = u(t, x) ∈ UCx([0,+∞) × Rn) of the
problem (3.1)–(3.2). Here φ∗ denotes the Legendre transform of φ (see, [1,2]).
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In this section we are interested in giving explicit pointwise upper and lower
bounds for viscosity solutions where the initial function φ = φ(x′, x′′) is concave-
convex. First, we rewrite some main results on the conjugate of the concave-convex
functions (for the details, see [10, Chapter 10]). Let φ = φ(x′, x′′) is a concave-
convex function on Rn1 × Rn2 . Then

φ∗1(p′, x′′) = inf
x′∈Rn1

{〈x′, p′〉 − φ(x′, x′′)}(
resp. φ∗2(x′, p′′) = sup

x′′∈Rn2

{〈x′′, p′′〉 − φ(x′, x′′)}
)

is the Fenchel conjugate of x′-concave (resp. x′′-convex) function φ(x′, x′′).
If φ = φ(x′, x′′) is concave-convex function with conditions (2.3)–(2.4), then

φ∗1(p′, x′′) (resp. φ∗2(x′, p′′)) is concave (resp. convex) not only in p′ ∈ Rn1 (resp.
p′′ ∈ Rn2) but also in the whole variable (p′, x′′) ∈ Rn1 × Rn2 (resp. (x′, p′′) ∈
Rn1 × Rn2) and

lim
|p′|→+∞

φ∗1(p′, x′′)
|p′|

= −∞ (resp. lim
|p′′|→+∞

φ∗2(x′, p′′)
|p′′|

= +∞)

locally uniformly in x′′ ∈ Rn2 (resp. x′ ∈ Rn2). Besides the Fenchel “partial
conjugate” φ∗1 and φ∗2, we consider two “total conjugate” of φ:

φ̄∗(p′, p′′) = inf
x′∈Rn1

{〈x′, p′〉+ φ∗2(x′, p′′)}

= inf
x′,∈Rn1

sup
x′′∈Rn2

{〈x′, p′〉+ 〈x′′, p′′〉 − φ(x′, x′′)}

and

φ∗(p′, p′′) = sup
x′′∈Rn2

{〈x′′, p′′〉+ φ∗1(p′, x′′)}

= sup
x′′∈Rn2

inf
x′∈Rn1

{〈x′, p′〉+ 〈x′′, p′′〉 − φ(x′, x′′)}.

Therefore, the functions φ̄∗ and φ∗ are usually called the upper and lower conjugate,
respectively, of φ. Note that

φ∗ ≤ φ̄∗.

These functions are also concave-convex, and with (2.3)–(2.4) they coincide. In this
situation, the Fenchel conjugate

φ∗ := φ̄∗ = φ∗

of φ will simultaneously have the properties

lim
|p′′|→+∞

φ∗(p′, p′′)
|p′′|

= +∞ for each p′ ∈ Rn1

lim
|p′|→+∞

φ∗(p′, p′′)
|p′|

= −∞ for each p′′ ∈ Rn2 .

If (2.3)–(2.4) are not assumed, the partial conjugates φ∗1 and φ∗2 are still concave
and convex, respectively, but might be infinite somewhere, then the lower and upper
conjugates φ∗ and φ̄∗ might not coincide. One can claim only that

φ∗1(p′, x′′) < +∞, ∀(p′, x′′) ∈ Rn1 × Rn2 ,

φ∗2(x′, p′′) > −∞, ∀(x′, p′′) ∈ Rn1 × Rn2 .
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Now let

D1 := {p′ ∈ Rn1 : φ∗1(p′, x′′) > −∞ ∀x′′ ∈ Rn2},
D2 := {p′′ ∈ Rn2 : φ∗2(x′, p′′) < +∞ ∀x′ ∈ Rn1},

hence for all x′′ ∈ Rn2 , φ∗1(p′, x′′) is finite on D1, and for all x′ ∈ Rn1 , φ∗2(x′, p′′)
is finite on D2.

We now consider the Cauchy problem (3.1)–(3.2) with the hypothesis:

(M4) The Hamiltonian H = H(p) is continuous and the initial function φ =
φ(x′, x′′) is concave-convex and Lipschitz continuous (without (2.3)–(2.4)).

For (t, x) ∈ U , we set

u−(t, x) := sup
p′′∈D2

inf
p′∈Rn1

{〈p, x〉 − φ̄∗(p)− tH(p)} (3.3)

u+(t, x) := inf
p′∈D1

sup
p′′∈Rn2

{〈p, x〉 − φ∗(p)− tH(p)}. (3.4)

Remark 3.1. The concave-convex function φ = φ(x′, x′′) is Lipschitz continuous
in the sense: φ(x′, x′′) is Lipschitz continuous in x′ ∈ Rn1 for each x′′ ∈ Rn2 and
in x′′ ∈ Rn2 for each x′ ∈ Rn1 .

Our estimates for viscosity solutions in this section read as follows:

Theorem 3.2. Assume (M4). Then the unique viscosity solution u = u(t, x) ∈
UCx

(
[0,+∞)×Rn

)
of the Cauchy problem (3.1)–(3.2) satisfies on Ū the inequalities

u−(t, x) ≤ u(t, x) ≤ u+(t, x),

where u− and u+ are defined by (3.3) and (3.4) respectively.

Proof. For each p′ ∈ D1, let

Φ(x; p′) = Φ(x′, x′′; p′) := 〈x′, p′〉 − φ∗1(p′, x′′)

= 〈x′, p′〉 − inf
x′∈Rn1

{
〈x′, p′〉 − φ(x′, x′′)

}
≥ φ(x′, x′′) for all (x′, x′′) ∈ Rn1 × Rn2 .

Since φ∗1(p′, .) is a concave and finite, so −φ∗1(p′, .) is convex and finite, it is con-
vex and Lipschitz continuous function; therefore , Φ(x; p′) is convex and Lipschitz
continuous with its Fenchel conjugate given by

Φ∗(p; p′) = Φ∗(p′, p′′; p′) = sup
x∈Rn

{
〈x, p〉 − Φ(x, p′)

}
= sup

x∈Rn

{
〈x′, p′〉+ 〈x′′, p′′〉 − 〈x′, p′〉+ φ∗1(p′, x′′)

}
=

{
+∞ if (p′, p′′) 6= (p′, p′′)
φ∗(p′, p′′) if (p′, p′′) = (p′, p′′).

Next, consider the Cauchy problem

∂v

∂t
+H(

∂v

∂x
) = 0 in U = {t > 0, x ∈ Rn},

v(0, x) = Φ(x; p′) on {t = 0, x ∈ Rn}.
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This is the Cauchy problem with the continuous Hamiltonian H = H(p) and the
convex and Lipschitz continuous initial function Φ = Φ(x; p′) for each p′ ∈ D1, its
unique viscosity solution v = v(t, x) ∈ UCx

(
[0,+∞)× Rn

)
is given by

v(t, x) = sup
p∈Rn

{〈p, x〉 − Φ∗(p; p′)− tH(p)}

= sup
p′′∈Rn2

{〈p′, x′〉+ 〈p′′, x′′〉 − φ∗(p′, p′′)− tH(p′, p′′)}

with the initial condition

v(0, x) = Φ(x; p′) ≥ φ(x) = u(0, x)

for each p′ ∈ D1 (see [1]). Hence, for each p′ ∈ D1, v = v(t, x) is a (continu-
ous) supersolution of the problem (3.1)–(3.2) (according to a standard comparison
theorem for unbounded viscosity solutions (see [5])), that means

u(t, x) ≤ v(t, x) for each p′ ∈ D1,

and then

u(t, x) ≤ inf
p′∈D1

sup
p′′∈Rn2

{〈p, x〉 − φ∗(p)− tH(p)}

u(t, x) ≤ u+(t, x) on Ū .

Dually, we also abtain u(t, x) ≥ u−(t, x) on Ū . Therefore, Theorem 3.2 has been
proved. �

Corollary 3.3. Assume (M1), (M2) for the case when H(t, p) is not depending on
t. Moreover, assume that φ = φ(x′, x′′) is concave-convex and Lipschitz continuous
function on Rn1 × Rn2 and satisfies the conditions (2.3)–(2.4). Then (2.6) deter-
mines the unique viscosity solution u(t, x) ∈ UCx

(
[0,+∞) × Rn

)
of the Cauchy

problem (3.1)–(3.2).

Proof. Since φ = φ(x′, x′′) is a concave-convex and Lipschitz continuous function
so domφ∗ is a bounded and nonempty set. Independently of (t, x) ∈ Ū , it follows
that

ϕ(t, x, p′, p′′) → −∞ whenever |p′′| is large enough

ϕ(t, x, p′, p′′) → +∞ whenever |p′| is large enough.

From Remark 2.5 implies that hypothesis (M3) hold. Then the conclusion folows
from Theorem 3.2. �
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