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HOPF-TYPE ESTIMATES FOR SOLUTIONS TO
HAMILTON-JACOBI EQUATIONS WITH CONCAVE-CONVEX
INITIAL DATA

NGUYEN HUU THO & TRAN DUC VAN

ABSTRACT. We consider the Cauchy problem for the Hamilton-Jacobi equa-
tions with concave-convex initial data. A Hopf-type formula for global Lip-
schitz solutions and estimates for viscosity solutions of this problem are ob-
tained using techniques of multifunctions and convex analysis.

1. INTRODUCTION

This paper is a continuation of the works [10] and [8], where the explicit solu-
tions via Hopf-type formulas of the Cauchy problem to the Hamilton-Jacobi equa-
tions with concave-convex hamiltonians were considered. Namely, we consider the
Cauchy problem for the Hamilton-Jacobi equation

ou Ou . n
a—&-H(t,%)—O inU:={t>0, xcR"} (1.1)

uw(0,2) =¢(z) on{t=0, z€R"}. (1.2)

Here 0/0x = (0/0x1,...,0/0x,), the Hamiltonian H = H(t,p) and ¢ = ¢(x) are
given functions, and v = u(¢, z) is unknown.

In this paper we shall assume that n = n; + ny and that the variable x € R" is
separated as x = (2/,2") with 2/ € R™, 2" € R"2, similarly for p,q,--- € R". In
particular, the zero-vector in R™ will be 0 = (0’,0”), where 0’ and 0” stand for the
zero-vectors in R™ and R"2, respectively.

Definition. A function g = g(z’,2"”) is called concave-convex if it is concave in
2’ € R™ for each 2 € R™ and convex in 2" € R"? for each 2’ € R™!.
For results on the concave-convex functions the reader is referred to [7], [8], [10].

In [10, Chapter 10], Van, Tsuji and Thai Son proposed to examine a class of
concave-convex functions in a more general framework where the discussion of the
global Legendre transformation still make sense.

Bardi and Faggian [2] found explicit pointwise upper and lower bounds of Hopf-
type for the viscosity solutions under the following hypotheses: H depends only on
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p and is a concave-convex function given by the difference of convex functions,
H(p',p") == Hi(p') — Hz(p"),

and ¢ is uniformly continuous. Also if H € C'(R™) and ¢ = ¢(z) is concave-convex
function given by special representation ¢(x) = ¢1(z) — ¢2(x), where ¢y, 2 are
convex and Lipschitz continuous.

Barron, Jensen and Liu [3] and Van, Thanh [11] found Hopf-type estimates for
viscosity solutions to the corresponding Cauchy problem when the Hamiltonian
H(v,p), (7,p) € R x R™ is a D. C. function in p, i.e.,

H(y,p) = Hi(v,p) — Ha(7,p), (7,p) ER xR,

where H;(v,p), ¢ = 1,2, is a convex function in p.

Ngoan [6], Thai Son [8], Van, Tsuji and Thai Son [10] obtained explicit global Lip-
schitz solutions and upper and lower bounds of viscosity solutions to the Hamilton-
Jacobi equations with concave-convex hamiltonians via Hopf-type formulas.

The aim of this paper is to look for explicit global Lipschitz solution of the
Cauchy problem (1.1)—(1.2) and to establish pointwise upper and lower bounds of
Hopf-type for viscosity solutions when the initial function ¢ = ¢(x) = ¢(2’/,z") is
concave-convex on R x R"2,

Definition. A function u = wu(t,z) in Lip(U) will be called a global Lipschitz
solution of the Cauchy problem (1.1)—(1.2) if it satisfies (1.1) almost everywhere
(a. e.) in U, with u(0,z) = ¢(x) for all x € R™.

2. HOPF-TYPE FORMULA FOR GLOBAL LIPSCHITZ SOLUTIONS

We consider the Cauchy problem for the Hamilton-Jacobi equation

w+H@E,Du)=0 inU:={t>0, z€R"} (2.1)
u(0,2) = ¢(x) on {t=0, z € R"},

where the Hamiltonian H depends on the variable ¢t and the spatial derivatives Du.

We note that Van, Tsuji, Hoang and Thai Son [9], [10] have obtained a Hopf-type
formula with the initial function ¢ = ¢(z) nonconvex and H merely continuous.
Moreover, a global Lipschitz solution of (2.1)—(2.2) is given by an explicit Hopf-
type formula in the following case (see Chap. 9, [10]): The Hamiltonian (depends
explicitly on t) H = H(t,p) is continuous in Ug = {(¢,p) : t € (0,4+0)\G, p €
R™} where G is closed subset of R with Lebesgue measure zero; and, for each
N € (0,+00) corresponds a function gx := gn(t) € L2 (R) so that

loc

sup |H(t,p)| < gn(t) for almost ¢ € (0, +00);
lp|<N

while the initial function ¢ = ¢(x) satisfies one of the following two conditions:

(1) ¢ = ¢1 — @2, where ¢, P2 are convex functions;
(2) ¢ is minimum of a family of convex functions.

In this section, we look for explicit global Lipschitz solutions of problem (2.1)-
(2.2), where x € R", n =n; 4+ ng, = = (2/,2"”) € R™ x R™ and the initial-valued
function ¢ = ¢(x) := ¢(z',2") is a strictly concave-convex function on R™ x R™2
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satisfying the following conditions:

/ 1
w QS(T’”T) = +oo for each 2/ € R™, (2.3)
x| —4o0 T

/ 1
| Ihm QS(T’/T) = —oo for each z” € R™. (2.4)
x| —+oo x

We now consider the Cauchy problem (2.1)—(2.2) with the following hypotheses:
(M1) The Hamiltonian H = H (¢, p) is continuous in

Ug :={(t,p) : t € (0,+0)\G,p € R"}

with G be a closed subset of R with Lebesgue measure 0. Moreover, for
each N € (0,+400) there corresponds a function gn = gn(t) € L2 (R) so

loc
that
sup |H(t,p)| < gn(t) for almost ¢ € (0, 400);
lpI<N
(M2) The equality
su inf t,x,p) = inf su t,x,
;n”E]lg’& p’E€R™L Qp( p) p’€R™1 p”E]lg"z <p( p)
is satisfied in U, where
t
plt.a.p)i= py2) = 9"(p) ~ [ H(rp)dr (25)
0

for (t,z) = (t,2',2") e U, p = (p/,p"”) € R™ x R"2. Here, ¢* denotes the
conjugate of ¢ which is defined as in Section 3 later.

(M3) To each bounded subset V of U there corresponds a positive number N (V)
so that

max inf t,r,q,q") > inf t,z,q,p"),
R gkt o(t,r,q',q") . o(t,z,q',p")

q”ER"2
. 3 t i . t o
min - sup o(t,z,q,¢") < sup o(t,z.p',q"),
lg'|<N (V) q"' €R™2 q" €ER™2
g’ €ER™1

whenever (t,z) € V, p= (p/,p”) € R™ x R" and min{|p’|, |p”|} > N(V).

The main result of this Section is as follows.

Theorem 2.1. Let ¢ be a strictly concave-convez function on R™ with (2.3)—(2.4)
and assume M1-M3. Then the formula

u(t,z) := su inf t,x = inf su t,x 2.6
(t.x) e p(t,z,p) = inf p/,eﬂglf(’ :p); (2.6)

for (t,z) € U, determines a global Lipschitz solution of the Cauchy problem (2.1)-
(2.2).

To prove this theorem, we need the following lemmas, which are similar to the
lemmas 10.5 and 10.6 in [10].

Lemma 2.2. Let O be an open subset of R™, and n = n(&,p) = n(&,p',p") be a
continuous function on O x R™ x R"2 with the following properties:
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(1) The equality
su inf ,p) = inf su ,
S n(,p) ik, sup n(&,p)
is satisfied in O;
(2) There is a nonempty subset E C R™ x R"™ such that n(&,p) is finite on
O x E and n(§,p) = —oc0 on O x E¢, where E¢ = R™\ E. Moreover, for
each bounded subset V' of O, corresponds a positive number N(V') such that

max inf n(¢,¢,q¢") > inf n(& ¢, p"),

Iq"\SN(V) q’'€R™1 g’ ER™1
q'' ER™2
and
. / 1 / 1
min - sup 0(&,q',¢") < sup n(&pq"),
l[¢'|<N(V) q'’€R™2 q"’€R™2
q' ER"1

whenever £ €V, p=(p/,p") € R™ x R™ and min{|p'|, [p"|} > N(V);
(3) For each fixed p of E, n =n(&,p) is differentiable in & € O with continuous
gradient
On/0€ = On(& p)/0¢
on O x R™" x R"2.
Then we have:
1. The function
= = s inf ,p)= inf s ,
v =19 o (& p) i D n( p)

is a locally Lipschitz continuous on O.
it. ¥ = (&) is directionally differentiable in O with
3) = max min (On(&p,p")/0¢, e
Y (€) p,,eL,,(@p,eL,(g)< n(&p',p")/0¢, €)

= min max (dn(&p,p")/0¢, ), €0, ecR™
p,eL,(g)p,,eL,,(£)< n(&.p',p")/0 ), &

where
L' :={p eR™: Sup n(&, v, p") = (&)} (2.7)
P 2
L&) == {p" e R™: inf n(&p,p") = (&)} (2.8)
p’€R™

Lemma 2.3. Suppose that the conditions 1-2 in Lemma 2.2 are satisfied for a
continuous function n = n(&,p’,p") on O xR™ xR"™2. Then (2.7)—(2.8) determines
the non-empty valued, closed, locally bounded multifunction L = L(§) := L'(§) x
L"), € 0.

Proof of Theorem 2.1. . We can verify that the function
n=n(&p) == ¢t z,p)
satisfies all the assumptions of Lemma 2.2, where
E:=dom¢*#0, m:=14+n=14+n1+n2, &:=(tx).
Here we put O := U and conclude that
L(t,z) = L'(t,z) x L"(t,z) = {p € E: p(t,z,p) = u(t,z)}
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determines a nonempty-valued, locally bounded, closed multifunction L = L(t, z)
of (t,x) € U. Take arbitrary an r € (0, +00) and denote
Ve,={(t,x)€eU:t+z|<r}, N,=N(V,).

Let gn, = g, (t) as be in the condition M1. Then for any two points (¢!, z!) and
(t?,22) are in V., we may choose an element p = (p,l,pNQ) e L'(th,x') x L (t?, 2?)
of the nonempty set

L'(t',x') x L(t*,2*) € B™(0/,N,)) x B™(0", N,
and get

u(t?, 2?) —u(tt, xt) = inf (% 2%, P )~ sup @(tl,xl,pll,p”)
p’€R™1 p’ ER"2

’

< CP(tQ aplap 2) 790(1515 laplap 2)

= o(t*,2%,p) — o(t', 2", p)

= (p,z? — 2! / H(r,p)d
2

<N, - |2? — 2t + s, - 12—t

where s, = esssup ¢ (o,r)9n, (t). Dually,

u(th, z') —u(t?,2?) < N, - |22 — 2| + 5, - [t2 — t1].
Hence, u = u(t,z) is a locally Lipschitz continuous in U and thus it be long
to Lip(U). Next, let ¢° := (1,0,0,...,0,0), ¢! := (0,1,0,...,0,0), ..., e" :=
(0,0,0,...,0,1) € R**1. We now replace in Lemma 2.2 the set O := Ug. From
this lemma we see that u = u(t, z) is directionally differentiable in Ug with

Oeou(t,z) = max min { H(t,p),p € L(t,x)}

p"’ €L (t,x) p’€L’(t,x)

= H(t e L(t, ,
pé?'lﬁw)pfé?%m{ (t,p), p € L(t,x)}

O_cou(t,z) = ma min {H(t € L(t,x
(t,x) p,,eL,,fm)peL,(m{ (t.p), p € L(t,2)}

= min max {H(t,p),pe€ L(t,x)};
p/EL,(t7x)p,/EL,,(t7x){ (t.p), p € L(t, )}

and for 1 <7 <n:

Ogiu(t,r) = max min i, pE L(t,x
(t,x) p,,eL,,(m)pEL,(m){P peL(tx)}

= min i, D€ L(t,x
oun | max ){p p € L(t,z)},

O_.iu(t, i, p € L(t,
cu(t,x) = p/,erg%m)pgrg}gw{ pi, p € L(t,x)}

= min max {—p;, p€ L(t,x)}.
p/EL’(t,r)p”GL”(t,m){ bi, P ( )}

Since u = u(t,x) is locally Lipschitz continuous in U, according to Rademacher’s
Theorem, there exists a set @ C U of ((n 4+ 1) dimensional) Lebesgue measure 0
such that u = u(¢, z) is differentiable with
Ou(t, x)
ot
ou(t, )
61‘i

= e"u(tvx) = _8—e°u(tax)7

= Oeiu(t,z) = —0_qiu(t, x) (2.10)
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at any point (¢,z) € U \ Q. Hence, (2.9)—(2.10) show that the equalities for 1 <
i1 <n,

ou(t, )
— a i i, p€ Lt
0y il P P HOT)

(

= i a i, P € L(t,
youn o omax Api, pe Lito)}
(
(

= min max ; € L(t,z
;D"EL”(t,ac)p'EL’(t,a:){p“ p o)}

= max min i, p € L(t,x
p’EL’(t,w)p”EL”(t,x){pZ b )}

hold for all (¢,z) € U\ {P := (G x R") U Q} =: Up, this implies

Ou(t, x)
Ox s

L(t,x) = { (t,z) € Up;

and we obtain

WD) H(), pe ).
Thus,
Ou(t, x) Ou(t,z), ou(t, ) Oou(t,z),
o =g )= ~HlE =) T HIE =5 =) =0

hold almost everywhere in U. Furthermore
w(0,7) = u(0,2',2")

— Sup lnf {(p/’x/> + <p//’x//> _ ¢*<p/7p//)}
p’ ER™2 p’€R™1

= inf sup {(p/,a') + (p",2") — ¢" (0. 1")}
p’€R™1 p’ ER"2

= (0", p")" = o(a',2") = ¢(x)
for all x = (a/,2") € R™ x R™. From what has already been proved, we conclude
that v = u(t, ) is a global Lipschitz solution of the Cauchy problem (2.1)-(2.2). O

Remark 2.4. If ny = 0, we obtain the Hopf-type formulas of the Cauchy problem
for the convex initial data as in Chapter 8 [10].

Remark 2.5. Assume (M1), (M2). Then (M3) is satisfied if

irllkf o(t,z,p',p") — —oo locally uniformly in (¢,z) € U as |p”| — +o0
p’ ER"1

and

sup @(t,z,p',p") — +oo locally uniformly in (¢,z) € U as |p/| — +o0
p/lean
i.e, if the following statement holds: -
For any A and p € R and any bounded subset V' of U, there exists positive numbers
N(A, V) and N(u, V), respectively, so that

ir}kf o(t,z,qd',p") <X whenever (t,z) €V, [p’| > N(\, V)
g’ €R"1

and

sup o(t,z,p’,q¢") > p whenever (t,z) €V, [p/| > N(u,V).
q/I€R7l2
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Indeed, fix an arbitrary ¢° = (¢”,¢°") in the domain of ¢*, which is not empty.
Since the finite function U > (t,7) — ¢(t, z, q°) is continuous, it follows that: for
any bounded subset V of U,

Ay = inf t,x,q"%) > —oo0,

% (m)evw( 7")

pv = sup o(t,z,q°) < +oo.
(t,x)eV

Under the hypothesis above, we certainly find a number N(\, V) > |¢°"| (for each
such V') so that
inf o(t,z,q,p") <Av = inf ot,z,q",q"
o etz ¢, p") < Av (t’;r)levw( z,q",q")

when (t,z) € V and |p”| > N(\, V),
inf " ron " o 0"
qllerﬁnl(p(az7Q7p)<<p(7x’q 4 )
when (t,x) € V, |p”| > N(\, V),
inf + ron inf ¢ A
ub, etedp") < mf ot z,q,¢")

when (t,z) € V, [p”| > N(\, V),

i f t? ) /’ i < a i f t’ ) ,7 "
o o(t,z,q',p") o o(t,z,q',q")
q"' €ER"2
when (t,z) € V, [p”| > N\, V).
Analogously, we also obtain

/ 1 . ! 1
sup o(t,z,p',q¢") > min sup @(t,z,q,q")
q"’ €ER™2 R [¢"|SN(u,V) g/ eRn2 o
q' ER™1

when (t,z) € V, |p/| > N(1, V), where N(u, V) > |¢°|. Hence (M3) is satisfied.

3. HOPF-TYPE ESTIMATES FOR VISCOSITY SOLUTIONS

Consider the Cauchy problem for the Hamilton-Jacobi equation

Ju ou ) B "
E—V—H(%)—O inU:={t>0, zeR"} (3.1)

u(0,2) = ¢(x) on {t=0,x €R"}. (3.2)

When H = H(p) is continuous and ¢ = ¢(x) is uniformly continuous, the Cauchy
problem (3.1)—(3.2) has a unique viscosity solution u = wu(t,x) which is in the
space of continuous functions that are uniformly continuous in z uniformly in ¢,
UC,(]0,+00) x R™) (see [5]). We also refer the readers to [4,5] for the definition
and properties of viscosity solutions.

In the case of Lipschitz continuous and convex (or concave) initial data ¢ and
merely continuous Hamiltonian H, or for convex ¢ and Lipschitz continuous H, the
formula

u(t,z) = sup {(p,z) — ¢"(p) — tH(p)}
pER™
determines a (unique) viscosity solution u = u(t,x) € UC,([0,+00) x R™) of the
problem (3.1)—(3.2). Here ¢* denotes the Legendre transform of ¢ (see, [1,2]).
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In this section we are interested in giving explicit pointwise upper and lower
bounds for viscosity solutions where the initial function ¢ = ¢(z’, ") is concave-
convex. First, we rewrite some main results on the conjugate of the concave-convex
functions (for the details, see [10, Chapter 10]). Let ¢ = ¢(a’,2”) is a concave-
convex function on R™ x R™2. Then

¢ (p',2") = f {(2',p) - ¢(a’,2")}

z/€R™1

(resp. ¢*2($I,p1/) = sup {<.’E”,p"> o (15(:13/,1'”)})
! €R"2
is the Fenchel conjugate of z’-concave (resp. a’-convex) function ¢(z’, z").

If ¢ = ¢(a’,2”) is concave-convex function with conditions (2.3)—(2.4), then
¢*L(p', ") (resp. ¢*2(a’,p")) is concave (resp. convex) not only in p’ € R™ (resp.
p" € R") but also in the whole variable (p/,z”) € R™ x R" (resp. (2/,p”) €
R™ x R™2) and

¢*2 (CC/,pN)

*1 / 1
M = —oo (resp. lim ———"= = +400)
pi—too  |P/] lpf—too "]
locally uniformly in z” € R™ (resp. a’ € R™). Besides the Fenchel “partial
conjugate” ¢*' and ¢*2, we consider two “total conjugate” of ¢:
(0, p") = inf {{z',p) +¢"2(2",p")}
z/€R™1
— inf Sup {<x/7p/> + <x//’p//> _ ¢(£/7x//)}
z/ ER™1 2/ €R"2
and
¢*(p/7p//) — sup {(x//7p//> +¢*1(p/,$”)}
- ! €ER™2
= sup inf {{z/,p')+ (2", p") — ¢(2',2")}.
! ER™2 z/€R™1
Therefore, the functions ¢* and Q* are usually called the upper and lower conjugate,
respectively, of ¢. Note that

These functions are also concave-convex, and with (2.3)—(2.4) they coincide. In this
situation, the Fenchel conjugate

¢* = Qg* — Q*
of ¢ will simultaneously have the properties

* / /!
» oL p) (é,;f ) = 400 for each p’ € R™
p'’|—+o0

* / /!
‘ |hm ¢(|pl,|p) = —o0o for each p” € R"2,
p'| =400 p

If (2.3)-(2.4) are not assumed, the partial conjugates ¢*! and ¢*? are still concave
and convex, respectively, but might be infinite somewhere, then the lower and upper
conjugates ¢* and ¢* might not coincide. One can claim only that

oL (p',2") < 400, V(p',2") € R™ x R™,
o2, p") > —o0, V(a',p") € R™ x R™.
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Now let
Dy = {p e R™ : ¢ (p/,2") > —c0 V2" € R"2},
Dy = {p" € R™ : ¢**(/,p") < 400 V' € R™},

hence for all 2”7 € R"2, ¢*(p’, 2"") is finite on Dy, and for all 2/ € R™, ¢*2(2’, p")

is finite on Ds.
We now consider the Cauchy problem (3.1)—(3.2) with the hypothesis:
(M4) The Hamiltonian H = H(p) is continuous and the initial function ¢ =
¢(z’,2") is concave-convex and Lipschitz continuous (without (2.3)—(2.4)).

(3.3)

For (t,x) € U, we set
u_(t,x) = sup inf {(p,z)—¢"(p) —tH(p)}
p'’ €Dy P S
ur(t,z) = inf Sup {(p,z) — ¢"(p) —tH(p)} (3.4)
1p/ no

Remark 3.1. The concave-convez function ¢ = ¢(a’,x") is Lipschitz continuous
in the sense: ¢(x',x') is Lipschitz continuous in ' € R™ for each " € R™ and

m " € R™ for each ' € R™.
Our estimates for viscosity solutions in this section read as follows:

Theorem 3.2. Assume (MJ). Then the unique viscosity solution u = u(t,x) €
UC,([0,400)xR™) of the Cauchy problem (3.1)—(3.2) satisfies on U the inequalities

U_(t7$) < u(t,x) < U+(t,$),
where u_ and uy are defined by (3.3) and (3.4) respectively.

Proof. For each p’ € D1, let
‘b(.’l,‘,]gl) — (I)(SCI,.’L'N;]Z/) — (x/aB/> _ d)*l(ﬂlvx”)

N A I ron ’on
— )t ()~ owa)
> ¢(2’,2") for all (a,2") € R™ x R™.

Since ¢*!(p’,.) is a concave and finite, so —¢*!(p/,.) is convex and finite, it is con-
vex and Lipschitz continuous function; therefore , ®(2;p’) is convex and Lipschitz

continuous with its Fenchel conjugate given by
*(p;p') = @* (¢, p";p') = sup {{z,p) — ®(x,p)}
rER™
sup {<l‘ ,p/> T <J?N,p”> _ <x/,B/> + ¢*1(]2/,$N)}

TER™
_ ) oo it (o', ") # (0 p")
é* (2/717//) if (p/’p//) _ (B/7p”)'

Next, consider the Cauchy problem

dv +H(@):0

ot Ox
v(0,2) = ®(z;p") on {t =0,z € R"}.

inU={t>0,zeR"}
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This is the Cauchy problem with the continuous Hamiltonian H = H(p) and the
convex and Lipschitz continuous initial function ® = ®(z;p’) for each p’ € Dy, its
unique viscosity solution v = v(t, x) € UCI([O, +00) x R") is given by

vt x) = pseuﬂgﬂn z) — " (p;p') — tH(p)}

= sup {{pa") + ("2 — 0" (o p") — tH (")}
p!’ ER™2

with the initial condition
v(0,2) = ®(x;p") > d(x) = u(0,z)

for each p’ € Dy (see [1]). Hence, for each p’ € D1, v = v(t,z) is a (continu-

ous) supersolution of the problem (3.1)-(3.2) (according to a standard comparison
theorem for unbounded viscosity solutions (see [5])), that means

u(t,x) < wv(t,x) for each p’ € Dy,
and then
u(t,r) < inf sup {(p,x) —¢"(p) —tH(p)}
p’€Dy p’ ER™2

u(t,r) <uy(t,z) onU.

Dually, we also abtain u(¢,z) > u_(t,x) on U. Therefore, Theorem 3.2 has been
proved. ([l

Corollary 3.3. Assume (M1), (M2) for the case when H(t,p) is not depending on
t. Moreover, assume that ¢ = ¢(z’,x") is concave-conver and Lipschitz continuous
function on R™ x R™ and satisfies the conditions (2.3)—(2.4). Then (2.6) deter-
mines the unique viscosity solution u(t,z) € UCI([O,—i-oo) X R") of the Cauchy
problem (3.1)=(3.2).

Proof. Since ¢ = ¢(2',2") is a concave-convex and Lipschitz continuous function
so domg* is a bounded and nonempty set. Independently of (¢,z) € U, it follows
that

o(t,z,p',p") — —oo whenever |p”] is large enough
o(t,z,p',p") — 400  whenever |p| is large enough.

From Remark 2.5 implies that hypothesis (M3) hold. Then the conclusion folows
from Theorem 3.2. O
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