Electronic Journal of Differential Equations, Vol. 2003(2003), No. 59, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

HOPF-TYPE ESTIMATES FOR SOLUTIONS TO HAMILTON-JACOBI EQUATIONS WITH CONCAVE-CONVEX INITIAL DATA

NGUYEN HUU THO & TRAN DUC VAN

ABSTRACT. We consider the Cauchy problem for the Hamilton-Jacobi equations with concave-convex initial data. A Hopf-type formula for global Lipschitz solutions and estimates for viscosity solutions of this problem are obtained using techniques of multifunctions and convex analysis.

1. INTRODUCTION

This paper is a continuation of the works [10] and [8], where the explicit solutions via Hopf-type formulas of the Cauchy problem to the Hamilton-Jacobi equations with concave-convex hamiltonians were considered. Namely, we consider the Cauchy problem for the Hamilton-Jacobi equation

$$\frac{\partial u}{\partial t} + H(t, \frac{\partial u}{\partial x}) = 0 \quad \text{in } U := \{t > 0, \ x \in \mathbb{R}^n\}$$
(1.1)

$$u(0,x) = \phi(x) \quad \text{on } \{t = 0, \ x \in \mathbb{R}^n\}.$$
 (1.2)

Here $\partial/\partial x = (\partial/\partial x_1, \dots, \partial/\partial x_n)$, the Hamiltonian H = H(t, p) and $\phi = \phi(x)$ are given functions, and u = u(t, x) is unknown.

In this paper we shall assume that $n = n_1 + n_2$ and that the variable $x \in \mathbb{R}^n$ is separated as x = (x', x'') with $x' \in \mathbb{R}^{n1}$, $x'' \in \mathbb{R}^{n2}$, similarly for $p, q, \dots \in \mathbb{R}^n$. In particular, the zero-vector in \mathbb{R}^n will be 0 = (0', 0''), where 0' and 0'' stand for the zero-vectors in \mathbb{R}^{n1} and \mathbb{R}^{n2} , respectively.

Definition. A function g = g(x', x'') is called concave-convex if it is concave in $x' \in \mathbb{R}^{n1}$ for each $x'' \in \mathbb{R}^{n2}$ and convex in $x'' \in \mathbb{R}^{n2}$ for each $x' \in \mathbb{R}^{n1}$.

For results on the concave-convex functions the reader is referred to [7], [8], [10].

In [10, Chapter 10], Van, Tsuji and Thai Son proposed to examine a class of concave-convex functions in a more general framework where the discussion of the global Legendre transformation still make sense.

Bardi and Faggian [2] found explicit pointwise upper and lower bounds of Hopftype for the viscosity solutions under the following hypotheses: H depends only on

²⁰⁰⁰ Mathematics Subject Classification. 35A05, 35F20, 35F25.

Key words and phrases. Hamilton-Jacobi equations, Hopf-type formula,

global Lipschitz solutions, viscosity solutions.

^{©2003} Southwest Texas State University.

Submitted July 3, 2002. Published May 21, 2003.

Partially supported by the National Council on Natural Science, Vietnam.

p and is a concave-convex function given by the difference of convex functions,

$$H(p', p'') := H_1(p') - H_2(p'')$$

and ϕ is uniformly continuous. Also if $H \in C(\mathbb{R}^n)$ and $\phi = \phi(x)$ is concave-convex function given by special representation $\phi(x) = \phi_1(x) - \phi_2(x)$, where ϕ_1, ϕ_2 are convex and Lipschitz continuous.

Barron, Jensen and Liu [3] and Van, Thanh [11] found Hopf-type estimates for viscosity solutions to the corresponding Cauchy problem when the Hamiltonian $H(\gamma, p), (\gamma, p) \in \mathbb{R} \times \mathbb{R}^n$, is a D. C. function in p, i.e.,

$$H(\gamma, p) = H_1(\gamma, p) - H_2(\gamma, p), \quad (\gamma, p) \in \mathbb{R} \times \mathbb{R}^n,$$

where $H_i(\gamma, p)$, i = 1, 2, is a convex function in p. Ngoan [6], Thai Son [8], Van, Tsuji and Thai Son [10] obtained explicit global Lipschitz solutions and upper and lower bounds of viscosity solutions to the Hamilton-Jacobi equations with concave-convex hamiltonians via Hopf-type formulas.

The aim of this paper is to look for explicit global Lipschitz solution of the Cauchy problem (1.1)–(1.2) and to establish pointwise upper and lower bounds of Hopf-type for viscosity solutions when the initial function $\phi = \phi(x) = \phi(x', x'')$ is concave-convex on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

Definition. A function u = u(t, x) in $\operatorname{Lip}(\overline{U})$ will be called a global Lipschitz solution of the Cauchy problem (1.1)-(1.2) if it satisfies (1.1) almost everywhere (a. e.) in U, with $u(0, x) = \phi(x)$ for all $x \in \mathbb{R}^n$.

2. Hopf-type formula for global Lipschitz solutions

We consider the Cauchy problem for the Hamilton-Jacobi equation

$$u_t + H(t, Du) = 0$$
 in $U := \{t > 0, x \in \mathbb{R}^n\}$ (2.1)

$$u(0,x) = \phi(x) \quad \text{on } \{t = 0, \ x \in \mathbb{R}^n\},$$
 (2.2)

where the Hamiltonian H depends on the variable t and the spatial derivatives Du.

We note that Van, Tsuji, Hoang and Thai Son [9], [10] have obtained a Hopf-type formula with the initial function $\phi = \phi(x)$ nonconvex and H merely continuous. Moreover, a global Lipschitz solution of (2.1)–(2.2) is given by an explicit Hopftype formula in the following case (see Chap. 9, [10]): The Hamiltonian (depends explicitly on t) H = H(t, p) is continuous in $U_G := \{(t, p) : t \in (0, +\infty) \setminus G, p \in \mathbb{R}^n\}$ where G is closed subset of \mathbb{R} with Lebesgue measure zero; and, for each $N \in (0, +\infty)$ corresponds a function $g_N := g_N(t) \in L^\infty_{\text{loc}}(\mathbb{R})$ so that

$$\sup_{|p| \le N} |H(t,p)| \le g_N(t) \quad \text{for almost } t \in (0,+\infty);$$

while the initial function $\phi = \phi(x)$ satisfies one of the following two conditions:

- (1) $\phi = \phi_1 \phi_2$, where ϕ_1, ϕ_2 are convex functions;
- (2) ϕ is minimum of a family of convex functions.

In this section, we look for explicit global Lipschitz solutions of problem (2.1)–(2.2), where $x \in \mathbb{R}^n$, $n = n_1 + n_2$, $x = (x', x'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and the initial-valued function $\phi = \phi(x) := \phi(x', x'')$ is a strictly concave-convex function on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$

satisfying the following conditions:

$$\lim_{|x''| \to +\infty} \frac{\phi(x', x'')}{|x''|} = +\infty \text{ for each } x' \in \mathbb{R}^{n_1},$$
(2.3)

$$\lim_{|x'| \to +\infty} \frac{\phi(x', x'')}{|x'|} = -\infty \text{ for each } x'' \in \mathbb{R}^{n_2}.$$
(2.4)

We now consider the Cauchy problem (2.1)-(2.2) with the following hypotheses:

(M1) The Hamiltonian H = H(t, p) is continuous in

 $U_G := \{(t, p) : t \in (0, +\infty) \setminus G, p \in \mathbb{R}^n\}$

with G be a closed subset of \mathbb{R} with Lebesgue measure 0. Moreover, for each $N \in (0, +\infty)$ there corresponds a function $g_N := g_N(t) \in L^{\infty}_{\text{loc}}(\mathbb{R})$ so that

$$\sup_{|p| \le N} |H(t,p)| \le g_N(t) \quad \text{for almost } t \in (0,+\infty);$$

(M2) The equality

$$\sup_{p^{\prime\prime}\in\mathbb{R}^{n_2}}\inf_{p^{\prime}\in\mathbb{R}^{n_1}}\varphi(t,x,p)=\inf_{p^{\prime}\in\mathbb{R}^{n_1}}\sup_{p^{\prime\prime}\in\mathbb{R}^{n_2}}\varphi(t,x,p)$$

is satisfied in U, where

$$\varphi(t,x,p) := \langle p,x \rangle - \phi^*(p) - \int_0^t H(\tau,p)d\tau$$
(2.5)

for $(t, x) = (t, x', x'') \in U$, $p = (p', p'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. Here, ϕ^* denotes the conjugate of ϕ which is defined as in Section 3 later.

(M3) To each bounded subset V of U there corresponds a positive number N(V) so that

$$\max_{\substack{|q''| \le N(V) \ q' \in \mathbb{R}^{n_1} \\ q'' \in \mathbb{R}^{n_2}}} \inf_{\varphi(t, x, q', q'') > \inf_{q' \in \mathbb{R}^{n_1}} \varphi(t, x, q', p''),$$
$$\min_{\substack{|q'| \le N(V) \ q'' \in \mathbb{R}^{n_2} \\ q' \in \mathbb{R}^{n_1}}} \sup_{\varphi(t, x, q', q'') < \sup_{q'' \in \mathbb{R}^{n_2}} \varphi(t, x, p', q''),$$

whenever $(t, x) \in V$, $p = (p', p'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and $\min\{|p'|, |p''|\} > N(V)$.

The main result of this Section is as follows.

Theorem 2.1. Let ϕ be a strictly concave-convex function on \mathbb{R}^n with (2.3)–(2.4) and assume M1–M3. Then the formula

$$u(t,x) := \sup_{p'' \in \mathbb{R}^{n_2}} \inf_{p' \in \mathbb{R}^{n_1}} \varphi(t,x,p) = \inf_{p' \in \mathbb{R}^{n_1}} \sup_{p'' \in \mathbb{R}^{n_2}} \varphi(t,x,p),$$
(2.6)

for $(t, x) \in U$, determines a global Lipschitz solution of the Cauchy problem (2.1)–(2.2).

To prove this theorem, we need the following lemmas, which are similar to the lemmas 10.5 and 10.6 in [10].

Lemma 2.2. Let \mathcal{O} be an open subset of \mathbb{R}^m , and $\eta = \eta(\xi, p) = \eta(\xi, p', p'')$ be a continuous function on $\mathcal{O} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ with the following properties:

(1) The equality

$$\sup_{p'' \in \mathbb{R}^{n_2}} \inf_{p' \in \mathbb{R}^{n_1}} \eta(\xi, p) = \inf_{p' \in \mathbb{R}^{n_1}} \sup_{p'' \in \mathbb{R}^{n_2}} \eta(\xi, p)$$

is satisfied in \mathcal{O} ;

(2) There is a nonempty subset $E \subset \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ such that $\eta(\xi, p)$ is finite on $\mathcal{O} \times E$ and $\eta(\xi, p) \equiv -\infty$ on $\mathcal{O} \times E^c$, where $E^c = \mathbb{R}^n \setminus E$. Moreover, for each bounded subset V of \mathcal{O} , corresponds a positive number N(V) such that

$$\max_{\substack{|q''| \le N(V) \ q' \in \mathbb{R}^{n_1} \\ q'' \in \mathbb{R}^{n_2}}} \inf_{q' \in \mathbb{R}^{n_2}} \eta(\xi, q', q'') > \inf_{q' \in \mathbb{R}^{n_1}} \eta(\xi, q', p''),$$

and

$$\min_{\substack{|q'| \le N(V) \\ q' \in \mathbb{R}^{n_1}}} \sup_{q'' \in \mathbb{R}^{n_2}} \eta(\xi, q', q'') < \sup_{q'' \in \mathbb{R}^{n_2}} \eta(\xi, p', q'')$$

whenever $\xi \in V$, $p = (p', p'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and $\min\{|p'|, |p''|\} > N(V)$;

(3) For each fixed p of E, $\eta = \eta(\xi, p)$ is differentiable in $\xi \in \mathcal{O}$ with continuous gradient

$$\partial \eta / \partial \xi = \partial \eta(\xi, p) / \partial \xi$$

on $\mathcal{O} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

Then we have:

i. The function

$$\psi = \psi(\xi) := \sup_{p'' \in \mathbb{R}^{n_2}} \inf_{p' \in \mathbb{R}^{n_1}} \eta(\xi, p) = \inf_{p' \in \mathbb{R}^{n_1}} \sup_{p'' \in \mathbb{R}^{n_2}} \eta(\xi, p)$$

is a locally Lipschitz continuous on \mathcal{O} .

ii. $\psi = \psi(\xi)$ is directionally differentiable in \mathcal{O} with

$$\begin{aligned} \partial_e \psi(\xi) &= \max_{p'' \in L''(\xi)} \min_{p' \in L'(\xi)} \langle \partial \eta(\xi, p', p'') / \partial \xi, e \rangle \\ &= \min_{p' \in L'(\xi)} \max_{p'' \in L''(\xi)} \langle \partial \eta(\xi, p', p'') / \partial \xi, e \rangle, \quad \xi \in \mathcal{O}, \ e \in \mathbb{R}^m \end{aligned}$$

where

$$L'(\xi) := \{ p' \in \mathbb{R}^{n_1} : \sup_{p'' \in \mathbb{R}^{n_2}} \eta(\xi, p', p'') = \psi(\xi) \}$$
(2.7)

$$L''(\xi) := \{ p'' \in \mathbb{R}^{n_2} : \inf_{p' \in \mathbb{R}^{n_1}} \eta(\xi, p', p'') = \psi(\xi) \}.$$
 (2.8)

Lemma 2.3. Suppose that the conditions 1–2 in Lemma 2.2 are satisfied for a continuous function $\eta = \eta(\xi, p', p'')$ on $\mathcal{O} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. Then (2.7)–(2.8) determines the non-empty valued, closed, locally bounded multifunction $L = L(\xi) := L'(\xi) \times L''(\xi), \xi \in \mathcal{O}$.

Proof of Theorem 2.1. . We can verify that the function

$$\eta = \eta(\xi, p) := \varphi(t, x, p)$$

satisfies all the assumptions of Lemma 2.2, where

$$E := \operatorname{dom} \phi^* \neq \emptyset, \quad m := 1 + n = 1 + n_1 + n_2, \quad \xi := (t, x).$$

Here we put $\mathcal{O} := \overline{U}$ and conclude that

$$L(t,x) = L'(t,x) \times L''(t,x) = \{p \in E : \varphi(t,x,p) = u(t,x)\}$$

4

determines a nonempty-valued, locally bounded, closed multifunction L = L(t, x)of $(t, x) \in \overline{U}$. Take arbitrary an $r \in (0, +\infty)$ and denote

$$V_r = \{(t, x) \in \overline{U} : t + |x| < r\}, \quad N_r = N(V_r).$$

Let $g_{N_r} = g_{N_r}(t)$ as be in the condition M1. Then for any two points (t^1, x^1) and (t^2, x^2) are in V_r , we may choose an element $p = (p^{'1}, p^{''2}) \in L'(t^1, x^1) \times L''(t^2, x^2)$ of the nonempty set

$$L'(t^1, x^1) \times L''(t^2, x^2) \subset \bar{B}^{n_1}(0', N_r) \times \bar{B}^{n_2}(0'', N_r)$$

and get

$$u(t^{2}, x^{2}) - u(t^{1}, x^{1}) = \inf_{p' \in \mathbb{R}^{n_{1}}} \varphi(t^{2}, x^{2}, p', p^{''2}) - \sup_{p'' \in \mathbb{R}^{n_{2}}} \varphi(t^{1}, x^{1}, p^{'1}, p'')$$

$$\leq \varphi(t^{2}, x^{2}, p^{'1}, p^{''2}) - \varphi(t^{1}, x^{1}, p^{'1}, p^{''2})$$

$$= \varphi(t^{2}, x^{2}, p) - \varphi(t^{1}, x^{1}, p)$$

$$= \langle p, x^{2} - x^{1} \rangle + \int_{t_{2}}^{t_{1}} H(\tau, p) d\tau$$

$$\leq N_{r} \cdot |x^{2} - x^{1}| + s_{r} \cdot |t^{2} - t^{1}|$$

where $s_r = \operatorname{ess\,sup}_{t \in (0,r)} g_{N_r}(t)$. Dually,

$$u(t^1, x^1) - u(t^2, x^2) \le N_r \cdot |x^2 - x^1| + s_r \cdot |t^2 - t^1|.$$

Hence, u = u(t, x) is a locally Lipschitz continuous in \overline{U} and thus it be long to $Lip(\overline{U})$. Next, let $e^o := (1, 0, 0, \dots, 0, 0), e^1 := (0, 1, 0, \dots, 0, 0), \dots, e^n := (0, 0, 0, \dots, 0, 1) \in \mathbb{R}^{n+1}$. We now replace in Lemma 2.2 the set $\mathcal{O} := U_G$. From this lemma we see that u = u(t, x) is directionally differentiable in U_G with

$$\begin{aligned} \partial_{e^o} u(t,x) &= \max_{p'' \in L''(t,x)} \min_{p' \in L'(t,x)} \{-H(t,p), \ p \in L(t,x)\} \\ &= \min_{p' \in L'(t,x)} \max_{p'' \in L''(t,x)} \{-H(t,p), \ p \in L(t,x)\}, \\ \partial_{-e^o} u(t,x) &= \max_{p'' \in L''(t,x)} \min_{p' \in L'(t,x)} \{H(t,p), \ p \in L(t,x)\} \\ &= \min_{p' \in L'(t,x)} \max_{p'' \in L''(t,x)} \{H(t,p), \ p \in L(t,x)\}; \end{aligned}$$

and for $1 \leq i \leq n$:

$$\partial_{e^{i}} u(t,x) = \max_{p'' \in L''(t,x)} \min_{p' \in L'(t,x)} \{p_{i}, \ p \in L(t,x)\}$$

$$= \min_{p' \in L'(t,x)} \max_{p'' \in L''(t,x)} \{p_{i}, \ p \in L(t,x)\},$$

$$\partial_{-e^{i}} u(t,x) = \max_{p'' \in L''(t,x)} \min_{p' \in L'(t,x)} \{-p_{i}, \ p \in L(t,x)\}$$

$$= \min_{p' \in L'(t,x)} \max_{p'' \in L''(t,x)} \{-p_{i}, \ p \in L(t,x)\}.$$
(2.9)

Since u = u(t, x) is locally Lipschitz continuous in \overline{U} , according to Rademacher's Theorem, there exists a set $\mathcal{Q} \subset U$ of ((n + 1) dimensional) Lebesgue measure 0 such that u = u(t, x) is differentiable with

$$\frac{\partial u(t,x)}{\partial t} = \partial_{e^o} u(t,x) = -\partial_{-e^o} u(t,x),$$
$$\frac{\partial u(t,x)}{\partial x_i} = \partial_{e^i} u(t,x) = -\partial_{-e^i} u(t,x)$$
(2.10)

at any point $(t,x) \in U \setminus Q$. Hence, (2.9)–(2.10) show that the equalities for $1 \leq i \leq n$,

$$\begin{split} \frac{\partial u(t,x)}{\partial x_i} &= \max_{p'' \in L''(t,x)} \min_{p' \in L'(t,x)} \{p_i, \ p \in L(t,x)\} \\ &= \min_{p' \in L'(t,x)} \max_{p'' \in L''(t,x)} \{p_i, \ p \in L(t,x)\} \\ &= \min_{p'' \in L''(t,x)} \max_{p' \in L'(t,x)} \{p_i, \ p \in L(t,x)\} \\ &= \max_{p' \in L'(t,x)} \min_{p'' \in L''(t,x)} \{p_i, \ p \in L(t,x)\} \end{split}$$

hold for all $(t, x) \in U \setminus \{\mathcal{P} := (G \times \mathbb{R}^n) \cup \mathcal{Q}\} =: U_{\mathcal{P}}$, this implies

$$L(t,x) = \left\{\frac{\partial u(t,x)}{\partial x}\right\}, \quad (t,x) \in U_{\mathcal{P}};$$

and we obtain

$$\frac{\partial u(t,x)}{\partial t} = \{-H(t,p), \ p \in L(t,x)\}.$$

Thus,

$$\frac{\partial u(t,x)}{\partial t} + H(t,\frac{\partial u(t,x)}{\partial x}) = -H(t,\frac{\partial u(t,x)}{\partial x}) + H(t,\frac{\partial u(t,x)}{\partial x}) = 0$$

hold almost everywhere in U. Furthermore

$$u(0,x) = u(0,x',x'')$$

=
$$\sup_{p'' \in \mathbb{R}^{n_2}} \inf_{p' \in \mathbb{R}^{n_1}} \{ \langle p', x' \rangle + \langle p'', x'' \rangle - \phi^*(p',p'') \}$$

=
$$\inf_{p' \in \mathbb{R}^{n_1}} \sup_{p'' \in \mathbb{R}^{n_2}} \{ \langle p', x' \rangle + \langle p'', x'' \rangle - \phi^*(p',p'') \}$$

=
$$\left(\phi^*(p',p'') \right)^* = \phi(x',x'') = \phi(x)$$

for all $x = (x', x'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. From what has already been proved, we conclude that u = u(t, x) is a global Lipschitz solution of the Cauchy problem (2.1)–(2.2). \Box

Remark 2.4. If $n_2 = 0$, we obtain the Hopf-type formulas of the Cauchy problem for the convex initial data as in Chapter 8 [10].

Remark 2.5. Assume (M1), (M2). Then (M3) is satisfied if

$$\inf_{p' \in \mathbb{R}^{n_1}} \varphi(t, x, p', p'') \to -\infty \quad \text{locally uniformly in } (t, x) \in \overline{U} \text{ as } |p''| \to +\infty$$

and

$$\sup_{p''\in\mathbb{R}^{n_2}}\varphi(t,x,p',p'')\to+\infty\quad\text{locally uniformly in }(t,x)\in\bar{U}\text{ as }|p'|\to+\infty$$

i.e, if the following statement holds:

For any λ and $\mu \in \mathbb{R}$ and any bounded subset V of \overline{U} , there exists positive numbers $N(\lambda, V)$ and $N(\mu, V)$, respectively, so that

$$\inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',p'')<\lambda\quad\text{whenever }(t,x)\in V,\;|p''|>\;N(\lambda,V)$$

and

$$\sup_{q''\in\mathbb{R}^{n_2}}\varphi(t,x,p',q'')>\mu\quad\text{whenever }(t,x)\in V,\;|p'|>\;N(\mu,V).$$

Indeed, fix an arbitrary $q^0 = (q^{0'}, q^{0''})$ in the domain of ϕ^* , which is not empty. Since the finite function $\overline{U} \ni (t, x) \mapsto \varphi(t, x, q^0)$ is continuous, it follows that: for any bounded subset V of \overline{U} ,

$$\lambda_V := \inf_{\substack{(t,x) \in V}} \varphi(t,x,q^0) > -\infty,$$
$$\mu_V := \sup_{\substack{(t,x) \in V}} \varphi(t,x,q^0) < +\infty.$$

Under the hypothesis above, we certainly find a number $N(\lambda, V) \geq |q^{0''}|$ (for each such V) so that

$$\inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',p'')<\lambda_V=\inf_{(t,x)\in V}\varphi(t,x,q^{0'},q^{0''})$$

when $(t, x) \in V$ and $|p''| > N(\lambda, V)$,

$$\inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',p'') < \varphi(t,x,q^{0'},q^{0''})$$

 $\text{ when } (t,x) \in V, \ |p^{\prime\prime}| > \ N(\lambda,V),$

$$\inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',p'') < \inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',q^{0''})$$

when $(t, x) \in V$, $|p''| > N(\lambda, V)$,

$$\inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',p'') < \max_{\substack{|q''|\leq N(\lambda,V)\\q''\in\mathbb{R}^{n_2}}} \inf_{q'\in\mathbb{R}^{n_1}}\varphi(t,x,q',q'')$$

when $(t,x) \in V$, $|p''| > N(\lambda,V)$.

Analogously, we also obtain

$$\sup_{q''\in\mathbb{R}^{n_2}}\varphi(t,x,p',q'') > \min_{\substack{|q'|\leq N(\mu,V)\\q''\in\mathbb{R}^{n_1}}}\sup_{q''\in\mathbb{R}^{n_2}}\varphi(t,x,q',q'')$$

when $(t, x) \in V$, $|p'| > N(\mu, V)$, where $N(\mu, V) \ge |q^{0'}|$. Hence (M3) is satisfied.

3. Hopf-type estimates for viscosity solutions

Consider the Cauchy problem for the Hamilton-Jacobi equation

$$\frac{\partial u}{\partial t} + H(\frac{\partial u}{\partial x}) = 0 \quad \text{in } U := \{t > 0, \, x \in \mathbb{R}^n\}$$
(3.1)

$$u(0,x) = \phi(x) \quad \text{on } \{t = 0, x \in \mathbb{R}^n\}.$$
 (3.2)

When H = H(p) is continuous and $\phi = \phi(x)$ is uniformly continuous, the Cauchy problem (3.1)–(3.2) has a unique viscosity solution u = u(t, x) which is in the space of continuous functions that are uniformly continuous in x uniformly in t, $UC_x([0, +\infty) \times \mathbb{R}^n)$ (see [5]). We also refer the readers to [4,5] for the definition and properties of viscosity solutions.

In the case of Lipschitz continuous and convex (or concave) initial data ϕ and merely continuous Hamiltonian H, or for convex ϕ and Lipschitz continuous H, the formula

$$u(t,x) = \sup_{p \in \mathbb{R}^n} \{ \langle p, x \rangle - \phi^*(p) - tH(p) \}$$

determines a (unique) viscosity solution $u = u(t, x) \in UC_x([0, +\infty) \times \mathbb{R}^n)$ of the problem (3.1)–(3.2). Here ϕ^* denotes the Legendre transform of ϕ (see, [1,2]).

In this section we are interested in giving explicit pointwise upper and lower bounds for viscosity solutions where the initial function $\phi = \phi(x', x'')$ is concaveconvex. First, we rewrite some main results on the conjugate of the concave-convex functions (for the details, see [10, Chapter 10]). Let $\phi = \phi(x', x'')$ is a concaveconvex function on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. Then

$$\begin{split} \phi^{*1}(p', x'') &= \inf_{x' \in \mathbb{R}^{n_1}} \{ \langle x', p' \rangle - \phi(x', x'') \} \\ \left(\text{resp. } \phi^{*2}(x', p'') &= \sup_{x'' \in \mathbb{R}^{n_2}} \{ \langle x'', p'' \rangle - \phi(x', x'') \} \right) \end{split}$$

is the Fenchel conjugate of x'-concave (resp. x''-convex) function $\phi(x', x'')$.

If $\phi = \phi(x', x'')$ is concave-convex function with conditions (2.3)–(2.4), then $\phi^{*1}(p', x'')$ (resp. $\phi^{*2}(x', p'')$) is concave (resp. convex) not only in $p' \in \mathbb{R}^{n_1}$ (resp. $p'' \in \mathbb{R}^{n_2}$) but also in the whole variable $(p', x'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ (resp. $(x', p'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$) and

$$\lim_{|p'| \to +\infty} \frac{\phi^{*1}(p', x'')}{|p'|} = -\infty \quad (\text{resp. } \lim_{|p''| \to +\infty} \frac{\phi^{*2}(x', p'')}{|p''|} = +\infty)$$

locally uniformly in $x'' \in \mathbb{R}^{n_2}$ (resp. $x' \in \mathbb{R}^{n_2}$). Besides the Fenchel "partial conjugate" ϕ^{*1} and ϕ^{*2} , we consider two "total conjugate" of ϕ :

$$\begin{split} \phi^*(p',p'') &= \inf_{x' \in \mathbb{R}^{n_1}} \{ \langle x',p' \rangle + \phi^{*2}(x',p'') \} \\ &= \inf_{x', \in \mathbb{R}^{n_1}} \sup_{x'' \in \mathbb{R}^{n_2}} \{ \langle x',p' \rangle + \langle x'',p'' \rangle - \phi(x',x'') \} \end{split}$$

and

$$\underline{\phi}^*(p',p'') = \sup_{x'' \in \mathbb{R}^{n_2}} \left\{ \langle x'',p'' \rangle + \phi^{*1}(p',x'') \right\}$$

$$= \sup_{x'' \in \mathbb{R}^{n_2}} \inf_{x' \in \mathbb{R}^{n_1}} \left\{ \langle x',p' \rangle + \langle x'',p'' \rangle - \phi(x',x'') \right\}.$$

Therefore, the functions $\overline{\phi}^*$ and $\underline{\phi}^*$ are usually called the upper and lower conjugate, respectively, of ϕ . Note that

$$\phi^* \le \phi^*.$$

These functions are also concave-convex, and with (2.3)–(2.4) they coincide. In this situation, the Fenchel conjugate

$$\phi^*:=\bar{\phi}^*=\phi^*$$

of ϕ will simultaneously have the properties

$$\lim_{|p''| \to +\infty} \frac{\phi^*(p', p'')}{|p''|} = +\infty \quad \text{for each } p' \in \mathbb{R}^{n_1}$$
$$\lim_{|p'| \to +\infty} \frac{\phi^*(p', p'')}{|p'|} = -\infty \quad \text{for each } p'' \in \mathbb{R}^{n_2}.$$

If (2.3)–(2.4) are not assumed, the partial conjugates ϕ^{*1} and ϕ^{*2} are still concave and convex, respectively, but might be infinite somewhere, then the lower and upper conjugates ϕ^* and $\bar{\phi}^*$ might not coincide. One can claim only that

$$\begin{split} \phi^{*1}(p',x'') &< +\infty, \quad \forall (p',x'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}, \\ \phi^{*2}(x',p'') &> -\infty, \quad \forall (x',p'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}. \end{split}$$

Now let

$$D_1 := \{ p' \in \mathbb{R}^{n_1} : \phi^{*1}(p', x'') > -\infty \ \forall x'' \in \mathbb{R}^{n_2} \}, D_2 := \{ p'' \in \mathbb{R}^{n_2} : \phi^{*2}(x', p'') < +\infty \ \forall x' \in \mathbb{R}^{n_1} \},$$

hence for all $x'' \in \mathbb{R}^{n_2}$, $\phi^{*1}(p', x'')$ is finite on D_1 , and for all $x' \in \mathbb{R}^{n_1}$, $\phi^{*2}(x', p'')$ is finite on D_2 .

We now consider the Cauchy problem (3.1)–(3.2) with the hypothesis:

(M4) The Hamiltonian H = H(p) is continuous and the initial function $\phi = \phi(x', x'')$ is concave-convex and Lipschitz continuous (without (2.3)–(2.4)).

For $(t, x) \in U$, we set

$$u_{-}(t,x) := \sup_{p'' \in D_2} \inf_{p' \in \mathbb{R}^{n_1}} \{ \langle p, x \rangle - \bar{\phi}^*(p) - tH(p) \}$$
(3.3)

$$u_{+}(t,x) := \inf_{p' \in D_1} \sup_{p'' \in \mathbb{R}^{n_2}} \{ \langle p, x \rangle - \underline{\phi}^*(p) - tH(p) \}.$$

$$(3.4)$$

Remark 3.1. The concave-convex function $\phi = \phi(x', x'')$ is Lipschitz continuous in the sense: $\phi(x', x'')$ is Lipschitz continuous in $x' \in \mathbb{R}^{n_1}$ for each $x'' \in \mathbb{R}^{n_2}$ and in $x'' \in \mathbb{R}^{n_2}$ for each $x' \in \mathbb{R}^{n_1}$.

Our estimates for viscosity solutions in this section read as follows:

Theorem 3.2. Assume (M4). Then the unique viscosity solution $u = u(t, x) \in UC_x([0, +\infty) \times \mathbb{R}^n)$ of the Cauchy problem (3.1)–(3.2) satisfies on \overline{U} the inequalities

$$u_{-}(t,x) \le u(t,x) \le u_{+}(t,x)$$

where u_{-} and u_{+} are defined by (3.3) and (3.4) respectively.

Proof. For each $p' \in D_1$, let

$$\begin{split} \Phi(x;\underline{p}') &= \Phi(x',x'';\underline{p}') := \langle x',\underline{p}' \rangle - \phi^{*1}(\underline{p}',x'') \\ &= \langle x',\underline{p}' \rangle - \inf_{x' \in \mathbb{R}^{n_1}} \big\{ \langle x',\underline{p}' \rangle - \phi(x',x'') \big\} \\ &\geq \phi(x',x'') \quad \text{for all } (x',x'') \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \end{split}$$

Since $\phi^{*1}(\underline{p}', .)$ is a concave and finite, so $-\phi^{*1}(\underline{p}', .)$ is convex and finite, it is convex and Lipschitz continuous function; therefore, $\Phi(x; \underline{p}')$ is convex and Lipschitz continuous with its Fenchel conjugate given by

$$\begin{split} \Phi^*(p;\underline{p}') &= \Phi^*(p',p'';\underline{p}') = \sup_{x \in \mathbb{R}^n} \left\{ \langle x, p \rangle - \Phi(x,\underline{p}') \right\} \\ &= \sup_{x \in \mathbb{R}^n} \left\{ \langle x', p' \rangle + \langle x'', p'' \rangle - \langle x', \underline{p}' \rangle + \phi^{*1}(\underline{p}', x'') \right\} \\ &= \begin{cases} +\infty & \text{if } (p', p'') \neq (\underline{p}', p'') \\ \underline{\phi}^*(\underline{p}', p'') & \text{if } (p', p'') = (\underline{p}', p''). \end{cases} \end{split}$$

Next, consider the Cauchy problem

$$\begin{aligned} \frac{\partial v}{\partial t} + H(\frac{\partial v}{\partial x}) &= 0 \quad \text{in } U = \{t > 0, \ x \in \mathbb{R}^n\},\\ v(0, x) &= \Phi(x; \underline{p}') \quad \text{on } \{t = 0, \ x \in \mathbb{R}^n\}. \end{aligned}$$

This is the Cauchy problem with the continuous Hamiltonian H = H(p) and the convex and Lipschitz continuous initial function $\Phi = \Phi(x; \underline{p}')$ for each $\underline{p}' \in D_1$, its unique viscosity solution $v = v(t, x) \in UC_x([0, +\infty) \times \mathbb{R}^n)$ is given by

$$\begin{split} \psi(t,x) &= \sup_{p \in \mathbb{R}^n} \{ \langle p, x \rangle - \Phi^*(p; \underline{p}') - tH(p) \} \\ &= \sup_{p'' \in \mathbb{R}^{n_2}} \{ \langle \underline{p}', x' \rangle + \langle p'', x'' \rangle - \underline{\phi}^*(\underline{p}', p'') - tH(\underline{p}', p'') \} \end{split}$$

with the initial condition

$$v(0,x) = \Phi(x;p') \ge \phi(x) = u(0,x)$$

for each $\underline{p}' \in D_1$ (see [1]). Hence, for each $\underline{p}' \in D_1$, v = v(t, x) is a (continuous) supersolution of the problem (3.1)–(3.2) (according to a standard comparison theorem for unbounded viscosity solutions (see [5])), that means

$$u(t,x) \le v(t,x)$$
 for each $\underline{p}' \in D_1$,

and then

$$u(t,x) \leq \inf_{p' \in D_1} \sup_{p'' \in \mathbb{R}^{n_2}} \{ \langle p, x \rangle - \underline{\phi}^*(p) - tH(p) \}$$
$$u(t,x) \leq u_+(t,x) \quad \text{on } \bar{U}.$$

Dually, we also abtain $u(t,x) \ge u_{-}(t,x)$ on \overline{U} . Therefore, Theorem 3.2 has been proved.

Corollary 3.3. Assume (M1), (M2) for the case when H(t, p) is not depending on t. Moreover, assume that $\phi = \phi(x', x'')$ is concave-convex and Lipschitz continuous function on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and satisfies the conditions (2.3)–(2.4). Then (2.6) determines the unique viscosity solution $u(t, x) \in UC_x([0, +\infty) \times \mathbb{R}^n)$ of the Cauchy problem (3.1)–(3.2).

Proof. Since $\phi = \phi(x', x'')$ is a concave-convex and Lipschitz continuous function so dom ϕ^* is a bounded and nonempty set. Independently of $(t, x) \in \overline{U}$, it follows that

$$\begin{split} \varphi(t,x,p',p'') &\to -\infty \quad \text{whenever } |p''| \text{ is large enough} \\ \varphi(t,x,p',p'') &\to +\infty \quad \text{whenever } |p'| \text{ is large enough.} \end{split}$$

From Remark 2.5 implies that hypothesis (M3) hold. Then the conclusion follows from Theorem 3.2. $\hfill \Box$

References

- Bardi, M. and Evans, L.C., On Hopf's formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), 1373 - 1381.
- [2] Bardi, M. and Faggian, S., Hopf-type estimates and formulas for non-convex, non-concave Hamilton-Jacobi equations, SIAM J. Math. Anal., 29 (1998), 1067 - 1086.
- [3] Barron, E. N., Jensen, R., and Liu, W., Applications of the Hopf-Lax formula for $u_t + H(u, Du) = 0$, SIAM J. Math. Anal., **29** (1998), 1022 1039.
- [4] Crandall, M. G., Evans, L. C., and Lions, P. L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502.
- [5] Ishii, H., Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33 (1984), 721-748.
- [6] Ngoan, H. T., Hopf's formula for Lipschitz solutions of Hamilton-Jacobi equations with concave-convex Hamiltonian, Acta Math. Vietn., 23 (1998), 269 - 294.

- [7] Rockafellar, R. I., Convex analysis, *Princeton University Press, Princeton, New Jerssey*, 1970.
- [8] Thai Son, N. D., Hopf-type estimates for viscosity solutions to concave-convex Hamilton-Jacobi equation, Tokyo J. Math., 24. No. 1 (2001), 231 - 243.
- [9] Van, T. D., Hoang, N., and Tsuji, M., On Hopf's formula for Lipschitz solutions of the Cauchy problem for Hamilton-Jacobi equations, Nonlinear Analysis, Theory, Methods & Applications, 29 (1997), 1145-1159.
- [10] Van, T. D., Tsuji, M., and Thai Son, N. D., The Characteristic method and its generalizations for first-order nonlinear partial differential equations, Chapman & Hall, CRC Press, 2000.
- [11] Van, T. D., and Thanh, M. D., On explicit viscosity solutions to nonconvex-nonconcave Hamilton-Jacobi equations, Acta Math. Vietn., 26 (2001), 395-405.

Nguyen Huu Tho

BUREAU OF EDUCATION AND TRAINING OF HATAY, VIETNAM

TRAN DUC VAN

HANOI INSTITUTE OF MATHEMATICS, P.O. BOX 631, BOHO, HANOI, VIETNAM *E-mail address*: tdvan@thevinh.ac.vn