\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 62, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/62\hfil Non-autonomous retarded differential equations] {Non-autonomous retarded differential equations: the variation of constants formulas and the asymptotic behaviour} \author[S. Boulite, L. Maniar, \& M. Moussi\hfil EJDE--2003/62\hfilneg] {Said Boulite, Lahcen Maniar, \& Mohammed Moussi} % in alphabetical order \address{Said Boulite \hfill\break Department of Mathematics\\ University Cadi Ayyad\\ Faculty of Sciences Semlalia\\ B.P. 2390, 40000 Marrakesh, Morocco} \email{sboulite@ucam.ac.ma} \address{Lahcen Maniar \hfill\break Department of Mathematics\\ University Cadi Ayyad\\ Faculty of Sciences Semlalia\\ B.P. 2390, 40000 Marrakesh, Morocco} \email{maniar@ucam.ac.ma} \address{Mohammed Moussi\hfill\break Department of Mathematics\\ Faculty of Sciences\\ University Mohammed I\\ 60000 Oujda, Morocco} \email{moussi@sciences.univ-oujda.ac.ma} \date{} \thanks{Submitted November 4, 2002. Published May 29, 2003.} \subjclass[2000]{47D06, 47A55, 34D05, 34G10} \keywords{Non-autonomous retarded differential equations, \hfill\break\indent variation of constants formula, Dyson-Phillips series, asymptotic almost periodicity} \begin{abstract} This paper is devoted to show a variation of constants formula for the operator solution to the non-autonomous retarded differential equation $$ x'(t)=A(t)x(t)+L(t)x_t+f(t),\quad x_s=\varphi, \quad t\geq s\geq 0, $$ in terms of the inhomogeneous term $f$, which will allow us to study the asymptotic behaviour of this solution. We treat also the existence of fundamental solutions and the stability of semi-linear retarded differential equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{defn}[thm]{Definition} \section{Introduction} In this paper we study the retarded non-autonomous differential equation \begin{equation} \label{IHRD} \begin{gathered} x'(t)=A(t)x(t)+L(t)x_t+f(t) ,\quad t\geq s\geq0,\\ x_s=\varphi\in \mathcal{C}_r:=C([-r,0],E), \end{gathered} \end{equation} where $(A(t),D(A(t)))_{t\geq 0}$ generates the strongly continuous evolution family \break $(V(t,s))_{t\geq s\geq 0}$ on a Banach space $E$, and $(L(t)) _{t\geq 0}$ is a family of bounded linear operators from $\mathcal{C}_{r}$ into $E$. In the autonomous case ($A(t)=A$, $L(t)=L$, $t\geq 0$), the retarded differential equation \eqref{IHRD} has been studied by many authors using various techniques; see for example \cite{Ba-Ma-Rh, Desch-Schappacher, Halle, Ma-Rh, Thieme, Tr-We, Wu}. The case $A(t)=A$, $t\geq 0$, has been treated recently in \cite{ Gu-Ra}, \cite{Ma1} and \cite{Rh} using extrapolation theory. In \cite{Rh}, A. Rhandi showed recently that the solution of the homogeneous retarded differential equation ($f\equiv0$) is given by a Dyson-Phillips series. Also in the same case, in \cite{ De-Gu-Gy, Gu-Ra}, the authors proved that the solution of the inhomogeneous retarded equation \eqref{IHRD} is given in terms of the inhomogeneous term $f$ by a variation of constants formula, which was used to study the asymptotic behaviour of the solutions of \eqref{IHRD}. Recently, in \cite{Gu-Ra-Sh} the authors studied the asymptotic behaviour to \eqref{IHRD} on $\mathbb R$ using the evolution semigroups and the characteristic equation. Also, R. Schnaubelt \cite {Sch} showed the first (to our knowledge) variation of constants formula for the inhomogeneous retarded equation \eqref{IHRD} by using the ideas of evolution semigroups. Our aim in this paper is to extend the results of \cite{De-Gu-Gy,Gu-Ra, Ma1, Rh} to the fully non-autonomous equation \eqref{IHRD}. More precisely, after the preliminary section, we establish in Section 3 the existence of mild solutions of the homogeneous retarded differential equations, and that solutions are provided by some evolution families. Moreover, we show that these evolution families are given by Dyson-Phillips series and that the term retard do not affect the asymptotic behaviour, as boundedness and asymptotic almost periodicity, of the solutions to the non retarded Cauchy problem \begin{equation}\label{CP} \begin{gathered} x'(t)=A(t)x(t) ,\quad t\geq s,\\ x(s)=x\in E. \end{gathered}. \end{equation} Namely, we give conditions under which the evolution families solutions of the homogeneous retarded equations and the Cauchy problem \eqref{CP} have the same asymptotic behaviour (see Theorem \ref{3.5}). In section 4, we show that the solution $x_{t}$ of \eqref{IHRD} satisfies a variation of constants formula, different from the one of \cite{Sch}. Using our variation of constant formula, we show that these solutions inherit the same asymptotic behaviour of the inhomogeneous term $f$. In the last section, we show the existence of fundamental solutions for the homogeneous retarded equations, which has been assumed in \cite{De-Gu-Gy}, and obtain the asymptotic behaviour of semi-linear retarded differential equations. Before ending this introduction, we shall mention that we can consider also the above differential retarded equations on $\mathbb R$ and we can obtain, using the same technics, the same results and all results of \cite{Gu-Ra}. \section{Preliminaries} In this section we recall some definitions and fix notations which will be used in the sequel. Let $X$ be a Banach space and denote by $\mathcal{L}(X) $ the Banach algebra of all bounded linear operators on $X$. A family of operators $\mathcal{U}:=(U(t,s))_{t\geq s\geq 0}\subset\mathcal{L}(X)$ is called \textit{ a strongly continuous evolution family} if \begin{enumerate} \item $U(t,s)=U(t,r)U(r,s)$ and $U(s,s)=Id\quad $ for all $\quad t\ge r\ge s\ge 0$, \item the mapping $\{(t,s)\,:t\geq s\geq0\}\ni (t,s)\mapsto U(t,s)$ is strongly continuous. \end{enumerate} An evolution family $(U(t,s))_{t\geq s\geq 0}$ is said to have an \textit{ exponential dichotomy } if there exists a projection-valued function $P : \mathbb R_+\to \mathcal{L}(X)$ such that the function $P(\cdot)x$ is continuous and bounded for each $x \in X$, and constants $\delta > 0, N = N(\delta) \geq1$ such that \begin{itemize} \item[(i)] $P(t)U(t,s)=U(t,s)P(s)$; \item[(ii)] $U_{Q}(t,s)$, the restriction of $U(t,s)$ on $ImQ(s)$, is invertible as an operator from $ImQ(s)$ to $% ImQ(t)$, with $Q(\cdot):=I-P(\cdot)$; \item[(iii)] $\Vert U(t,s)P(s)\Vert \leq Ne^{-\delta (t-s)}$, and $\Vert U_{Q}(s,t)Q(t)\Vert \leq Ne^{-\delta (t-s)}$ \end{itemize} for $t\geq s$ and $t,s\in \mathbb{R}_{+}$. The family of operators $(\Gamma(t,s))_{t\geq s\geq0}\subseteq\mathcal{L}(X)$ given by $$ \Gamma(t,s):=\begin{cases} U(t,s)P(s), & t\geq s,\\ -U_{Q}(t,s)Q(s), & t\max(\omega,0)$ and $0\leq s\leq t\leq T$ (for some $T>0$), \[ \mathcal{W}_{\lambda}(t,s):=\int_s^tU(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))g(\sigma)d\sigma. \] For $\tau \in [-r,0]$ and $t+\tau\geq s$, we have \begin{align*} &\mathcal{W}_{\lambda}(t,s)(\tau)\\ &=\int_s^{t+\tau}U(t,\sigma)% \lambda e^{\lambda\cdot}R(\lambda,A(0))g(\sigma)(\tau)d\sigma +\int_{t+\tau}^tU(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0)) g(\sigma)(\tau)d\sigma \\ &=\int_s^{t+\tau}V(t+\theta,\sigma)\lambda R(\lambda,A(0))g(\sigma)d\sigma +\int_{t+\tau}^t\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))g(\sigma)d\sigma. \end{align*} Let $\lambda,\mu\geq\lambda_0$. We have then, \begin{align*} &\mathcal{W}_{\lambda}(t,s)(\tau)-\mathcal{W}_{\mu}(t,s)(\tau)\\ &=\int_s^{t+\tau}V(t+\theta,\sigma)\left[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\right]g(\sigma)d\sigma \\ &\quad +\int_{t+\tau}^t\big[\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))-\mu e^{\mu(t+\tau-\sigma)}R(\mu,A(0))\big]g(\sigma)d\sigma, \end{align*} and \begin{align*} &\mathcal{W}_{\lambda}(t,s)(\tau)-\mathcal{W}_{\mu}(t,s)(\tau)\\ &=\int_{s}^t\big[\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))-\mu e^{\mu(t+\tau-\sigma)}R(\mu,A(0))\big]g(\sigma)d\sigma \end{align*} for $t+\tau\leq s$. Thus, \begin{align*} &\|\mathcal{W}_{\lambda}(t,s)(\tau)-\mathcal{W}_{\mu}(t,s)(\tau)\|\\ &\leq\tilde{M}(T)\int_0^T\|\left[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\right]g(\sigma)\|d\sigma +\tilde{M} (\frac1{\lambda}+ \frac1{\mu})\sup_{0\leq \sigma\leq T}\|g(\sigma)\|. \end{align*} Hence, as \[ \lim_{\lambda,\mu\to +\infty}\|\left[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\right]g(\sigma)\|=0\quad\mbox{for all } \sigma\in[0,T], \] by Lebesgue dominated convergence theorem, we have \[ \lim_{\lambda,\mu\to +\infty}\int_0^T\|\left[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\right]g(\sigma)\|d\sigma=0. \] Consequently, \[ \sup_{\tau\in[-r,0]}\|\mathcal{W}_{\lambda}(t,s)(\tau)-\mathcal{W}% _{\mu}(t,s)(\tau)\| \to 0 \quad\text{as } \lambda,\mu\to +\infty \] uniformly for $0\leq s\leq t\leq T$. This completes the proof. \end{proof} From this lemma, we can define the operators $U_n(t,s)$ as \begin{gather*} U_0(t,s)\varphi=U(t,s)\varphi, \\ U_n(t,s)\varphi=\lim_{\lambda \to +\infty } {\int_{s}^t U(t,\sigma)e^{\lambda\cdot}\lambda R(\lambda,A(0))L(\sigma)U_{n-1}(\sigma,s)\varphi\,d\sigma} \end{gather*} for all $\varphi\in \mathcal{C}_r, \,n\geq1,$ and $0\leq s\leq t$. The first main result of this section can now be stated. \begin{thm} \begin{itemize} \item[(i)] The expansion $U_{L}(t,s):=\sum_{n\geq 0}U_{n}(t,s)$, $t\ge s \ge 0$, converges in $\mathcal{L}(\mathcal{C}_{r})$ uniformly on $\{(t,s):0\leq s\leq t\leq T\} $ (for all $T>0$), and $(U_{L}(t,s))_{t\leq s\leq 0}$ is an evolution family on $\mathcal{C}_{r}$. Further, this variation of constants formula \begin{equation} U_{L}(t,s)\varphi =U(t,s)\varphi +\lim_{\lambda \to \infty }\int_{s}^{t}U(t,\sigma )e^{\lambda \cdot }\lambda R(\lambda ,A(0))L(\sigma )U_{L}(\sigma ,s)\varphi \,d\sigma \label{vari} \end{equation} holds for all $\varphi \in \mathcal{C}_{r}$ and $t\ge s\ge0$. \item[(ii)] For every $\varphi \in \mathcal{C}_{r}$ and $s\geq 0$ the function defined by \begin{equation} x(t,s,\varphi ):=\begin{cases} U_{L}(t,s)\varphi (0), & t\geq s, \\ \varphi (t-s), &s-r\leq t\leq s, \end{cases} \label{x} \end{equation} is the unique mild solution of $\eqref{HRDE}$, and $$ x_t=U_{L}(t ,s)\varphi, \quad t\geq s\geq0.$$ \end{itemize} \end{thm} \begin{proof} For $n=0$, we have \[ \|U_0(t,s)\|\leq Me^{\omega(t-s)},\quad\quad t\geq s\geq0. \] For $n=1$, $t\geq s\geq0$ and $\varphi\in\mathcal{C}_r$ \[ U_1(t,s)\varphi=\lim_{\lambda \to +\infty } {\int_{s}^t U(t,\sigma)e^{\lambda\cdot}\lambda R(\lambda,A(0))L(\sigma)U_0(\sigma,s)\varphi\,d\sigma}. \] For all $\tau\in[-r,0]$, we have \begin{align*} \|U_1(t,s)\varphi\|&=\lim_{\lambda \to +\infty } \|{% \int_{s}^t U(t,\sigma)e^{\lambda\cdot}\lambda R(\lambda,A(0))L(\sigma)U_0(\sigma,s)\varphi \,d\sigma}\| \\ &\leq M^2{\int_{s}^t e^{\omega(t-\sigma)}\|L(\sigma)\|Me^{\omega(\sigma-s)}\|\varphi\| \,d\sigma} \\ &\leq M^2\|L(\cdot)\|_{\infty}Me^{\omega(t-s)}(t-s)\|\varphi\|. \end{align*} Hence \[ \|U_1(t,s)\|\leq M^2\|L(\cdot)\|_{\infty}Me^{\omega(t-s)}(t-s)\|\varphi\|. \] By induction, one can see \[ \|U_n(t,s)\|\leq \frac{(M^2\|L(\cdot)\|_{\infty})^n}{n!} Me^{\omega(t-s)},\quad t\geq s\geq0. \] Therefore, the expansion $\sum_{n\geq0}U_n(t,s)$ converges in $\mathcal{L}(\mathcal{C}_r)$ uniformly for $0\leq s\leq t\leq T$. The strong continuity of $(U_L(t,s))_{t\geq s\geq0}$ can be obtained from Lemma (\ref{conv}) and the uniform convergence of the series. The rest of (i) is easy to see.\newline For (ii), from the variation of constants formula (\ref{vari}), we have \begin{equation} U_L(t,s)\varphi(\tau)=\begin{cases} V(t+\tau,s)\varphi(0)\\ +\int_s^{t+\tau}V(t+\tau, \sigma)L(\sigma)U_L(\sigma,s) \varphi\,d\sigma, & t+\tau\geq s, \\ \varphi(t+\tau-s),& s-r\leq t+\tau\leq s. \end{cases} \label{UL} \end{equation} Hence, the translation property \[ U_L(t,s)\varphi(\tau)= \begin{cases} U_L(t+\tau,s)\varphi(0), &t+\tau\geq s,\\ \varphi(t+\tau-s),& s-r\leq t+\tau\leq s, \end{cases} \] holds, and then the function defined by (\ref{x}) satisfies $x_t=U_L(t,s)\varphi$. Consequently, it is now clear that $x$ is a mild solution of \eqref{HRDE}. \end{proof} Now we deal with the question of the robustness of some asymptotic behaviour of the non-retarded equation \eqref{CP} under the introduction of the term retard. More precisely if we assume that the trajectories $t\mapsto V(t+s,s)x$, $s\geq 0$, $x\in E$ belong to some homogeneous closed subspace $\mathcal{E}$ of $BUC(\mathbb{R}_{+},E)$, and there exist constants $00$, $0\leq s\leq t\leq T$, and $\lambda\geq\max(0,\omega)$. Assume first that $f\in C([0,T],E)$, and set \[ \mathcal{Z}_{\lambda}(t,s)=\int_s^tU_L(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \] For $\tau\in[-r,0]$ such that $t+\tau\geq s$, from the formula (\ref{UL}), we have \begin{equation} \begin{aligned} &\mathcal{Z}_{\lambda}(t,s)(\tau)\\ &=\int_s^{t+\tau}U_L(t,\sigma) \lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)(\tau)d\sigma +\int_{t+\tau}^tU_L(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0)) f(\sigma)(\tau)d\sigma \\ &=\int_s^{t+\tau}V(t+\tau,\sigma)\lambda R(\lambda,A(0))f(\sigma)d\sigma +\int_{t+\tau}^t\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))f(\sigma)d\sigma \\ &\quad+\int_s^{t+\tau}\int_{\sigma}^{t+\tau}V(t+\tau,\delta) L(\delta)U_L(\delta,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)\,d\delta\,d\sigma. \end{aligned}\label{1} \end{equation} The last term in the right-hand side of this equality leads to \begin{align*} &\int_s^{t+\tau}\int_{\sigma}^{t+\tau}V(t+\tau, \delta)L(\delta)U_L(\delta,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)\,d\delta\,d\sigma \\ &=\int_s^{t+\tau}\int_s^{\delta}V(t+ \tau,\delta)L(\delta)U_L(\delta,\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)d\sigma\,d\delta \\ &=\int_s^{t+\tau}V(t+\tau,\delta)L(\delta) \mathcal{Z} _{\lambda}(\delta,s)d\delta. \end{align*} Then, if $t+\tau\geq s$ we obtain \begin{align*} &\mathcal{Z}_{\lambda}(t,s)(\tau)\\ &=\int_s^{t+\tau}V(t+\tau, \sigma)\lambda R(\lambda,A(0))f(\sigma)d\sigma+% \int_{t+\tau}^t\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))f(\sigma)d\sigma \\ &\quad+\int_s^{t+\tau}V(t+\tau,\sigma)L(\sigma) \mathcal{Z} _{\lambda}(\sigma,s)d\sigma. \end{align*} If $t+\tau\leq s$, we have \[ \mathcal{Z}_{\lambda}(t,s)(\tau)=\int_s^t\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))f(\sigma)d\sigma. \] Now, let $\lambda,\mu\geq\lambda_0>\max(\omega,0)$, \begin{align*} &\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z}_{\mu}(t,s)(\tau)\\ &=\begin{cases} \int_s^{t+\tau}V(t+\tau,\sigma)\big[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\big]f(\sigma)d\sigma \\ +\int_{t+\tau}^t\big[\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))-\mu e^{\mu(t+\tau-\sigma)}R(\mu,A(0))\big]f(\sigma)d\sigma \\ +\int_s^{t+\tau}V(t+\tau,\sigma)L(\sigma)\big[ \mathcal{Z} _{\lambda}(\sigma,s)-\mathcal{Z}_{\mu}(\sigma,s)\big]d\sigma, &t+\tau\geq s \\[5pt] \int_s^t[\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))-\mu e^{\mu(t+\tau-\sigma)}R(\mu,A(0))] f(\sigma)d\sigma, & t+\tau\leq s. \end{cases} \end{align*} For $t+\tau\geq s$, we get easily \begin{align*} &\|\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z}_{\mu}(t,s)(\tau)\|\\ &\leq \tilde{M}(T)\int_0^T\| (\lambda R(\lambda,A(0))-\mu R(\mu,A(0)))f(\sigma)\|d\sigma \\ &\quad +M(\frac1{\lambda}+\frac1{\mu}) \sup_{0\leq\sigma\leq T}\|f(\sigma)\|+Me^{\omega T}\|L(\cdot)\|_{\infty} \int_0^{T}\|\mathcal{Z}_{\lambda}(\sigma,s)-\mathcal{Z}_{\mu}(\sigma,s)\|d\sigma, \end{align*} and for $t+\tau\leq s$ \begin{align*} &\|\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z}_{\mu}(t,s)(\tau)\|\\ &\leq \tilde{M}(T)\int_0^T\| (\lambda R(\lambda,A(0))-\mu R(\mu,A(0)))f(\sigma)\|d\sigma +M(\frac1{\lambda}+\frac1{\mu}) \sup_{0\leq\sigma\leq T}\|f(\sigma)\|. \end{align*} Hence, as \[ \lim_{\lambda,\mu\to +\infty}\|\left[\lambda R(\lambda,A(0))-\mu R(\mu,A(0))\right]f(\sigma)\|=0\quad\mbox{for all } \sigma\in[0,T], \] by the Lebesgue dominated convergence theorem, for $\varepsilon>0$ and $% \lambda,\mu$ sufficiently large we have \[ \|\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z}_{\mu}(t,s)(\tau)\|\leq% \varepsilon+ Me^{\omega T}\int_s^{t}\|L(\cdot)\|_{\infty}\| \mathcal{Z}_{\lambda}(\sigma,s)-\mathcal{Z}_{\mu}(\sigma,s)\|d\sigma. \] An application of Gronwall's inequality yields \[ \|\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z}_{\mu}(t,s)(\tau)\|\leq \varepsilon e^{Me^{\omega T}(t-s)\|L(\cdot)\|_{\infty}}. \] Then, we can conclude that \[ \sup{\tau\in[-r,0]}\|\mathcal{Z}_{\lambda}(t,s)(\tau)-\mathcal{Z} _{\mu}(t,s)(\tau)\| \to 0 \quad \mbox{as }\lambda,\mu\to +\infty \] uniformly on $\{(t,s):0\leq s\leq t\leq T\}$. Let $f_n$ in $C([0,T],E)$ be a subsequence converging to $f$ in $L^1(0,T;E)$. We have \[ \|\int_0^tU_L(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))[f_n(\sigma)-f(\sigma)]d\sigma\|\leq M(T,s)\|f_n-f\|_{L^1}. \] Hence, this provides the existence of the limit for $f\in L^1_{\rm loc}(\mathbb{R}_{+},E)$, and this completes the proof. \end{proof} \begin{thm} \label{theom} Let $\varphi\in\mathcal{C}_r$ and $s\geq 0$, then the function $x$ defined by \[ x(t):=\begin{cases} u(t)(0), & t\geq s,\\ \varphi(t-s),& s-r\leq t\leq s, \end{cases} \] with \[ u(t):=U_L(t,s)\varphi+\lim_{\lambda \to +\infty }\int_s^tU_L(t,% \sigma)e^{\lambda\cdot}\lambda R(\lambda,A(0))f(\sigma)\,d\sigma,\quad t\geq s, \] is a mild solution of $\eqref{IHRDE}$. Conversely, if $x$ is a mild solution of $\eqref{IHRDE}$, then \begin{equation} \label{variat} x_t=U_L(t,s)\varphi+\lim_{\lambda \to +\infty }\int_s^tU_L(t, \sigma)e^{\lambda\cdot}\lambda R(\lambda,A(0))f(\sigma)\,d\sigma,\quad t\geq s. \end{equation} \end{thm} \begin{proof} Let $\tau\in[-r,0]$, then for $t+\tau\geq s$, we have \begin{align*} &u(t)(\tau)\\ &=V(t+\tau,s)\varphi(0)+\int_s^{t+\tau}V(t+\tau, \sigma)L(\sigma)U_L(\sigma,s)\varphi\,d\sigma \\ &\quad +\lim_{\lambda \to +\infty }\int_s^{t+\tau}V(t+\tau, \sigma)\lambda R(\lambda,A(0))f(\sigma)\,d\sigma\\ &\quad +\lim_{\lambda \to +\infty }\int_{t+\tau}^t\lambda e^{\lambda(t+\tau-\sigma)}R(\lambda,A(0))f(\sigma)\,d\sigma \\ &\quad +\lim_{\lambda \to +\infty }\int_s^{t+\tau}\int_{ \sigma}^{t+\tau}V(t+\tau,\delta)L(\delta)U_L(\delta,\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)\,d\delta d\sigma \\ &=V(t+\tau,s)\varphi(0)+\int_s^{t+\tau}V(t+\tau,\sigma)L( \sigma)U_L(\sigma,s)\varphi\,d\sigma+\int_s^{t+\tau}V(t+\tau, \sigma)f(\sigma)\,d\sigma \\ &\quad +\lim_{\lambda \to +\infty }\int_s^{t+\tau}V(t+\tau, \delta)L(\delta)\int_{s}^{\delta}U_L(\delta,\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)\,d\sigma d\delta \\ &=V(t+\tau,s)\varphi(0)+\int_s^{t+\tau}V(t+\tau,\sigma)L( \sigma)U_L(\sigma,s)\varphi\,d\sigma+\int_s^{t+\tau}V(t+\tau, \sigma)f(\sigma)\,d\sigma \\ &\quad +\int_s^{t+\tau}V(t+\tau, \delta)L(\delta)\big[\lim_{\lambda \to +\infty }\int_{s}^{\delta}U_L( \delta,\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)\,d\sigma\Big] d\delta \\ &=V(t+\tau,s)\varphi(0)+\int_s^{t+\tau}V(t+\tau,\sigma)f(\sigma)\,d\sigma \\ &\quad +\lim_{\lambda \to +\infty }\int_s^{t+\tau}V(t+\tau, \delta) L(\delta)[U_L(\delta,s)\varphi \\ &\quad +\lim_{\lambda \to +\infty}\int_{s}^{\delta} U_L(\delta,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)\,d\sigma ]d\delta . \end{align*} Then, \begin{equation} u(t)(\tau)=V(t+\tau,s)\varphi(0)+\int_s^{t+\tau}V(t+\tau, \delta)L(\delta)\left[u(\delta)+f(\delta)\right]\,d\delta. \label{2} \end{equation} For $t+\tau\leq s$, we obtain \[ u(t)(\tau)=\varphi(t+\tau-s)+\lim_{\lambda \to +\infty} \int_s^te^{\lambda(t+\tau-\sigma)}\lambda R(\lambda,A(0))f(\sigma)\,d\sigma. \] Therefore, \begin{equation} \label{3} u(t)(\tau)=\varphi(t+\tau-s). \end{equation} This implies that the function $x$ satisfies $x_t=u(t), \quad t\geq 0, $ and (\ref{sol}). Thus $x$ is a mild solution of $\eqref{IHRDE}$. Conversely, let $x(t)$ be a mild solution of $\eqref{IHRDE}$, we have to show that $x_t=u(t)$ for all $t\geq s$. Let $t\geq s$ and $\tau\in[-r,0]$, from (\ref {sol}), (\ref{2}) and (\ref{3}), we obtain \[ x_t(\tau)-u(t)(\tau)=\begin{cases} \int_s^{t+\tau}V(t+\tau,\sigma)L(\sigma)(x_{\sigma}-u(\sigma))d\sigma, & t+\tau\geq s, \\ 0, &s-r\leq t+\tau\leq s, \end{cases} \] and by the Gronwall's inequality, we conclude that $x_t=u(t)$. \end{proof} The variation of constants formula (\ref{variat}) will play a crucial role in the study of the asymptotic behaviour of the solutions to the retarded differential equation \eqref{IHRDE}. For this purpose, we begin by the following lemma. \begin{lem} Assume that $(U_L(t,s))_{t\geq s\geq0}$ has an exponential dichotomy. Let $f\in BC(\mathbb{R}_{+},X)$, then the limit \begin{equation} \lim_{\lambda\to +\infty}\int_0^{\infty}\Gamma(t,\sigma) \lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma \end{equation} exists uniformly for $t$ in compact intervals of $\mathbb{R}_{+}$. \end{lem} \begin{proof} Let $t\in[0,T]$, for some $T>0$. We have \begin{align*} &\int_{0}^{+\infty}\Gamma(t,\sigma) \lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma\\ &=\int_{0}^{t}\Gamma(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma) d\sigma +\int_{t}^{+\infty}\Gamma(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \end{align*} By the definition of the Green's function, the two members of the above sum are well defined. by Lemma \ref{4.2}, the limit of the first member exists. Hence, it remains to show that the second one \[ \mathcal{E}_{\lambda}(t):=\int_{t}^{+\infty}\Gamma(t,\sigma)% \lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma \] is a Cauchy sequence. First, one can verify for all $t\geq s\geq 0$ \[ \mathcal{E}_{\lambda}(t)=U_L(t,s)\omega_{\lambda}(s)+ \int_s^tU_L(t,\sigma)Q(\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)d\sigma. \] Then, for $r>0$ we have \begin{align*} Q(t+r)\mathcal{E}_{\lambda}(t+r) &=U(t+r,t)Q(t)\mathcal{E}_{\lambda}(t)\\ &\quad +Q(t+r)\int_{t}^{t+r}U_L(t+r,s)Q(\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)d\sigma, \end{align*} and as $\mathcal{E}_{\lambda}(t)\in \mathop{\rm Im}Q(t)$, we obtain \begin{align*} \mathcal{E}_{\lambda}(t) &=[U_Q(t+r,t)]^{-1}Q(t+r)\mathcal{E}_{\lambda}(t+r)\\ &\quad -Q(t+r)\int_{t}^{t+r}U_L(t+r,s)Q(\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)d\sigma. \end{align*} Now, for $\lambda, \mu\geq\lambda_0>\max(\omega, 0)$ \begin{align*} \mathcal{E}_{\lambda}(t)-\mathcal{E}_{\mu}(t) &=[U_Q(t+r,t)]^{-1}Q(t+r)[\mathcal{E}_{\lambda}(t+r)-\mathcal{E}_{\mu}(t+r)] \\ &\quad-[U_Q(t+r,t)]^{-1}Q(t+r)\int_{t}^{t+r}U_L(t+r,\sigma)[\lambda e^{\lambda\cdot}R(\lambda,A(0))\\ &\quad -\mu e^{\mu\cdot}R(\mu,A(0))]f(\sigma)d\sigma. \end{align*} Passing to the norm, it follows \begin{align*} \|\mathcal{E}_{\lambda}(t)-\mathcal{E}_{\mu}(t)\| &\leq \|[U_Q(t+r,t)]^{-1}Q(t+r)[\mathcal{E}_{\lambda}(t+r)-\mathcal{E} _{\mu}(t+r)]\|\\ &\quad +\Big\|[U_Q(t+r,t)]^{-1}Q(t+r)\int_{t}^{t+r}U_L(t+r,\sigma)[ \lambda e^{\lambda\cdot}R(\lambda,A(0))\\ &\quad -\mu e^{\mu\cdot}R(\mu,A(0))]f(\sigma)d\sigma\Big\|& \\ &\leq C_1e^{-\alpha r}\Big[C_2\|f\|+\|Q(t+r) \int_{t}^{t+r}U_L(t+r,\sigma)[\lambda e^{\lambda\cdot}R(\lambda,A(0))\\ &\quad -\mu e^{\mu\cdot}R(\mu,A(0))]f(\sigma)d\sigma\|\Big]. \end{align*} For $r$ sufficiently large and in view of Lemma \ref{4.2}, we can conclude that $\mathcal{E}_\lambda$ is a Cauchy sequence. \end{proof} \begin{prop} Assume that $(U_L(t,s))_{t\geq s\geq0}$ has an exponential dichotomy, then for $f\in BC(\mathbb R_+,E)$, the function $v:[0,\infty)\to E$ defined by \begin{equation} \label{bsol} v(t):=\begin{cases}[U_L(t,0)P(0)\varphi\\ +\lim_{\lambda\to +\infty} \int_0^{\infty}\Gamma(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma](0), &\quad t\geq0\\[3pt] \varphi(t),& -r\leq t\leq0 \end{cases} \end{equation} is the unique bounded mild solution of \eqref{IHRDE} with $\varphi$ is an initial condition which satisfies \begin{equation} \label{bsol1} Q(0)\varphi=\lim_{\lambda\to +\infty}% \int_0^{\infty}\Gamma(0,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \end{equation} Moreover, if $f\in C_0({\rm I\!R_{+}},E)$ then $v$ also belongs to $C_0(\mathbb{R}_{+},E)$. \end{prop} \begin{proof} Let $v$ be a mild solution of \eqref{IHRDE}. From Theorem \ref{theom}, one can verify that \begin{align*} v(t)&=U_L(t,0)( \varphi+\lim_{\lambda\to +\infty} \int_0^{\infty}\Gamma(0,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma)\\ &\quad + \lim_{\lambda\to +\infty}\int_0^{\infty}\Gamma(t,\sigma) \lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \end{align*} As $t\mapsto \lim_{\lambda\to +\infty} \int_0^{\infty}\Gamma(t,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma$ is a bounded function, then $v$ is bounded if and only if \[ t\mapsto U_L(t,0)(\varphi+\lim_{\lambda\to +\infty}% \int_0^{\infty}\Gamma(0,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma) \] is bounded, and this is equivalent to $[\varphi+\lim_{\lambda\to +\infty} \int_0^{\infty}\Gamma(0,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma]$ belongs to $\mathop{\rm Im} P(0)$, i.e., \[ Q(0)\varphi=-\lim_{\lambda\to +\infty} \int_0^{\infty}\Gamma(0,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \] Consequently, $v$ is given by (\ref{bsol}). Now, let us take $f\in C_0(\mathbb R_+,E)$ and show that \[ C_0(\mathbb R_+,E)\ni\omega(\cdot):=\lim_{\lambda\to + \infty}\int_0^{\infty}\Gamma(\cdot,\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \] Let \begin{gather*} I(t):=\lim_{\lambda\to +\infty}% \int_0^t U_L(t,\sigma)P(\sigma)\lambda e^{\lambda\cdot} R(\lambda,A(0))f(\sigma)d\sigma,\\ J(t):= \lim_{\lambda\to +\infty}\int_t^{\infty} U_Q(t,\sigma)Q(\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(\sigma)d\sigma. \end{gather*} Then, $\omega(t)=I(t)-J(t)$. Since $f(t)\to 0$ as $t\to \infty$, there exists $t_0\geq0 $ such that $\|f(t)\|\leq\frac{\varepsilon}{2MN\delta}$ for all $t\geq t_0$. Hence, $\|I\|\leq\frac{2MN}{\delta}\|f\|_{\infty}e^{-\delta(t-t_0)}+\frac{% \varepsilon}{2}$ and this implies that $I(t)\to 0$ as $t\to +\infty$. For $J(\cdot)$, we have \[ J(t)=\lim_{\lambda\to +\infty}% \int_0^{\infty} U_Q(t,t+\sigma)Q(t+\sigma)\lambda e^{\lambda\cdot}R(\lambda,A(0))f(t+\sigma)d\sigma. \] Then, \[ \|J(t)\|\leq MN\int_0^{\infty} e^{-\delta\sigma}\|f(t+\sigma)\|d\sigma. \] Therefore, letting $t$ approach infinity we obtain the result. \end{proof} \section{Fundamental Solutions and Stability Results} This section is devoted to use the notion of fundamental solutions to study the stability of the semi-linear retarded equation \begin{equation}\label{SNRDE} \begin{gathered} x'(t)=A(t)x(t)+L(t)x_t+F(t,x_t),\quad t\geq s\geq0,\\ x_s=\varphi\in \mathcal{C}_r, \end{gathered} \end{equation} where $(A(t),D(A(t)))_{t\geq 0}$ and $\left( L(t)\right) _{t\geq 0}$ are defined as above and $F$ a nonlinear function from $\mathbb{R}_+\times\mathcal{C}_r$ to $E$. In \cite{De-Gu-Gy}, the authors showed the existence of fundamental solutions of \eqref{HRDE}, when $A(t)= A$. But to study the stability of the non-autonomous retarded equation \eqref{SNRDE} they assumed the existence of these fundamental solutions. Here, using our previous variation of constants formulas, we are able to show this assumed result, and then obtain the same stability results for \eqref{SNRDE} as in \cite[Theorems 4.6, 4.7, 4.10 ] {De-Gu-Gy}. \begin{defn} \rm A family $(\Phi(s,t))_{t\geq s\geq0}$ of bounded linear operators on $E$ is called a fundamental solution of $\eqref{HRDE}$ if \begin{itemize} \item[(i)] $\Phi(t,t)=Id, \quad t\geq0$. \item[(ii)] $(t,s)\mapsto \Phi(t,s)$ is strongly continuous for $t\geq s\geq0$. \item[(iii)] For every $g\in L^1_{\rm loc}(\mathbb R_+,E)$ and $t\in [s-r,\infty)$, the map \[ t\mapsto\begin{cases} \int_s^t\Phi(t,\sigma)g(\sigma)d\sigma, & t\geq s\geq0, \\ \varphi(t-s), & s-r\leq t\leq s, \end{cases} \] is the unique mild solution of \begin{gather*} v'(t)=A(t)x(t)+L(t)x_t+g(t) ,\quad t\geq s\geq0,\\ v_s=\varphi\in \mathcal{C}_r. \end{gather*} \end{itemize} \end{defn} Let us define on $\mathcal{C}_r$ the function \begin{equation} [R_{\lambda,x}(t,s)](\tau)=\begin{cases} \lambda R(\lambda,A(0))x, & t+\tau\geq s, \\ \lambda e^{\lambda(t+\tau-s)}R(\lambda,A(0))x, & t+\tau< s, \end{cases} \end{equation} with $x\in E$, $\tau \in[-r,0]$ and $\lambda>\max(\omega,0)$. \begin{thm} Suppose that, for all $x\in E$, the limit \begin{equation} \lim_{\lambda \to +\infty }\int_{s}^{t}V(t,\sigma )L(\sigma )R_{\lambda ,x}(\sigma,s)d\sigma \end{equation} exists uniformly on compact sets of $\{(t,s):t\geq s\geq 0\}$. Then, there exists a fundamental solution $(\Phi (t,s))_{t\geq s\geq 0}$ of $\eqref{HRDE}$ given by \begin{equation} \Phi (t,s)x=\lim_{\lambda \to +\infty }\lambda [U_{L}(t,s)e^{\lambda \cdot }R(\lambda ,A(0))x)](0) \end{equation} for $t\geq s\geq 0$ and $x\in E$. \end{thm} This theorem follows fom the variation of constants formula in Theorem \ref{theom}, and the proof is similar to the one given in \cite[Theorem 3.2]{De-Gu-Gy}. \begin{thebibliography}{99} \bibitem{amerio-prouse} L. Amerio and G. Prouse, {\it Almost Periodic Functions and Functional Analysis}, Van Nostrand, 1971. \bibitem{arendt-batty} W. Arendt and C. J. K. Batty, {\it Almost periodic solutions of first and second order Cauchy problems}, J. Diff. Eq. \textbf{\ 137} (1997), 363--383. \bibitem{ballotti-goldstein-parrott} M. E. Ballotti, J. A. Goldstein and M. E. Parrott, {\it Almost periodic solutions of evolution equations}, J. Math. Anal. Appl. \textbf{138} (1989), 522--536. \bibitem{Ba-Ma-Rh} A. B\'{a}tkai, L. Maniar and A. Rhandi, {\it Regularity properties of perturbed Hille-Yosida operators and retarded differential equations}, Semigroup Forum \textbf{64} (2002), 55--70. \bibitem{batty-chill} C. J. K. Batty and R. Chill, {\it Bounded convolutions and solutions of inhomogeneous Cauchy problems}, Forum Math. \textbf{11} (1999), 253--277. \bibitem{batty-hutter-raebiger} C. J. K. Batty, W. Hutter and F. R\"{a}biger, {\it Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems}, J. Diff. Eq. \textbf{156} (1999), 309--327. \bibitem{Ca-Pi} V. Casarino and S. Piazzera, {\it On the stability of asymptotic properties of perturbed $C_{0}$-semigroups}, Forum Math. \textbf{13} (2001), 91--107. \bibitem{CMP} V. Casarino, L. Maniar and S. Piazzera, {\it Asymptotic behaviour of perturbed evolution families}, Diff. Int. Eq. \textbf{15} (2002), 567--586. \bibitem{Desch-Schappacher} W. Desch and W. Schappacher, {\it A characterisation of the solution-operator associated with delay equations}, T\"{u}bingerberichte zur Funktionalanalysis (1985). \bibitem{De-Gu-Gy} W. Desch, G. G\"{u}hring and I. Gy\"{o}ri, {\it Stability of nonautonomous delay equations with a positive fundamental solution}, T\"{u}bingerberichte zur Funktionalanalysis \textbf{9} (2000). \bibitem{engel-nagel} K.J. Engel and R. Nagel, {\it One-Parameter Semigroups for Linear Evolution Equations}, Graduate Texts in Mathematics \textbf{194}, Springer-Verlag, 2000. \bibitem{Gu-Ra} G. G\"{u}hring and F. R\"{a}biger, {\it Asymptotic properties of mild solutions of evolution equations with applications to retarded differential equations}, Abstr. Apl. Anal. \textbf{4} (1999), 169--194. \bibitem{Gu-Ra-Sh} G. G\"{u}hring, F. R\"{a}biger and R. Schnaubelt, {\it A characteristic equation for non-autonomous partial functional differential equations}, J. Differential Equations {\bf 181} (2002), 439--462. \bibitem{Halle} J.K. Halle and S.M. Verduyn Lunel, {\it Introduction to Functional Differential Equations}, Springer-Verlag, 1993. \bibitem{kreulich1} J. Kreulich, {\it Eberlein weak almost periodicity and differential equations in Banach spaces}, Ph.D. Thesis, Essen, 1992. \bibitem{kreulich2} J. Kreulich, {\it Eberlein-weakly almost periodic solutions of evolution equations in Banach spaces}, Diff. Int. Eq.\textbf{\ 9} (1996), 1005--1027. \bibitem{Ma-Rh} L. Maniar and A. Rhandi, {\it Extrapolation and inhomogeneous retarded differential equations in infinite dimensional Banach space via extrapolation spaces}, Rend. Circ. Mat. Palermo \textbf{47} (1998), 331--346. \bibitem{Maniar} L. Maniar, {\it Robustness of asymptotic properties of evolution families under perturbations}, to appear in Diff. Int. Eq.. \bibitem{Ma1} L. Maniar, {\it Stability of asymptotic properties of Hille-Yosida operators under perturbations}, preprint (2001). \bibitem{Ng} Nguy\^{e}n Thanh Lan, {\it Nonautonomous Operator Matrices}, Ph.D. Thesis, T\"{u}bingen 1998. \bibitem{Ni} G. Nickel, {\it On Evolution Semigroups and Wellposdness of Nonautonomous Cauchy Problems}, Ph.D. Thesis, T\"{u}bingen 1996. \bibitem{Rh} A. Rhandi, {\it Extrapolation methods to solve non-autonomous retarded differential equations}, Studia Math. \textbf{126} (1997), 219-233. \bibitem{ruess-summers1} W.M. Ruess and W.H. Summers, {\it Weak almost periodicity and the strong ergodic limit theorem for periodic evolution systems}, J. Func. Anal. \textbf{94} (1990), 177--195. \bibitem{Pazy} A. Pazy, {\it Semigroups of Linear Operators and Applications to Partial Differential Equations}, Springer-Verlag, Berlin, 1983. \bibitem{schnaubelt1} R. Schnaubelt, {\it Exponential bounds and hyperbolicity of evolution families}, Ph.D. Thesis, T\"{u}bingen 1996. \bibitem{Sch} R. Schnaubelt, {\it Parabolic evolution equations with asymptotically autonomous delay}, preprint. \bibitem{Thieme} H.R. Thieme, {\it Semiflows generated by Lipschitz perturbations of non-densely defined linear operators}, Diff. Int. Eq. \textbf{3} (1990), 1035--1066. \bibitem{Tr-We} C.C. Travis and G.F. Webb, {\it Existence and stability, for partial functional differential equations}, Tran. Amer. Math. Soc. \textbf{200% } (1974), 395--418. \bibitem{Wu} J. Wu, {\it Theory and Applications of Partial Functional Differential Equations}, App. Math. Sc. \textbf{119}, Springer-Verlag, 1996. \end{thebibliography} \end{document} )