\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 103, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/103\hfil A nonlinear wave equation] {A nonlinear wave equation with a nonlinear integral equation involving the boundary value} \author[T. L. Nguyen, T. D. Bui\hfil EJDE-2004/103\hfilneg] {Thanh Long Nguyen, Tien Dung Bui} \address{Thanh Long Nguyen \hfill\break Department of Mathematics and Computer Science\\ University of Natural Science\\ Vietnam National University HoChiMinh City\\ 227 Nguyen Van Cu Str., Dist.5, HoChiMinh City, Vietnam} \email{longnt@hcmc.netnam.vn} \address{Tien Dung Bui \hfill\break Department of Mathematics\\ University of Architecture of HoChiMinh City\\ 196 Pasteur Str., Dist. 3, HoChiMinh City, Vietnam} \date{} \thanks{Submitted January 14, 2004. Published September 3, 2004.} \subjclass[2000]{35B30, 35L70, 35Q72} \keywords{Galerkin method; system of integrodifferential equations;\hfill\break\indent Schauder fixed point theorem; weak solutions; stability of the solutions} \begin{abstract} We consider the initial-boundary value problem for the nonlinear wave equation \begin{gather*} u_{tt}-u_{xx}+f(u,u_{t})=0,\quad x\in \Omega =(0,1),\; 00$ \cite{l2}; $K\equiv 0$ \cite{d3}, $H(s)=hs$, $K(t,u)=k(t)u$, where $h>0$, $k\in H^{1}(0,T)$, for all $T>0$ \cite{l3}. In the case of $H(s)=hs$, $% K(t,u)=h\omega (\sin \omega t)u$, where $h>0$, $\omega >0$ are given constants, the problem \eqref{e1.1}-\eqref{e1.5} is formed from the problem \eqref{e1.1}-\eqref{e1.4} wherein, the unknown function $u(x,t)$ and the unknown boundary value $P(t)$ satisfy the following Cauchy problem \begin{gather} P''(t)+\omega ^{2}P(t)=hu_{tt}(0,t),\quad 00$, $h\geq 0$, $P_{0}$, $P_{1}$ are given constants \cite{l3}. An and Trieu \cite{a1}, studied a special case of problem \eqref{e1.1}-\eqref{e1.4}, \eqref{e1.7}, \eqref{e1.8} with $u_{0}=u_{1}=P_{0}=0$ and with $f(u,u_{t})$ linear, i.e., $f(u,u_{t})=Ku+\lambda u_{t}$ where $K$, $\lambda $ are given constants. In the later case the problem \eqref{e1.1}-\eqref{e1.4}, \eqref{e1.7}, and \eqref{e1.8} is a mathematical model describing the shock of a rigid body and a linear visoelastic bar resting on a rigid base \cite{a1}. Our problem is thus a nonlinear analogue of the problem considered in \cite{a1}. In the case where $f(u,u_{t})=|u_{t}|^{\alpha }\mathop{\rm sign}(u_{t})$ the problem \eqref{e1.1}-\eqref{e1.4}, \eqref{e1.7}, and \eqref{e1.8} describes the shock between a solid body and a linear viscoelastic bar with nonlinear elastic constraints at the side, and constraints associated with a viscous frictional resistance. From \eqref{e1.7}, \eqref{e1.8} we represent $P(t)$ in terms of $P_{0}$, $P_{1}$, $\omega $, $h$, $u_{tt}(0,t)$ and then by integrating by parts, we have \begin{equation} P(t)=g(t)+hu(0,t)-\int_{0}^{t}k(t-s)u(0,s)ds, \label{e1.9} \end{equation} where \begin{gather} g(t)=(P_{0}-hu_{0}(0))\cos \omega t+(P_{1}-hu_{1}(0))\frac{\sin \omega t}{\omega }, \label{e1.10} \\ k(t)=h\omega (\sin \omega t). \label{e1.11} \end{gather}% By eliminating an unknown function $P(t)$, we replace the boundary condition \eqref{e1.2} by \begin{equation} u_{x}(0,t)=g(t)+hu(0,t)-\int_{0}^{t}k(t-s)u(0,s)ds. \label{e1.12} \end{equation} Then, we reduce problem \eqref{e1.1}-\eqref{e1.4}, \eqref{e1.7}, \eqref{e1.8} to \eqref{e1.1}-\eqref{e1.4}, \eqref{e1.9}-\eqref{e1.11} or to \eqref{e1.1}, \eqref{e1.3}, \eqref{e1.4}, \eqref{e1.10}-\eqref{e1.12}. In this paper, we consider two main parts. In Part 1, we prove a theorem of global existence and uniqueness of a weak solution of problem \eqref{e1.1}-\eqref{e1.5}. The proof is based on a Galerkin method associated to a priori estimates, weak-convergence and compactness techniques. We remark that the linearization method in \cite{d2,l4,o1} cannot be used for the problems in \cite{a2,b1,d1,d3,l2,l3}. In Part 2 we prove that the solution $(u,P)$ of this problem is stable with respect to the functions $g,H$ and $K$. The results obtained here generalize the ones in \cite{a1,a2,b1,d3,l2,l3}. \section{The existence and uniqueness theorem} We first set notations $\Omega =(0,1)$, $Q_{T}=\Omega \times (0,T)$, $T>0$, $L^{p}=L^{p}(\Omega )$, $H^{1}=H^{1}(\Omega )$, $H^{2}=H^{2}(\Omega )$, where $H^{1}$, $H^{2}$ are the usual Sobolev spaces on $\Omega $. The norm in $L^{2}$ is denoted by $\|\cdot \|$. We also denote by $% \langle \cdot ,\cdot \rangle $ the scalar product in $L^{2}$ or pair of dual scalar product of continuous linear functional with an element of a function space. We denote by $\|\cdot \|_{X}$ the norm of a Banach space $X$ and by $X'$ the dual space of $X$. We denote by $L^{p}(0,T;X)$, $1\leq p\leq \infty $ for the Banach space of the real functions $u:(0,T)\rightarrow X$ measurable, such that \begin{equation*} \|u\|_{L^{p}(0,T;X)}=\Big(\int_{0}^{T}\|u(t)\|_{X}^{p}dt\Big)% ^{1/p}\quad \text{for }1\leq p<\infty , \end{equation*} and $$ \|u\|_{L^{\infty }(0,T;X)}=\mathop{\rm ess sup}_{00$ \item[(H)] $H\in C^{1}(\mathbb{R)}$, $H(0)=0$ and there exists a constant $h_{0}>0$ such that \begin{equation*} \widehat{H}(y)=\int_{0}^{y}H(s)ds\geq -h_{0} \end{equation*} \item[(K1)] $K$ and $\frac{\partial K}{\partial t}$ are in $C^{0}(\mathbb{R}_{+}\times\mathbb{R};\mathbb{R})$ \item[(K2)] There exist the nonnegative functions $k_1\in L^2(0,T)$, $k_{2}\in L^{1}(0,T)$, $k_{3}\in L^2(0,T)$, and $k_{4}\in L^{1}(0,T)$, such that\newline (i) $|K(t,u)|\leq k_1(t)|u|+k_{2}(t)$, \newline (ii) $|\frac{\partial K}{\partial t}(t,u)|\leq k_{3}(t)|u|+k_{4}(t)$. \end{itemize} The function $f:\mathbb{R}^2 \to \mathbb{R}$ satisfies $f(0,0)=0$ and the following conditions: \begin{itemize} \item[(F1)] $$ (f(u,v)-f(u,\widetilde{v}))(v-\widetilde{v})\geq 0\quad\mbox{for all } u,v,\widetilde{v}\in \mathbb{R} $$ \item[(F2)] There is a constant $\alpha$ in $(0,1]$ and a function $B_1: \mathbb{R}_{+}\to \mathbb{R}_{+}$ continuous and satisfying \begin{equation*} |f(u,v)-f(u,\widetilde{v})|\leq B_1(| u|)|v-\widetilde{v}|^{\alpha }\quad \text{for all }u,v,\widetilde{v}\in \mathbb{R} \end{equation*} \item[(F3)] There is a constant $\beta $ in $(0,1]$ and a function $B_{2}:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}$ continuous and satisfying \begin{equation*} |f(u,v)-f(\widetilde{u},v)|\leq B_{2}(|v|)|u-\widetilde{u}|^{\beta }\quad \text{for all }u,\widetilde{u},v\in \mathbb{R} \end{equation*} \end{itemize} We will use the notation $u^{\prime}=u_{t}=\partial u/\partial t$, $u''=u_{tt}=\partial ^2u/\partial t^2$. Then we have the following theorem. \begin{theorem} \label{thm1} Let (A),(G),(H),(K1),(K2), (F1), (F3) hold. Then, for every $T>0$, there exists a weak solution $(u,P)$ to problem \eqref{e1.1}-\eqref{e1.5} such that \begin{gather} u\in L^{\infty }(0,T;V),\quad u_{t}\in L^{\infty }(0,T;L^2),\quad u(0,\cdot )\in H^{1}(0,T), \label{e2.2}\\ P\in H^{1}(0,T).\label{e2.3} \end{gather} Furthermore, if $\beta =1$ in (F3) and the functions $H$, $K$, $f$ satisfying, in addition \begin{itemize} \item[(H1)] $H\in C^2(\mathbb{R})$, $H'(s)>-1$ for all $s\in \mathbb{R}$ \item[(K3)] For all $M$ positive and all $T$ positive, there exists $p_{M,T}$, $q_{M,T}$ in $L^2(0,T)$, $p_{M,T}(t)\geq 0$, $q_{M,T}(t)\geq 0$ such that \begin{itemize} \item[(i)] $|K(t,u)-K(t,v)|\leq p_{M,T}(t)|u-v|$ for all $u,v$ in $\mathbb{R}$, $|u|,|v|\leq M$, \item[(ii)] $|\frac{\partial K}{\partial t}(t,u) -\frac{\partial K}{\partial t}(t,v)|\leq q_{M,T}(t)|u-v|$ for all $u,v$ in $\mathbb{R}$, $|u|,|v|\leq M$. \end{itemize} \item[(F4)] $B_{2}(|v|)\in L^2(Q_{T})$ for all $v\in L^2(Q_{T})$ for all $T>0$. \end{itemize} Then the solution is unique \end{theorem} \begin{remark} \label{rmk1} \rm This result is stronger than that in \cite{l2}. Indeed, corresponding to the same problem \eqref{e1.1}-\eqref{e1.5} with $K(t,u)\equiv 0$ and $H(s)=hs$, $h>0$ the following assumptions made in \cite{l2} are not needed here: $0<\alpha <1$, $B_1(|u|)\in L^{2/(1-\alpha)}(Q_{T})$ for all $u\in L^{\infty }(0,T;V)$ and all $T>0$; %\label{e2.4} $B_1$, $B_{2}$ are nondecreasing functions. %\label{e2.5} \end{remark} \begin{proof}[Proof of Theorem \protect\ref{thm1}] It is done in several steps. \noindent \textit{Step 1. The Galerkin approximation.} Consider the orthonormal basis on $V$ consisting of eigenvectors of the Laplacian, $-\partial ^{2}/\partial x^{2}$, \begin{equation*} w_{j}(x)=\sqrt{2/(1+\lambda _{j}^{2})}\cos (\lambda _{j}x),\quad \lambda _{j}=(2j-1)\frac{\pi }{2},\quad j=1,2,\dots . \end{equation*} Put \begin{equation*} u_{m}(t)=\sum_{j=1}^{m}c_{mj}(t)w_{j}, \end{equation*} where $c_{mj}(t)$ satisfy the system of nonlinear differential equations \begin{gather} \langle u_{m}''(t),w_{j}\rangle +a(u_{m}(t),w_{j})+P_{m}(t)w_{j}(0)+\langle f(u_{m}(t),u_{m}'(t)),w_{j}\rangle =0, \label{e2.6} \\ P_{m}(t)=g(t)+H(u_{m}(0,t))-\int_{0}^{t}K(t-s,u_{m}(0,s))ds, \label{e2.7} \end{gather} with \begin{equation} \begin{gathered} u_{m}(0)=u_{0m}=\sum_{j=1}^m \alpha _{mj}w_{j}\to u_0 \quad\text{strongly in }H^{1}, \\ u_{m}'(0)=u_{1m}=\sum_{j=1}^m \beta _{mj}w_{j}\to u_1 \quad \text{strongly in }L^2, \end{gathered} \label{e2.8} \end{equation} This system of equations is rewritten in form \begin{gather*} c_{mj}''(t)+\lambda _{j}^{2}c_{mj}(t)=\frac{-1}{\Vert w_{j}\|^{2}}(P_{m}(t)w_{j}(0)+\langle f(u_{m}(t),u_{m}'(t)),w_{j}\rangle ), \\ P_{m}(t)=g(t)+H(u_{m}(0,t))-\int_{0}^{t}K(t-s,u_{m}(0,s))ds, \\ c_{mj}(0)=\alpha _{mj},\quad c_{mj}'(0)=\beta _{mj},\quad 1\leq j\leq m. \end{gather*} % \eqref{e2.9} This system is equivalent to the system of integrodifferential equations \begin{equation} \begin{aligned} &c_{mj}(t)\\ &=G_{mj}(t)-\frac{1}{\|w_{j}\|^2} \int_0^t N_{j}(t-\tau )( H(u_{m}(0,\tau ))w_{j}(0) +\langle f(u_{m}(\tau ),u_{m}'(\tau )),w_{j}\rangle ) d\tau \\ &\quad +\frac{w_{j}(0)}{\|w_{j}\|^2} \int_0^t N_{j}(t-\tau )d\tau \int_0^\tau K(\tau-s,u_{m}(0,s))ds, \quad 1\leq j\leq m, \end{aligned} \label{e2.10} \end{equation} where $N_{j}(t)=\sin (\lambda _{j}t)/\lambda _{j}$ and \begin{equation} \label{e2.11} G_{mj}(t)=\alpha _{mj}N_{j}'(t)+\beta _{mj}N_{j}(t) -\frac{w_{j}(0)}{\|w_{j}\|^{2}}\int_{0}^{t}N_{j}(t-\tau )g(\tau )d\tau . \end{equation} We then have the following lemma. \begin{lemma} \label{lem2} Let (A), (G), (H), (K1), (K2), (F1),(F3) hold. For fixed $T>0$, the system \eqref{e1.10}-\eqref{e1.11} has solution $c_{m}=(c_{m1},c_{m2},\dots ,c_{mm})$ on an interval $[0,T_{m}]\subset [ 0,T)$. \end{lemma} \begin{proof} Omitting the index $m$, system \eqref{e2.10}, \eqref{e2.11} is rewritten in the form \begin{equation*} c=Uc, \end{equation*} where $c=(c_{1},c_{2},\dots ,c_{m})$, $Uc=((Uc)_{1},(Uc)_{2},\dots ,(Uc)_{m}) $, \begin{gather} (Uc)_{j}(t)=G_{j}(t)+\int_{0}^{t}N_{j}(t-\tau )(Vc)_{j}(\tau )d\tau , \label{e2.12} \\ (Vc)_{j}(t)=f_{1j}(c(t),c'(t))+\int_{0}^{t}f_{2j}(t-s,c(s))ds, \label{e2.13} \\ G_{j}(t)=\alpha _{mj}N_{j}'(t)+\beta _{mj}N_{j}(t) -\frac{w_{j}(0)}{\|w_{j}\|^{2}}\int_{0}^{t}N_{j}(t-\tau )g(\tau )d\tau , \label{e2.14} \end{gather} the functions $f_{1j}:\mathbb{R}^{2m}\rightarrow \mathbb{R}$ $f_{2j}:[0,T_{m}]\times \mathbb{R}^{m}\rightarrow \mathbb{R}$ satisfy \begin{gather} f_{1j}(c,d)=\frac{-1}{\|w_{j}\|^{2}}\big[H( \sum_{i=1}^{m}c_{i}w_{i}(0))w_{j}(0)+\langle f(\sum_{i=1}^{m}c_{i}w_{i},\sum_{i=1}^{m}d_{i}w_{i}),w_{j}\rangle \big], \label{e2.15} \\ f_{2j}(t,c)=\frac{w_{j}(0)}{\|w_{j}\|^{2}}K(t, \sum_{i=1}^{m}c_{i}w_{i}(0)),\quad 1\leq j\leq m. \label{e2.16} \end{gather}% For every $T_{m}>0$, $M>0$ we put \begin{gather*} S=\{c\in C^{1}([0,T_{m}];\mathbb{R}^{m}):\|c\|_{1}\leq M\},\quad \|c\|_{1}=\|c\|_{0}+\|c'\|_{0}, \\ \|c\|_{0}=\sup_{0\leq t\leq T_{m}}|c(t)|_{1},\quad |c(t)|_{1}=\sum_{i=1}^{m}|c_{i}(t)|. \end{gather*}% Clearly $S$ is a closed convex and bounded subset of $Y=C^{1}([0,T_{m}]; \mathbb{R}^{m})$. Using the Schauder fixed point theorem we shall show that the operator $U:S\rightarrow Y$ defined by \eqref{e2.12}-\eqref{e2.16} has a fixed point. This fixed point is the solution of \eqref{e2.10}. \noindent (a) First we show that $U$ maps $S$ into itself. Note that $(Vc)_{j}\in C^{0}([0,T_{m}];\mathbb{R})$ for all $c\in C^{1}([0,T_{m}]; \mathbb{R}^{m})$, hence it follows from \eqref{e2.12}, and the equality \begin{equation} (Uc)_{j}'(t)=G_{j}'(t)+\int_{0}^{t}N_{j}'(t-\tau )(Vc)_{j}(\tau )d\tau , \label{e2.17} \end{equation} that $U:Y\rightarrow Y$. Let $c\in S$, we deduce from \eqref{e2.11}, \eqref{e2.16} that \begin{gather} |(Uc)(t)|_{1}\leq |G(t)|_{1}+\frac{1}{\lambda _{1}}T_{m}\|Vc\|_{0}, \label{e2.18} \\ |(Uc)'(t)|_{1}\leq |G'(t)|_{1}+T_{m}\|Vc\|_{0}. \label{e2.19} \end{gather} On the other hand, it follows from (H), (K1), (K2),(F2),(F3), \eqref{e2.13}, \eqref{e2.15}, \eqref{e2.16} that \begin{equation} \|Vc\|_{0}\leq \sum_{j=1}^{m}[N_{1}(f_{1j},M)+TN_{2}(f_{2j},M,T)]\equiv \beta (M,T)\quad \text{for all }c\in S, \label{e2.20} \end{equation} where \begin{equation} \begin{gathered} N_1(f_{1j},M)=\sup \{|f_{1j}(y,z)|:\|y\|_{\mathbb{R}^{m}} \leq M,\quad \|z\|_{\mathbb{R}^{m}}\leq M\}, \\ N_{2}(f_{2j},M,T)=\sup \{|f_{2j}(t,y)|:0\leq t\leq T,\quad \|y\|_{\mathbb{R}^{m}}\leq M\}. \end{gathered} \label{e2.21} \end{equation} Hence, from \eqref{e2.18}-\eqref{e2.21} we obtain \begin{equation*} \|Uc\|_{1}\leq \|G\|_{1T}+(1+\frac{1}{\lambda _{1}}% )T_{m}\beta (M,T), \end{equation*} where \begin{equation*} \|G\|_{1T}=\|G\|_{0T}+\|G'\|_{0T} =\sup_{0\leq t\leq T}|G(t)|_{1}+\sup_{0\leq t\leq T}|G'(t)|_{1}. \end{equation*} Choosing $M$ and $T_{m}>0$ such that \begin{equation*} M>2\|G\|_{1T}\quad \text{and}\quad (1+\frac{1}{\lambda _{1}} )T_{m}\beta (M,T)\leq M/2. \end{equation*} Hence, $\|Uc\|_{1}\leq M$ for all $c\in S$, that is, the operator $U$ maps $S$ the set into itself. \noindent (b) Now we show that the operator $U$ is continuous on $S$. Let $c,d\in S$, we have \begin{equation*} (Uc)_{j}(t)-(Ud)_{j}(t)=\int_{0}^{t}N_{j}(t-\tau )[(Vc)_{j}(\tau )-(Vd)_{j}(\tau )]d\tau . \end{equation*} Hence \begin{equation} \|Uc-Ud\|_{0}\leq \frac{1}{\lambda _{1}}T_{m}\|Vc-Vd\|_{0}. \label{e2.22} \end{equation} Similarly, we obtain from the equality \begin{equation*} (Uc)_{j}'(t)-(Ud)_{j}'(t)=\int_{0}^{t}N_{j}'(t-\tau )((Vc)_{j}(\tau )-(Vd)_{j}(\tau ))d\tau , \end{equation*} which implies \begin{equation} \|(Uc)'-(Ud)'\|_{0}\leq T_{m}\|Vc-Vd\|_{0}. \label{e2.23} \end{equation} By estimates \eqref{e2.22}, \eqref{e2.23}, we only have to prove that the operator $V:Y\rightarrow C^{0}([0,T_{m}];\mathbb{R}^{m})$ is continuous on $S$. We have \begin{equation} \begin{aligned} (Vc)_{j}(t)-(Vd)_{j}(t)&=f_{1j}(c(t),c'(t))-f_{1j}(d(t),d'(t)) \\ &\quad + \int_0^t (f_{2j}(t-s,c(s))-f_{2j}(t-s,d(s))) ds. \end{aligned} \label{e2.24} \end{equation} From the assumptions (H),(F2) and (F3), it follows that there exists a constant $K_{M}>0$ such that \begin{equation} \sup_{0\leq t\leq T_{m}}\sum_{j=1}^{m}|f_{1j}(c(t),c'(t))-f_{1j}(d(t),d'(t))| \leq K_{M}(\|c-d\|_{0}+\Vert c-d\|_{0}^{\beta }+\|c'-d'\|_{0}^{\alpha }), \label{e2.25} \end{equation} for all $c,d\in S$. Then we have the following lemma. \begin{lemma} \label{lem3} Let $f_{2j}:[0,T_{m}]\times\mathbb{R}^{m}\to R$ be continuous, and let \begin{equation} \label{e2.26} (W_{j}c)(t)=\int_0^t f_{2j}(t-s,c(s))ds,c\in C^{0}([0,T_{m}];\mathbb{R}^{m}). \end{equation} Then, the operator $W_{j}:C^{0}([0,T_{m}];\mathbb{R}^{m})\to C^{0}([0,T_{m}];\mathbb{R})$ is continuous on $S$. \end{lemma} The proof of this lemma follows easily from $f_{2j}$ being uniformly continuous on $[0,T_{m}]\times [-M,M]^{m}$. We omit the proof. From \eqref{e2.24}, \eqref{e2.25}, \eqref{e2.26}, we deduce that \begin{equation} \begin{aligned} \|Vc-Vd\|_0 &=\sup_{0\leq \tau \leq T_{m}} \sum_{j=1}^m |(Vc)_{j}(\tau )-(Vd)_{j}(\tau)|\\ &\leq K_{M}\big( \|c-d\|_0+\|c-d\|_0^{\beta }+\|c'-d'\|_0^{\alpha }\big)\\ &\quad +\sup_{0\leq t\leq T_{m}}\sum_{j=1}^m |(W_{j}c)(t)-(W_{j}d)(t)| , \quad \forall c,d\in S\,. \end{aligned} \label{e2.27} \end{equation} Thus, Lemma \ref{lem3} and inequality \eqref{e2.27} show that $V:S\rightarrow C^{0}([0,T_{m}];\mathbb{R}^{m})$ is continuous. \noindent (c) Now, we shall show that the set $\overline{US}$ is a compact subset of $Y$. Let $c\in S,t,t'\in [ 0,T_{m}]$. From \eqref{e2.12}, we rewrite \begin{equation} \begin{aligned} &(Uc)_{j}(t)-(Uc)_{j}(t')\\ &=G_{j}(t)-G_{j}(t')+\int_0^t N_{j}(t-\tau )(Vc)_{j}(\tau )d\tau -\int_0^{t'} N_{j}(t'-\tau )(Vc)_{j}(\tau )d\tau \\ &=G_{j}(t)-G_{j}(t')+\int_0^t ( N_{j}(t-\tau)-N_{j}(t'-\tau )) (Vc)_{j}(\tau )d\tau\\ &\quad -\int_t^{t'} N_{j}(t'-\tau )(Vc)_{j}(\tau )d\tau \,. \end{aligned} \label{e2.28} \end{equation} From the inequality %\label{e2.29} $|N_{j}(t)-N_{j}(s)|\leq |t-s|$ for all $t,s\in [ 0,T_{m}]$ and \eqref{e2.20}, we obtain \begin{equation} \begin{aligned} |(Uc)(t)-(Uc)(t')|_1 &=\sum_{j=1}^m |(Uc)_{j}(t)-(Uc)_{j}(t')|\\ &\leq |G(t)-G(t')|_1+(T_{m}+\frac{1}{\lambda _1})|t-t'|\|Vc\|_0 \\ &\leq |G(t)-G(t')|_1+\beta (M,T)(T_{m}+\frac{1}{\lambda _1})|t-t'|. \end{aligned} \label{e2.30} \end{equation} Similarly, from \eqref{e2.17} and \eqref{e2.20}, we also obtain \begin{equation} |(Uc)'(t)-(Uc)'(t')|_{1}\leq |G'(t)-G'(t')|_{1}+\beta (M,T)(\lambda _{m}T_{m}+1)|t-t'|. \label{e2.31} \end{equation} Since $US\subset S$, from estimates \eqref{e2.30}, \eqref{e2.31} we deduce that the family of functions $US=\{Uc,c\in S\}$, are bounded and equicontinuous with respect to the norm $\|\cdot \|_{1}$ of the space $Y.$ Applying Arzela-Ascoli's theorem to the space $Y$, we deduce that $\overline{US}$ is compact in $Y$. By the Schauder fixed-point theorem, $U$ has a fixed point $c\in S$, which satisfies \eqref{e2.10}. The proof of Lemma \ref{lem2} is complete. \end{proof} Using Lemma \ref{lem2}, for $T>0$, fixed, system \eqref{e2.6} - \eqref{e2.8} has solution $(u_{m}(t),P_{m}(t))$ on an interval $[0,T_{m}]$. The following estimates allow one to take $T_{m}=T$ for all $m$. \noindent \textit{Step 2. A priori estimates}. Substituting \eqref{e2.7} into \eqref{e2.6}, then multiplying the $j^{th}$ equation of \eqref{e2.6} by $c_{mj}'(t)$ and summing up with respect to $j$, integrating by parts with respect to the time variable from $0$ to $t$, by (G) and (F1), we have \begin{equation} \begin{aligned} S_{m}(t)&\leq -2\widehat{H}(u_{m}(0,t))+2\widehat{H} (u_{0m}(0))+S_{m}(0)+2g(0)u_{0m}(0) \\ &\quad -2g(t)u_{m}(0,t)+2 \int_0^t g'(s)u_{m}(0,s)ds -2 \int_0^t \langle f(u_{m}(s),0),u_{m}'(s)\rangle ds \\ &\quad +2 \int_0^t u_{m}'(0,s)ds \int_0^s K(s-\tau ,u_{m}(0,\tau ))d\tau , \end{aligned} \label{e2.32} \end{equation} where \begin{equation} S_{m}(t)=\|u_{m}'(t)\|^{2}+\|u_{m}(t)\|_{V}^{2}\,. \label{e2.33} \end{equation} Then, using \eqref{e2.8}, \eqref{e2.33}, (H), and Lemma \ref{lem1}, we have \begin{equation} \begin{aligned} &-2\widehat{H}(u_{m}(0,t))+2\widehat{H}(u_{0m}(0))+S_{m}(0)+2| g(0)u_{0m}(0)| \\ &\leq 2h_0+2\widehat{H} (u_{0m}(0))+S_{m}(0)+2|g(0)u_{0m}(0)|\\ &\leq \frac{1}{4}C_1,\quad \text{for all $m$ and all $t$}, \end{aligned} \label{e2.34} \end{equation} where $C_{1}$ is a constant depending only on $u_{0}$, $u_{1}$, $h_{0}$, $H$, and $g$. Again using Lemma \ref{lem1} and the inequality %\label{e2.35} $2ab\leq 4a^{2}+\frac{1}{4}b^{2}$, we obtain \begin{equation} \begin{aligned} &|-2g(t)u_{m}(0,t)+2\int_0^t g'(s)u_{m}(0,s)ds| \\ &\leq 4g^2(t)+4 \int_0^t |g'(s)|^2ds+\frac{1}{4}S_{m}(t) +\frac{1}{4} \int_0^t S_{m}(s)ds. \end{aligned} \label{e2.36} \end{equation} Using Lemma \ref{lem1}, from (F3) it follows that \begin{align*} \big|-2\int_{0}^{t}\langle f(u_{m}(s),0),u_{m}'(s)\rangle ds\big|& \leq 2B_{2}(0)\int_{0}^{t}S_{m}(s)^{(1+\beta )/2}ds \\ & \leq (1+\beta )B_{2}(0)\int_{0}^{t}S_{m}(s)ds+(1-\beta )B_{2}(0)t. \end{align*} Note that the last integral in \eqref{e2.32}, after integrating by parts, gives \begin{align*} I& =2\int_{0}^{t}u_{m}'(0,s)ds\int_{0}^{s}K(s-\tau ,u_{m}(0,\tau ))d\tau \\ & =2u_{m}(0,t)\int_{0}^{t}K(t-\tau ,u_{m}(0,\tau ))d\tau \\ & \quad -2\int_{0}^{t}u_{m}(0,s)ds\big[K(0,u_{m}(0,s))+\int_{0}^{s} \frac{\partial K}{\partial t}(s-\tau ,u_{m}(0,\tau ))d\tau \big]. \end{align*} Hence \begin{equation} \begin{aligned} |I|&\leq 2\sqrt{S_{m}(t)} \int_0^t ( k_1(t-\tau )\sqrt{S_{m}(\tau )}+k_{2}(t-\tau )) d\tau \\ &\quad +2 \int_0^t \sqrt{S_{m}(s)}ds\big[ k_1(0)\sqrt{S_{m}(s)}+k_{2}(0)\\ &\quad +\int_0^s (k_{3}(s-\tau )\sqrt{S_{m}(\tau )} +k_{4}(s-\tau )) d\tau \big] \\ &=2\sqrt{S_{m}(t)} \int_0^t k_1(t-\tau )\sqrt{S_{m}(\tau )}d\tau +2\sqrt{S_{m}(t)} \int_0^t k_{2}(\tau )d\tau \\ &\quad +2k_1(0) \int_0^t S_{m}(s)ds+2k_{2}(0) \int_0^t \sqrt{S_{m}(s)}ds \\ &\quad +2 \int_0^t \sqrt{S_{m}(s)}ds \int_0^s k_{3}(s-\tau )\sqrt{S_{m}(\tau )}d\tau +2 \int_0^t \sqrt{S_{m}(s)}ds \int_0^s k_{4}(\tau)d\tau \\ &\equiv I_1+I_{2}+2k_1(0) \int_0^t S_{m}(s)ds+I_{4}+I_{5}+I_{6}. \end{aligned} \label{e2.37} \end{equation} By the inequality $2ab\leq 4a^{2}+\frac{1}{4}b^{2}$ and the Cauchy- Schwarz inequality we estimate without difficulty the following integrals in the right-hand side of the above expression as follows \begin{gather*} I_{1}=2\sqrt{S_{m}(t)}\int_{0}^{t}k_{1}(t-\tau )\sqrt{S_{m}(\tau )}d\tau \leq \frac{1}{4}S_{m}(t)+4\int_{0}^{t}k_{1}^{2}(\tau )d\tau .\int_{0}^{t}S_{m}(\tau )d\tau , \\ I_{2}=2\sqrt{S_{m}(t)}\int_{0}^{t}k_{2}(\tau )\leq \frac{1}{4}S_{m}(t)+4\Big( \int_{0}^{t}k_{2}(\tau )d\tau \Big)^{2}, \\ I_{4}=2k_{2}(0)\int_{0}^{t}\sqrt{S_{m}(s)}ds\leq 4k_{2}^{2}(0)+\frac{1}{4} t\int_{0}^{t}S_{m}(s)ds, \\ I_{5}=2\int_{0}^{t}\sqrt{S_{m}(s)}ds\int_{0}^{s}k_{3}(s-\tau )\sqrt{ S_{m}(\tau )}d\tau \leq 2\sqrt{t}\Big(\int_{0}^{t}k_{3}^{2}(\tau )d\tau \Big) ^{1/2}\int_{0}^{t}S_{m}(s)ds, \\ I_{6}=2\int_{0}^{t}\sqrt{S_{m}(s)}ds\int_{0}^{s}k_{4}(\tau )d\tau \leq \frac{ 1}{4}\int_{0}^{t}S_{m}(s)ds+4t\Big(\int_{0}^{t}k_{4}(\tau )d\tau \Big)^{2}. \end{gather*} It follows from the estimates for $I_{1},I_{2},I_{4},I_{5},I_{6}$ that \begin{equation} \begin{aligned} |I|&\leq 4\Big( \int_0^t k_{2}(\tau )d\tau \Big) ^2 +4k_{2}^2(0)+4t\Big( \int_0^t k_{4}(\tau )d\tau \Big) ^2 +\frac{1}{2}S_{m}(t) \\ &\quad +\frac{1}{4}\Big[ 1+t +16 \int_0^t k_1^2(\tau )d\tau +8k_1(0) +8\sqrt{t} \Big( \int_0^t k_{3}^2(\tau )d\tau \Big)^{1/2}\Big] \int_0^t S_{m}(s)ds. \end{aligned} \label{e2.38} \end{equation} It follows from \eqref{e2.32}-\eqref{e2.34}, \eqref{e2.36}-\eqref{e2.37}, and \eqref{e2.38} that \begin{equation} S_{m}(t)\leq D_{1}(t)+D_{2}(t)\int_{0}^{t}S_{m}(\tau )d\tau , \label{e2.39} \end{equation} where \begin{equation} \begin{aligned} D_1(t)&=C_1+16k_{2}^2(0)+4(1-\beta )B_{2}(0)t+16g^2(t) \\ &\quad +16 \int_0^t |g'(s)|^2ds+16\Big( \int_0^t k_{2}(\tau )d\tau \Big) ^2 +16t\Big( \int_0^t k_{4}(\tau )d\tau \Big) ^2, \end{aligned} \label{e2.40} \end{equation} \begin{align*} D_{2}(t)& =2+4(1+\beta )B_{2}(0)+8k_{1}(0)+t+\int_{0}^{t}k_{1}^{2}(\tau )d\tau +8\sqrt{t}\Big(\int_{0}^{t}k_{3}^{2}(\tau )d\tau \Big)^{1/2} \\ & \leq 2+4(1+\beta )B_{2}(0)+8k_{1}(0)+T+\|k_{1}\|_{L^{2}(0,T)}^{2}+8 \sqrt{T}\|k_{3}\|_{L^{2}(0,T)}\equiv C_{T}^{(2)}. \end{align*} Since $H^{1}(0,T)\hookrightarrow C^{0}([0,T])$, from the assumptions (G), (K2), we deduce that \begin{equation} |D_{1}(t)|\leq C_{T}^{(1)},\quad \text{a.e. in }[0,T], \label{e2.42} \end{equation} where $C_{T}^{(1)}$, is a constant depending only on $T$. By Gronwall's lemma, from \eqref{e2.39}- \eqref{e2.42} we obtain that \begin{equation} S_{m}(t)\leq C_{T}^{(1)}\exp (tC_{T}^{(2)})\leq C_{T}\quad \forall t\in [ 0,T],\;\forall T>0. \label{e2.43} \end{equation} Now we need an estimate on the integral $\int_{0}^{t}|u_{m}'(0,s)|^{2}ds$. Put \begin{equation} K_{m}(t)=\sum_{j=1}^{m}\frac{\sin (\lambda _{j}t)}{\lambda _{j}}, \label{e2.44} \end{equation} \begin{align*} \gamma _{m}(t)& =\sum_{j=1}^{m}w_{j}(0)[\alpha _{mj}\cos (\lambda _{j}t)+\beta _{mj}\frac{\sin (\lambda _{j}t)}{\lambda _{j}}] \\ & \quad -\sqrt{2}\sum_{j=1}^{m}\int_{0}^{t}\frac{\sin [\lambda _{j}(t-\tau )]% }{\lambda _{j}}\langle f(u_{m}(\tau ),u_{m}'(\tau )),\frac{w_{j}}{\|w_{j}\|}\rangle d\tau . \end{align*} Then $u_{m}(0,t)$ can be rewritten as \begin{equation} u_{m}(0,t)=\gamma _{m}(t)-2\int_{0}^{t}K_{m}(t-\tau )P_{m}(\tau )d\tau . \label{e2.45} \end{equation} We shall require the following lemma which proof can be found in \cite{a2}. \begin{lemma} \label{lem4} There exist a constant $C_{2}>0$ and a positive continuous function $D(t)$ independent of $m$ such that \[ %\label{e2.46} \int_0^t |\gamma _{m}'(\tau )| ^2d\tau \leq C_{2}+D(t)\int_0^t \| f(u_{m}(\tau ),u_{m}'(\tau ))\|^2d\tau \quad \forall t\in [ 0,T],\forall T>0. \] \end{lemma} \begin{lemma} \label{lem5} There exist two positive constants $C_{T}^{(3)}$ and $C_{T}^{(4)}$ depending only on $T$ such that \begin{equation} \label{e2.47} \int_0^t ds|\int_0^s K_{m}'(s-\tau )P_{m}(\tau )d\tau |^2\leq C_{T}^{(3)}+C_{T}^{(4)}\int_0^t ds\int_0^s |u_{m}'(0,\tau )|^2d\tau , \end{equation} for all $t\in [ 0,T]$ and all $T>0$. \end{lemma} \begin{proof} Integrating by parts, we have \begin{equation*} \int_{0}^{s}K_{m}'(s-\tau )P_{m}(\tau )d\tau =K_{m}(s)P_{m}(0)+\int_{0}^{t}K_{m}(s-\tau )P_{m}'(\tau )d\tau , \end{equation*} then \begin{equation} \begin{aligned} &\int_0^t ds|\int_0^s K_{m}'(s-\tau )P_{m}(\tau )d\tau |^2\\ &\leq 2P_{m}^2(0) \int_0^t K_{m}^2(s)ds + 2 \int_0^t ds\int_0^s K_{m}^2(r)dr\int_0^s |P_{m}'(\tau)|^2d\tau \\ &\leq 2\int_0^t K_{m}^2(s)ds \big[ P_{m}^2(0) +\int_0^t ds\int_0^s |P_{m}'(\tau )|^2d\tau \big] . \end{aligned} \label{e2.48} \end{equation} From \eqref{e2.7}, we have \begin{equation} P_{m}(0)=g(0)+H(u_{0m}(0)), \label{e2.49} \end{equation} \begin{equation} P_{m}'(\tau )=g'(\tau )+H'(u_{m}(0,\tau ))u_{m}'(0,\tau )-K(0,u_{m}(0,\tau ))-\int_{0}^{\tau } \frac{\partial K}{\partial t}(\tau -s,u_{m}(0,s))ds. \label{e2.50} \end{equation} Using the inequality $(a+b+c+d)^{2}\leq 4(a^{2}+b^{2}+c^{2}+d^{2})$, for all $a,b,c,d\in \mathbb{R}$, we deduce from \eqref{e2.43}, \eqref{e2.50}, and (G),(H),(K2) that \begin{equation} \begin{aligned} &\int_0^s |P_{m}'(\tau )| ^2d\tau \\ &\leq 4 \int_0^s |g'(\tau)|^2d\tau +4\max_{|s|\leq \sqrt{C_{T}}} |H'(s)|^2\int_0^s |u_{m}'(0,\tau )|^2d\tau \\ &\quad +4 \int_0^s |K(0,u_{m}(0,\tau ))|^2d\tau +4 \int_0^s d\tau | \int_0^\tau \frac{\partial K}{\partial t}(\tau -s,u_{m}(0,s))ds|^2 \\ &\leq 4 \int_0^s |g'(\tau )|^2d\tau +4\max_{|s|\leq \sqrt{C_{T}}} |H'(s)|^2 \int_0^s |u_{m}'(0,\tau )|^2d\tau \\ &\quad +8k_1^2(0)\int_0^s |u_{m}(0,\tau)|^2d\tau +8k_{2}^2(0)s \\ &\quad +8 \int_0^s d\tau \int_0^\tau k_{3}^2(s)ds\int_0^\tau u_{m}^2(0,s)ds+8 \int_0^s d\tau ( \int_0^\tau k_{4}(s)ds) ^2 \\ &\leq 4 \int_0^s |g'(\tau )|^2d\tau +8[k_1^2(0)C_{T}+k_{2}^2(0)]s +4C_{T} s^2 \int_0^s k_{3}^2(\tau )d\tau \\ &\quad +8s( \int_0^s k_{4}(\tau )d\tau ) ^2+4 \max_{|s|\leq \sqrt{C_{T}}} |H'(s)|^2\int_0^s | u_{m}'(0,\tau )|^2d\tau . \end{aligned} \label{e2.51} \end{equation} Hence \begin{align*} \int_{0}^{t}ds\int_{0}^{s}|P_{m}'(\tau )|^{2}d\tau & \leq 4t\int_{0}^{t}|g'(\tau )|^{2}d\tau +4[k_{1}^{2}(0)C_{T}+k_{2}^{2}(0)]t^{2}\quad \\ & \quad +\frac{4}{3}C_{T}t^{3}\int_{0}^{t}k_{3}^{2}(\tau )d\tau +4t^{2}\Big(% \int_{0}^{t}k_{4}(\tau )d\tau \Big)^{2} \\ & \quad +4\max_{|s|\leq \sqrt{C_{T}}}|H'(s)|^{2}\int_{0}^{t}\,ds\int_{0}^{s}|u_{m}'(0,\tau )|^{2}d\tau . \end{align*}% From this inequality, \eqref{e2.48}, and \eqref{e2.49}, it follows that \begin{equation} \begin{aligned} &\int_0^t ds|\int_0^s K_{m}'(s-\tau )P_{m}(\tau )d\tau |^2\\ &\leq 2 \int_0^t K_{m}^2(s)ds \Big[ ( g(0)+H(u_{0m}(0)))^2 +4t \int_0^t |g'(\tau )|^2d\tau +4[k_1^2(0)C_{T}+k_{2}^2(0)]t^2 \\ &\quad +\frac{4}{3}C_{T} t^{3} \int_0^t k_{3}^2(\tau )d\tau +4t^2\Big( \int_0^t k_{4}(\tau )d\tau \Big) ^2\\ &\quad + 4\max_{|s|\leq \sqrt{C_{T}}} |H'(s)|^2\int_0^t \,ds\int_0^s | u_{m}'(0,\tau )|^2d\tau \Big] . \end{aligned} \label{e2.52} \end{equation} Note that for every $T>0$, $K_{m}\rightarrow \widetilde{K}$, strongly in $L^{2}(0,T)$ as $m\rightarrow +\infty $. Using the assumptions (G), (H),(K2) and the results \eqref{e2.8} and \eqref{e2.52}, we obtain \eqref{e2.47}. The proof of Lemma \ref{lem5} is complete. \end{proof} \begin{lemma} \label{lem6} There exist two positive constants $C_{T}^{(5)}$ and $C_{T}^{(6)}$ depending only on $T$ such that \begin{gather} \label{e2.53} \int_0^t |u_{m}'(0,\tau )| ^2d\tau \leq C_{T}^{(5)}\quad \forall t\in [ 0,T],\forall T>0. \\ \label{e2.54} \int_0^t |P_{m}'(\tau )|^2d\tau \leq C_{T}^{(6)}\quad \forall t\in [0,T], \forall T>0. \end{gather} \end{lemma} \begin{proof} Since \eqref{e2.54} is a consequence of \eqref{e2.51} and \eqref{e2.53}, we only have to prove \eqref{e2.53}. From \eqref{e2.45}, using Lemmas \ref{lem4} and \ref{lem5}, we obtain \begin{equation} \begin{aligned} \int_0^t |u_{m}'(0,s)|^2ds &\leq 2 \int_0^t |\gamma_{m}'(s)|^2ds +8 \int_0^t ds|\int_0^s K_{m}'(s-\tau )P_{m}(\tau)d\tau |^2 \\ &\leq 2C_{2}+2D(t)\int_0^t \|f(u_{m}(\tau),u_{m}'(\tau ))\|d\tau \\ &\quad +8C_{T}^{(3)}+8C_{T}^{(4)}\int_0^t ds \int_0^s |u_{m}'(0,\tau )|^2d\tau . \end{aligned} \label{e2.55} \end{equation} On the other hand, from the assumptions (F2),(F3), we obtain \begin{equation} \|f(u_{m}(t),u_{m}'(t))\|^{2}\leq 2(\max_{|s| \leq \sqrt{C_{T}}}B_{1}^{2}(s))\|u_{m}'(t)\|^{2\alpha }+2B_{2}^{2}(0)\|u_{m}(t)\|_{V}^{2\beta }, \label{e2.56} \end{equation} since $0<\alpha \leq 1$ we have $\|\cdot \|\leq \|\cdot \Vert _{L^{2\alpha }}$. Hence, using \eqref{e2.43} and \eqref{e2.56} we have \begin{equation} \|f(u_{m}(t),u_{m}'(t))\|\leq C_{T}^{(7)}. \label{e2.57} \end{equation} At last from this inequality and \eqref{e2.55} we obtain the inequality \begin{equation*} \int_{0}^{t}|u_{m}'(0,s)|^{2}ds\leq C_{T}^{(8)}+8C_{T}^{(4)}\int_{0}^{t}ds\int_{0}^{s}|u_{m}'(0,\tau )|^{2}d\tau , \end{equation*} which implies \eqref{e2.53}, by Gronwall's lemma. Therefore, Lemma \ref{lem6} is proved. \end{proof} \noindent \textit{Step 3. Passing to limit}. From \eqref{e2.7}, \eqref{e2.33}, \eqref{e2.43}, \eqref{e2.53}, \eqref{e2.54}, and \eqref{e2.57}, we deduce that, there exists a subsequence of sequence $\{(u_{m},P_{m})\}$, still denoted by $\{(u_{m},P_{m})\}$, such that \begin{gather} u_{m}\rightarrow u\quad \text{in }L^{\infty }(0,T;V)\text{ weak}\ast , \label{e2.58} \\ u_{m}'\rightarrow u'\quad \text{in }L^{\infty }(0,T;L^{2})% \text{ weak}\ast , \label{e2.59} \\ u_{m}(0,t)\rightarrow u(0,t)\quad \text{in }L^{\infty }(0,T)\text{ weak}\ast , \label{e2.60} \\ u_{m}'(0,t)\rightarrow u'(0,t)\quad \text{in }L^{2}(0,T) \text{ weak}, \label{e2.61} \\ f(u_{m},u_{m}')\rightarrow \chi \quad \text{in }L^{\infty }(0,T;L^{2})\text{ weak}\ast , \label{e2.62} \\ P_{m}\rightarrow \widehat{P}\quad \text{in }H^{1}(0,T)\text{ weak}, \label{e2.63} \end{gather}% By the compactness lemma of Lions (see \cite{l2}), we can deduce from \eqref{e2.58}-\eqref{e2.61} that there exists a subsequence still denoted by $\{u_{m}\}$ such that \begin{gather} u_{m}(0,t)\rightarrow u(0,t)\quad \text{strongly in }C^{0}([0,T]), \label{e2.64} \\ u_{m}\rightarrow u\quad \text{strongly in }L^{2}(Q_{T})\text{ and a.e. } (x.t)\in Q_{T}. \label{e2.65} \end{gather}% By (H),(K) and using \eqref{e2.7}, \eqref{e2.64} we obtain \begin{equation} P_{m}(t)\rightarrow g(t)+H(u(0,t))-\int_{0}^{t}K(t-s,u(0,s))ds\equiv P(t)\quad \text{strongly in }C^{0}([0,T]). \label{e2.66} \end{equation} From \eqref{e2.63} and \eqref{e2.66} we have \begin{equation} P\equiv \widehat{P}\text{ \thinspace a.e. in }Q_{T}. \label{e2.67} \end{equation} Passing to the limit in \eqref{e2.6} by \eqref{e2.58}, \eqref{e2.59}, \eqref{e2.66}, and \eqref{e2.67} we have \begin{equation*} \frac{d}{dt}\langle u'(t),v\rangle +a(u(t),v)+P(t)v(0)+\langle \chi ,v\rangle =0\quad \forall v\in V. \end{equation*} As in \cite{l2}, we can prove that \begin{equation*} u(0)=u_{0},\quad u'(0)=u_{1}. \end{equation*} To prove the existence of solution $u$, we have to show that $\chi =f(u,u')$. We need the following lemma which proof can be found in \cite{a2}. \begin{lemma} \label{lem7} Let $u$ be the solution of the problem \begin{gather*} u_{tt}-u_{xx}+\chi =0,\quad 00$. Put \begin{equation} m_{1}=\min_{|s|\leq M}H'(s),\quad m_{2}=\max_{|s|\leq M}{\max }% |H''(s)|. \label{e2.75} \end{equation} From assumption (H1) we have \begin{equation} m_{1}>-1\,. \label{e2.76} \end{equation} On the other hand, using integration by parts and \eqref{e2.75} it follows that \begin{align*} & 2\int_{0}^{t}\widetilde{H}_{1}(s)u'(0,s)ds \\ & =2\int_{0}^{t}\Big[\int_{0}^{1}\frac{d}{d\theta }H(u_{2}(0,s)+\theta u(0,s))d\theta \Big]u'(0,s)ds \\ & =u^{2}(0,t)\int_{0}^{1}H'(u_{2}(0,s)+\theta u(0,s))d\theta \\ & \quad -\int_{0}^{t}u^{2}(0,s)ds\int_{0}^{1}H^{\prime \prime }(u_{2}(0,s)+\theta u(0,s))(u_{2}'(0,s)+\theta u'(0,s))d\theta \\ & \geq m_{1}u^{2}(0,t)-m_{2}\int_{0}^{t}u^{2}(0,s)(|u_{1}'(0,s)|+|u_{2}'(0,s)|)ds \\ & \geq m_{1}u^{2}(0,t)-m_{2}\int_{0}^{t}\sigma (s)(|u_{1}'(0,s)|+|u_{2}'(0,s)|)ds. \end{align*}% From the above inequality, \eqref{e2.71}-\eqref{e2.72} and \eqref{e2.74}, we obtain \begin{equation} \begin{aligned} \sigma (t)+m_1u^2(0,t) &\leq m_{2}\int_0^t \sigma (s)(|u_1'(0,s)|+|u_{2}'(0,s)|) ds\\ &\quad +\int_0^t \|B_{2}(|u_{2}'(s)|)\|\sigma (s)ds+|J|\equiv \eta (t). \end{aligned} \label{e2.77} \end{equation} From \eqref{e2.1}, \eqref{e2.76}, and \eqref{e2.77}, we have \begin{equation} (1+m_{1})u^{2}(0,t)\leq \sigma (t)+m_{1}u^{2}(0,t)\leq \eta (t). \label{e2.78} \end{equation} It follows from \eqref{e2.77} and \eqref{e2.78} that \begin{equation} \begin{aligned} &\sigma (t)+[m_1+\beta _{2}(1+m_1)]u^2(0,t)\\ &\leq (1+\beta _{2})\eta (t) \\ &\leq (1+\beta _{2})\int_0^t [ m_{2}(|u_1'(0,s)|+|u_{2}'(0,s)| ) +\|B_{2}(|u_{2}'(s)|)\| ] \sigma (s)ds \\ &\quad +(1+\beta _{2})\beta _1\sigma (t)+(1+\beta _{2}) \Big[ 2p_{M,T}(0)+\frac{1}{\beta _1}\int_0^t p_{M,T}^2(r)dr\\ &\quad +2\sqrt{t}\Big( \int_0^t q_{M,T}^2(r)dr\Big) ^{1/2}\Big] \int_0^t \sigma (s)ds, \end{aligned} \label{e2.79} \end{equation} for all $\beta _{1}>0$, $\beta _{2}>0$. Choose $\beta _{1}>0$, $\beta _{2}>0$ such that $m_{1}+\beta _{2}(1+m_{1})\geq 1/2$, $(1+\beta _{2})\beta _{1}\leq1/2$ and denote \begin{equation} \begin{aligned} R_1(t)&=2(1+\beta _{2})[ m_{2}( |u_1'(0,s)|+|u_{2}'(0,s)|) +\|B_{2}(|u_{2}'(s)|)\| \\ &\quad +\frac{1}{\beta _1}\|p_{M,T}\|_{L^2(0,T)}^2+2p_{M,T}(0) +2\sqrt{T}\|q_{M,T}\|_{L^2(0,T)}] . \end{aligned} \label{e2.80} \end{equation} Then from \eqref{e2.79} and \eqref{e2.80} we have \begin{equation} \sigma (t)+u^{2}(0,t)\leq \int_{0}^{t}R_{1}(s)[\sigma (s)+u^{2}(0,s)]ds; \label{e2.81} \end{equation} i.e. $\sigma (t)+u^{2}(0,t)\equiv 0$ by Gronwall's lemma. Then Theorem \ref{thm1} is proved. \end{proof} In the special cases \begin{gather*} H(s)=hs,\quad h>0; \\ K(t,u)=k(t)u,\quad k\in H^{1}(0,T),\quad \forall T>0, k(0)=0, \end{gather*} the following theorem is a consequence of Theorem \ref{thm1}. \begin{theorem} \label{thm2} Let $(A),(G)$ and $(F_1)-(F_{3})$ hold. Then, for every $T>0$, problem \eqref{e1.1}- \eqref{e1.4} and \eqref{e1.9} has at least a weak solution $(u,P)$ satisfying \eqref{e2.2}, \eqref{e2.3}. Furthermore, if $\beta =1$ in (F3) and $B_{2}$ satisfies (F4), then this solution is unique. \end{theorem} %remark 2 We remark that Theorem \ref{thm2} gives the same result as in \cite{l3}, but we do not need the assumption ``$B_{1}$ is nondecreasing" used there. In the special case with $K(t,u)\equiv 0$, the following result is the consequence of Theorem \ref{thm1}. \begin{theorem} \label{thm3} Let (A), (G), (H), (F1)--(F3) hold. Then, for every $T>0$, the problem \eqref{e1.1}-\eqref{e1.4} corresponding to $P=g$ has at least a weak solution $u$ satisfying \eqref{e2.2}. Furthermore, if $\beta =1$ in (F3) and the functions $H$, $B_{2}$ satisfy the assumptions (H1), (F4), then this solution is unique. \end{theorem} We remark that Theorem gives same result in \cite{d3} but without using the assumption ``$B_1$ is nondecreasing'' used there. \section{Stability of the solutions} In this section, we assume that $\beta =1$ in (F3) and that the functions $H$, $B_{2}$ satisfying (H), (H1), (F4), respectively. By Theorem \ref{thm1} problem \eqref{e1.1}-\eqref{e1.5} admits a unique solution $(u,P)$ depending on $g$, $H$, $K$: \begin{equation*} u=u(g,H,K),\quad P=P(g,H,K), \end{equation*} where $g$, $H$, $K$ satisfy the assumptions (G), (H),(H1),(K1)-(K3), and $u_{0}$, $u_{1}$, $f$ are fixed functions satisfying (A), (F1)-(F4). Let $h_0>0$ be a given constant and $H_0:\mathbb{R}_{+}\to\mathbb{R}_{+}$ be a given function. We put \begin{align*} \Im (h_0,H_0)&=\big\{H\in C^2(\mathbb{R}):H(0)=0,\; \int_0^x H(s)ds\geq -h_0,\; \forall x\in\mathbb{R}, \\ &\quad H^{\prime}(s)>-1,\; \forall s\in\mathbb{R}, \sup_{|s|\leq M}( |H(s)|+|H^{\prime}(s)|) \leq H_0(M),\;\forall M>0\big\}. \end{align*} Given $t\geq 0$, $M>0$, and $K\in C^{0}(\mathbb{R}_{+}\times\mathbb{R};% \mathbb{R})$, we put \begin{equation*} N_{h}(M,K,t)=\sup_{|u|,|v|\leq M,\;u\neq v} |\frac{K(t,u)-K(t,v)}{u-v}|. \end{equation*} Given the family $\{p_{M,T}\}$, $M>0$, $T>0$ which consists of nonnegative functions $p_{M,T}(t)=p(M,T,t)$, $M>0$, $T>0$ such that $p_{M,T}\in L^2(0,T)$, for all $M, T>0$. Let $k_1\in L^2(0,T)$, $k_{2}\in L^{1}(0,T)$, for all $T>0$. We put \begin{align*} &\Gamma (k_1,k_{2},\{p_{M,T}\}) \\ &=\big\{ K\in C^{0}(\mathbb{R}_{+}\times\mathbb{R}):\partial K/\partial t \in C^{0}(\mathbb{R}_{+}\times\mathbb{R}), \\ &\quad N_{h}(M,K,t)+N_{h}(M,\partial K/\partial t,t)\leq p_{M,T}(t),\; \forall t\in [ 0,T],\;\forall M,T>0, \\ &\quad |K(t,u)|+|\partial K/\partial t(t,u)|\leq k_1(t)|u|+k_{2}(t),\; \forall u\in\mathbb{R},\; \forall t\in [ 0,T],\; \forall T>0\big\}. \end{align*} Then we have the following theorem. \begin{theorem} \label{thm4} Let $\beta =1$ and (A),(F1)--(F4) hold. Then, for every $T>0$, the solutions of \eqref{e1.1}-\eqref{e1.5} are stable with respect to the data $g$, $H$, $K$; i.e., if $(g,H,K)$, $(g_{j},H_{j},K_{j})\in H^{1}(0,T)\times \Im (h_0,H_0)\times \Gamma (k_1,k_{2},\{p_{M,T}\})$, are such that \begin{equation} \label{e3.1} (g_{j},H_{j})\to (g,H)\quad \text{in }H^{1}(0,T)\times C^{1}([-M,M]) \end{equation} strongly, and \begin{equation} \label{e3.2} (K_{j},\partial K_{j}/\partial t)\to (K,\partial K/\partial t)\text{ in }[ C^{0}([0,T]\times [ -M,M])] ^2 \end{equation} strongly, as $j\to +\infty $, for all $M,T>0$. Then \[ %\label{e3.3} (u_{j},u_{j}',u_{j}(0,t),P_{j})\to (u,u',u(0,t),P) \] in $L^{\infty }(0,T;V)\times L^{\infty }(0,T;L^2)\times C^{0}([0,T])\times C^{0}([0,T])$ strongly, as $j\to +\infty $, for all $M,T>0$, where $u_{j}=u(g_{j},H_{j},K_{j})$, $P_{j}=P(g_{j},H_{j},K_{j})$. \end{theorem} \begin{proof} First, we note that if the data $(g,H,K)$ satisfy \begin{equation} \|g\|_{H^{1}(0,T)}\leq G_{0},\quad H\in \Im (h_{0},H_{0}),\quad K\in \Gamma (k_{1},k_{2},\{p_{M,T}\}), \label{e3.4} \end{equation} then, the a priori estimates of the sequences $\{u_{m}\}$ and $\{P_{m}\}$ in the proof of the Theorem \ref{thm1} satisfy \begin{gather} \|u_{m}'(t)\|^{2}+\|u_{m}(t)\|_{V}^{2}\leq C_{T}^{2}\quad \forall t\in [ 0,T],\;\forall T>0, \label{e3.5} \\ \int_{0}^{t}|u_{m}'(0,s)|^{2}ds\leq C_{T}^{2}\quad \forall t\in [ 0,T],\;\forall T>0, \label{e3.6} \\ \int_{0}^{t}|P_{m}'(s)|^{2}ds\leq C_{T}^{2}\quad \forall t\in [ 0,T],\;\forall T>0, \label{e3.7} \end{gather}% where $C_{T}$ is a constant depending only on $T$, $u_{0}$, $u_{1}$, $f$, $G_{0}$, $h_{0}$, $H_{0}$, $k_{1}$, $k_{2}$, $\{p_{M,T}\}$ (independent of $g,H,K$). Hence, the limit $(u,P)$ in suitable function spaces of the sequence $\{(u_{m},P_{m})\}$ is defined by \eqref{e2.6}-\eqref{e2.8}, which is a solution of \eqref{e1.1}-\eqref{e1.5} satisfying the a priori estimates \eqref{e3.5}-\eqref{e3.7}. Now, by \eqref{e3.1}, \eqref{e3.2} we can assume that there exists constant $G_{0}>0$ such that the data $(g_{j},H_{j},K_{j})$ satisfy \eqref{e3.4} with $(g,H,K)=(g_{j},H_{j},K_{j})$. Then, by the above remark, we have that the solutions $(u_{j},P_{j})$ of problem \eqref{e1.1}-\eqref{e1.5} corresponding to $(g,H,K)=(g_{j},H_{j},K_{j})$ satisfy \begin{gather} \|u_{j}'(t)\|^{2}+\|u_{j}(t)\|_{V}^{2}\leq C_{T}^{2}\quad \forall t\in [ 0,T],\;\forall T>0, \label{e3.8} \\ \int_{0}^{t}|u_{j}'(0,s)|^{2}ds\leq C_{T}^{2}\quad \forall t\in [ 0,T],\;\forall T>0, \label{e3.9} \\ \int_{0}^{t}|P_{j}'(s)|^{2}ds\leq C_{T}^{2}\quad \forall t\in [ 0,T],\quad \forall T>0, \label{e3.10} \end{gather}% Put %\label{e3.11} $\widetilde{g}_{j}=g_{j}-g$, $\widetilde{H}_{j}=H_{j}-H$, $\widetilde{K}% _{j}=K_{j}-K$. Then, $v_{j}=u_{j}-u$ and $\ Q_{j}=P_{j}-P$ satisfy the problem \begin{gather*} v_{j}''-v_{jxx}+\chi _{j}=0,\quad 0-1,\quad m_{2}=\max_{|s|\leq M}|H''(s)|. \end{gather*}% Then, we can prove the following inequality in a similar manner \begin{equation} \begin{aligned} &\|v_{j}'(t)\|^2+ \|v_{j}(t)\|_{V}^2+m_1v_{j}^2(0,t)\\ &\leq \int_0^t \|B_{2}(|u'(s)|)\| S_{j}(s)ds+ m_{2} \int_0^t ( |u'(0,s)|+|u_{j}'(0,s)|)S_{j}(s)ds \\ &\quad +2\varepsilon S_{j}(t)+\varepsilon \int_0^t S_{j}(s)ds+\frac{1}{\varepsilon }( \widehat{g}_{j}^2(t) +\int_0^t |\widehat{g}_{j}'(s)|^2ds) \\ &\quad +( \frac{1}{\varepsilon }\|p_{M,T}\|_{L^2(0,T)}^2 +2\sqrt{T}\|p_{M,T}\|_{L^2(0,T)}) \int_0^t S_{j}(s)ds\\ &=2\varepsilon S_{j}(t)+\frac{1}{\varepsilon }( \widehat{g}_{j}^2(t)+ \int_0^t |\widehat{g}_{j}'(s)|^2ds) \\ &\quad+ \int_0^t [ \|B_{2}(|u'(s)|)\|+ m_{2}( |u'(0,s)|+|u_{j}'(0,s)|) ] S_{j}(s)ds \\ &\quad +( \varepsilon +\frac{1}{\varepsilon }\|p_{M,T}\|_{L^2(0,T)}^2 +2\sqrt{T}\|p_{M,T}\|_{L^2(0,T)}) \int_0^t S_{j}(s)ds\equiv y_{j}(t), \end{aligned} \label{e3.14} \end{equation} for all $\varepsilon >0$ and $t\in [ 0,T]$. We remark that $v_{j}^{2}(0,t)\leq \|v_{j}(t)\|_{V}^{2}$, consequently \begin{equation} (1+m_{1})v_{j}^{2}(0,t)\leq \|v_{j}'(t)\|^{2}+\Vert v_{j}(t)\|_{V}^{2}+m_{1}v_{j}^{2}(0,t)\leq y_{j}(t). \label{e3.15} \end{equation} Multiplying the two members of \eqref{e3.15} by a number $\beta _{1}>0$ and adding to \eqref{e3.14}, we have \begin{equation} \begin{aligned} &\|v_{j}'(t)\|^2+ \|v_{j}(t)\|_{V}^2+[(1+m_1)\beta _1+m_1]v_{j}^2(0,t)\\ &\leq (1+\beta _1)y_{j}(t) \\ &\leq (1+\beta _1)[2\varepsilon S_{j}(t) +\frac{1}{ \varepsilon }( \widehat{g}_{j}^2(t)+\int_0^t |\widehat{g}_{j}'(s)|^2ds) ] \\ &\quad + \int_0^t \widetilde{R}_{j}(\varepsilon ,T,s)S_{j}(s)ds, \quad \forall \varepsilon >0,\; \beta _1>0,\, t\in [ 0,T]. \end{aligned} \label{e3.16} \end{equation} where \begin{equation} \begin{aligned} \widetilde{R}_{j}(\varepsilon ,T,s) &=(1+\beta _1)\Big[ \varepsilon +\frac{1 }{\varepsilon }\|p_{M,T}\|_{L^2(0,T)}^2+2\sqrt{T} \|p_{M,T}\|_{L^2(0,T)}\\ &\quad +\|B_{2}(|u'(s)|)\|+ m_{2}( |u'(0,s)|+|u_{j}'(0,s)|) \Big] . \end{aligned} \label{e3.17} \end{equation} Choose $\beta _{1}>0$ and $\varepsilon >0$ such that $(1+m_{1})\beta _{1}+m_{1}\geq 1$, $2\varepsilon (1+\beta _{1})\leq 1/2$. From $H^{1}(0,T)\hookrightarrow C^{0}([0,T])$, and \eqref{e3.16} we have \begin{equation} S_{j}(t)\leq 2(1+\beta _{1})\frac{1}{\varepsilon }C_{T}^{(9)} \|\widehat{g}_{j}\|_{H^{1}(0,T)}^{2}+2\int_{0}^{t}\widetilde{R}_{j} (\varepsilon,T,s)S_{j}(s)ds, \label{e3.18} \end{equation} where $C_{T}^{(9)}$ is a constant depending only on $T$. By Gronwall's lemma, we obtain from \eqref{e3.18} that \begin{equation} S_{j}(t)\leq 2(1+\beta _{1})\frac{1}{\varepsilon }C_{T}^{(9)}\|\widehat{g}_{j} \|_{H^{1}(0,T)}^{2}\exp \big(2\int_{0}^{T}\widetilde{R}_{j} (\varepsilon ,T,s)S_{j}(s)ds\big), \label{e3.19} \end{equation} for all $t\in [ 0,T]$. On the other hand, we from \eqref{e3.5}, \eqref{e3.12}, \eqref{e3.13}, \eqref{e3.17}, and \eqref{e3.19} obtain \begin{gather} S_{j}(t)\leq C_{T}^{(10)}\|\widehat{g}_{j}\|_{H^{1}(0,T)}^{2}\quad \forall t\in [ 0,T], \label{e3.20} \\ |Q_{j}(t)|\leq |\widehat{g}_{j}(t)|+\max_{|s|\leq M}|H'(s)|\sqrt{% S_{j}(t)}+\|p_{M,T}\|_{L^{2}(0,T)}\Big(\int_{0}^{t}S_{j}(s)ds\Big)% ^{1/2}. \label{e3.21} \end{gather} We again use the embedding $H^{1}(0,T)\hookrightarrow C^{0}([0,T])$. Then, it follows from \eqref{e3.20} and \eqref{e3.21} that \begin{equation*} \|Q_{j}\|_{C^{0}([0,T])}\leq C_{T}^{(11)}\|\widehat{g}_{j}\Vert _{H^{1}(0,T)}^{2}. \end{equation*} As a final step, we prove \begin{equation*} \lim_{j\rightarrow +\infty }\|\widehat{g}_{j}\|_{H^{1}(0,T)}^{2}=0. \end{equation*} Indeed, from \eqref{e3.13} combined with \eqref{e3.9}, we deduce the following inequality \begin{align*} \|\widehat{g}_{j}\|_{H^{1}(0,T)}& \leq \|\widetilde{g}_{j}\Vert _{H^{1}(0,T)}+\sqrt{T+M^{2}}\|\widetilde{H}_{j}\|_{C^{1}([-M,M])} \\ & \quad +\sqrt{2T(1+T^{2})}(\|\widetilde{K}_{j}\|_{C^{0}([0,T]\times [ -M,M])}+\|\partial \widetilde{K}_{j}/\partial t\Vert _{C^{0}([0,T]\times [ -M,M])}). \end{align*} Then the proof is complete. \subsection*{Acknowledgment} The authors thank Professor Dung L. and the referees for their valuable suggestions and help. \end{proof} \begin{thebibliography}{99} \bibitem{a1} 1. An N. T., Trieu N. D., \textit{Shock between absolutely solid body and elastic bar with the elastic viscous frictional resistance at the side}, J. Mech. NCSR. Vietnam, \textbf{XIII} (2) (1991), 1-7. \bibitem{a2} 2. Ang D. D., Dinh A. P. N., \textit{Mixed problem for some semilinear wave equation with a nonhomogeneous condition}, Nonlinear Anal. \textbf{12} (1988), 581-592. \bibitem{a3} 3. Adams R. A., \textit{Sobolev Spaces}, Academic Press, NewYork, 1975. \bibitem{b1} 4. Bergounioux M., Long N. T., Dinh A. P. N., \textit{Mathematical model for a shock problem involving a linear viscoelastic bar}, Nonlinear Anal. \textbf{43} (2001), 547-561. \bibitem{d1} 5. Dinh A. P. N., \textit{Sur un probl\`{e}me hyperbolique faiblement nonlin\'{e}aire en dimension} 1, Demonstratio Math. \textbf{16} (1983), 269-289. \bibitem{d2} 6. Dinh A. P. N., Long N. T., \textit{Linear approximation and asymptotic expansion associated to the nonlinear wave equation in one dimension}, Demonstratio Math. \textbf{19} (1986), 45-63. \bibitem{d3} 7. Dinh A. P. N., Long N. T., \textit{The semilinear wave equation associated with a nonlinear boundary}, Demonstratio Math. \textbf{30} (1997), 557-572. \bibitem{l1} 8. Lions J. L., \textit{Quelques m\'{e}thodes de r\'{e}solution des probl\`{e} mes aux limites non-lin\'{e}aires}, Dunod- Gauthier- Villars, Paris, 1969. \bibitem{l2} 9. Long N. T., Dinh A. P. N., \textit{On the quasilinear wave equation} $u_{tt}-\Delta u+f(u,u_{t})=0$ \textit{associated with a mixed nonhomogeneous condition}, Nonlinear Anal.\textbf{\ 19} (1992), 613-623. \bibitem{l3} 10. Long N. T., Dinh A. P. N., \textit{A semilinear wave equation associated with a linear differential equation with Cauchy data}, Nonlinear Anal.\textbf{\ 24} (1995), 1261-1279. \bibitem{l4} 11. Long N. T., Diem T. N., \textit{On the nonlinear wave equation } $u_{tt}-u_{xx}=f(x,t,u,u_{x},u_{t})$ \textit{associated with the mixed homogeneous conditions}, Nonlinear Anal. \textbf{29} (1997), 1217-1230. \bibitem{l5} 12. Long N. T., Thuyet T. M., \textit{A semilinear wave equation associated with a nonlinear integral equation}, Demonstratio Math. \textbf{36} (2003), No.4, 915-938. \bibitem{o1} 13. Ortiz E. L., Dinh A. P. N., \textit{Linear recursive schemes associated with some nonlinear partial differential equations in one dimension and the Tau method}, SIAM J. Math. Anal. \textbf{18} (1987), 452-464. \end{thebibliography} \end{document}