\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 107, pp. 1--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/107\hfil Attractors of asymptotically periodic systems] {Attractors of asymptotically periodic multivalued dynamical systems governed by time-dependent subdifferentials} \author[N. Yamazaki\hfil EJDE-2004/107\hfilneg] {Noriaki Yamazaki} \address{Noriaki Yamazaki \hfill\break Department of Mathematical Science\\ Common Subject Division\\ Muroran Institute of Technology\\ 27-1 Mizumoto-cho, Muroran, 050-8585, Japan } \email{noriaki@mmm.muroran-it.ac.jp} \date{} \thanks{Submitted April 17, 2004. Published September 10, 2004.} \thanks{Partially supported by the Ministry of Education, Science, Sports and Culture, \hfill\break\indent Grant-in-Aid for Young Scientists (B), No. 14740109.} \subjclass[2000]{35B35, 35B40, 35B41, 35K55, 35K90} \keywords{Subdifferentials; multivalued dynamical systems; attractors; stability} \begin{abstract} We study a nonlinear evolution equation associated with time-dependent subdifferential in a separable Hilbert space. In particular, we consider an asymptotically periodic system, which means that time-dependent terms converge to time-periodic terms as time approaches infinity. Then we consider the large-time behavior of solutions without uniqueness. In such a situation the corresponding dynamical systems are multivalued. In fact, we discuss the stability of multivalued semiflows from the view-point of attractors. Namely, the main object of this paper is to construct a global attractor for asymptotically periodic multivalued dynamical systems, and to discuss the relationship to one for the limiting periodic systems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \section{Introduction} We consider non-autonomous systems, in a real separable Hilbert space $H$, of the form \begin{equation} v'(t)+ \partial \varphi^t (v(t)) + G(t, v(t)) \ni f(t) \quad \mbox{ in } H, \quad t > s \; ( \geq 0), \label{e1.1} \end{equation} where $v'= \frac{dv}{dt}$, $ \partial \varphi^t $ is a subdifferential of time-dependent proper lower semicontinuous (l.s.c.) convex function $\varphi^t $ on $ H $, $G (t , \cdot )$ is a multivalued perturbation small relative to $\varphi ^t $, and $f$ is a forcing term. In the case when $ G(t , \cdot ) \equiv 0 $, many mathematicians studied the existence-uniqueness and the asymptotic behavior of solutions, the time periodic problem and the almost periodic case for \eqref{e1.1} (cf. \cite{D}, \cite{FMK}, \cite{K}, \cite{KO}, \cite{KO2}, \cite{KO3}, \cite{Ku}, \cite{O3}, \cite{O4}). For the multivalued nonmonotone perturbation $ G(t , \cdot ) $, \^Otani has already shown the existence of solution for \eqref{e1.1} in \cite{O}. The large-time behavior of solutions for \eqref{e1.1} was discussed in \cite{Y} from the view-point of attractors. For the time periodic case, assuming the periodicity conditions with same period $ T_0 $, $ 0 < T_0 < + \infty $, i.e. $$ \varphi^t = \varphi^{ t+T_0} , \quad G ( t , \cdot ) = G ( t + T_0 , \cdot ) , \quad f ( t ) = f ( t + T_0 ) ,\quad \quad \forall t \in R_+ := [ 0 , \infty ) , $$ the existence of periodic solution for \eqref{e1.1} was proved in \cite{O2}. Moreover, the periodic stability was discussed in \cite{Yp}. In fact, the author showed the existence and characterization of time-periodic global attractors for \eqref{e1.1} in \cite{Yp}. In this paper, for a given positive number $ T_0 >0 $, we treat the case when $ \varphi^t $, $ G (t, \cdot )$ and $ f (t)$ are asymptotically $ T_0 $-periodic in time. Namely we assume that \begin{equation} \varphi^t - \varphi _p ^t \to 0 , \quad G(t, \cdot ) - G_p (t , \cdot ) \to 0, \quad f(t) - f_p (t) \to 0 \label{e1.2} \end{equation} in appropriate senses as $ t \to +\infty $, where $ \varphi^t _p= \varphi^{ t+T_0} _p $, $ G_p ( t , \cdot ) = G_p ( t + T_0 , \cdot ) $ and $ f_p ( t ) = f_p ( t + T_0 ) $ for any $ t \in R_+ $. By the asymptotically $ T_0 $-periodic condition \eqref{e1.2}, we have the limiting $ T_0 $-periodic system for \eqref{e1.1} of the form: \begin{equation} u'(t)+ \partial \varphi^t _p (u(t))+ G_p (t,u(t)) \ni f_p (t) \quad \mbox{in }H, \quad t > s \quad ( \geq 0) . \label{e1.3} \end{equation} In the case when $ G ( t , \cdot ) $ and $ G_p ( t , \cdot ) $ are single-valued, the asymptotically $ T_0 $-periodic problem has already been discussed in \cite{IKYp}. To guarantee the uniqueness of solutions for the Cauchy problem of \eqref{e1.1} and \eqref{e1.3}, they assumed some conditions on $ \varphi^t $, $\varphi^t_p $, $ G(t , \cdot ) $ and $ G_p ( t , \cdot ) $. Then, they discussed the asymptotically $ T_0 $-periodic stability for \eqref{e1.1} from the view-point of attractors (cf. \cite{IKYp}). The main object of this paper is to develop the result obtained in \cite{IKYp} in order to consider the large-time behavior of solution for \eqref{e1.1} without uniqueness. Namely, we would like to construct the attractor for the asymptotically $ T_0 $-periodic multivalued flows associated with \eqref{e1.1}. Moreover we shall discuss the relationship to the $ T_0 $-periodic attractor for \eqref{e1.3} obtained in \cite{Yp}. In the next Section 2, we recall the known results for the Cauchy problem of \eqref{e1.1}. In Section 3 we consider the limiting $ T_0 $-periodic problem \eqref{e1.3} and recall the abstract results obtained in \cite{Yp}. In Section 4, we introduce the notion of a metric topology on the family $\{ \varphi ^t ; t \ge 0\}$ which was constructed in \cite{KO3}. And we present and prove the main results in this paper. In proving main results, we generalize the results obtained in \cite{IKYp} and \cite{Y3}. In the final section we apply our abstract results to the parabolic variational inequality with asymptotically $ T_0 $-periodic double obstacles. Then we can discuss the asymptotic stability for the asymptotically $ T_0 $-periodic double obstacle problem without uniqueness of solutions. \noindent{\bf Notation.} Throughout this paper, let $ H $ be a (real) separable Hilbert space with norm $ | \cdot |_H $ and inner product $ ( \cdot , \cdot )_H $. For a proper l.s.c. convex function $ \varphi $ on $ H $ we use the notation $ D( \varphi ) $, $ \partial \varphi$ and $ D( \partial \varphi )$ to indicate the effective domain, subdifferential and its domain of $ \varphi $, respectively; for their precise definitions and basic properties see \cite{Bre}. For two non-empty sets $ A $ and $ B $ in $H$, we define the so-called Hausdorff semi-distance $$ \mathop{\rm dist}{}_H ( A , B ):= \sup_{ x\in A} \inf_{y \in B} | x-y|_H . $$ \section{Preliminaries} In this section, we recall the known results for a nonlinear evolution equation in $ H $ of the form: \begin{equation} u' (t) + \partial \varphi^t ( u(t)) + G (t, u (t)) \ni f(t) \quad \mbox{ in } H , \quad t \in J , \label{e2.1} \end{equation} where $ J $ is an interval in $ R_+ $, $ \partial \varphi^t $ is the subdifferential of a time-dependent proper l.s.c. and convex function $ \varphi ^t $ on $ H $, $ G( t, \cdot ) $ is a multivalued operator from a subset $ D( G ( t , \cdot )) \subset H $ into $ H $ for each $ t \in R_+ $ and $ f $ is a given function in $ L^2_{\rm loc} ( J ; H)$. We begin by defining a solution for \eqref{e2.1}. \begin{definition} \label{def2.1}\rm (i) For a compact interval $J := [ t_0 , t_1 ] \subset R_+ $ and $ f \in L^2 (J;H)$, a function $u: J \to H$ is called a solution of \eqref{e2.1} on $J$, if $ u \in C(J;H) \cap W^{1,2}_{\rm loc}(( t_0, t_1 ];H)$, $ \varphi^{( \cdot )}(u( \cdot )) \in L^1(J)$, $u(t) \in D( \partial \varphi^t )$ for a.e. $ t \in J$, and if there exists a function $ g \in L^2_{\rm loc}(J;H) $ such that $ g( t) \in G( t, u(t)) $ for a.e. $ t \in J $ and $$ f(t)-g(t)-u'(t) \in \partial \varphi^t ( u(t)), \quad \mbox{a.e. } t \in J. $$ (ii) For any interval $J$ in $ R_+ $ and $ f \in L^2_{\rm loc}(J;H)$, a function $ u: J \to H$ is called a solution of \eqref{e2.1} on $J$, if it is a solution of \eqref{e2.1} on every compact subinterval of $J$ in the sense of (i). \noindent (iii) Let $ J $ be any interval in $ R_+ $ with initial time $ s \in R_+$. For $ f \in L^2_{\rm loc}(J;H)$, a function $ u : J \to H $ is called a solution of the Cauchy problem for \eqref{e2.1} on $J$ with given initial value $ u_0 \in H $, if it is a solution of \eqref{e2.1} on $ J $ satisfying $ u( s ) = u_0 $. \end{definition} For the rest of this paper, let $\{a_r \}:= \{ a_r ; r \geq 0 \}$ and $\{ b_r \}:= \{b_r ; r \geq 0 \}$ be families of real functions in $ W^{1,2}_{\rm loc} ( R_+ )$ and $ W^{1,1}_{\rm loc} ( R_+ )$, respectively, such that $$ \sup_{ t \in R_+ } | a' _r |_{ L^2 ( t, t+1 )} + \sup_{ t \in R_+ } | b' _r |_{ L^1 ( t, t+1 )} < + \infty \quad \mbox{ for each } r \geq 0. $$ Now we define the class $ \Phi (\{ a_r \}, \{ b_r \})$ of time-dependent convex function $ \varphi^t $. \begin{definition} \label{def2.2}\rm A function $ \{ \varphi^t \}$ belongs to $\Phi (\{ a_r \}, \{ b_r \})$ if $ \varphi^t $ is a proper l.s.c. convex function on $H$ and satisfies the following three properties: \begin{itemize} \item[($ \Phi $1)] For each $r > 0$, $s, t \in R_+ $ and $z \in D( \varphi^s)$ with $ |z|_H \le r$, there exists $ \tilde{z} \in D( \varphi^t)$ such that \begin{gather*} | \tilde{z}-z |_H \le | a_r (t)- a_r (s)|(1+| \varphi^s (z)|^{ \frac12 }),\\ \varphi^t( \tilde{z} )- \varphi^s (z) \le | b_r (t)- b_r (s)|(1+| \varphi^s(z)|) . \end{gather*} \item[($ \Phi $2)] There exists a positive constant $ C_1$ such that $$ \varphi^t (z) \geq C_1 | z | ^2 _H , \quad \forall t \in R_+, \ \forall z \in D ( \varphi^t ) .$$ \item[($ \Phi $3)] For each $ k > 0 $ and $ t \in R_+ $, the level set $ \left \{ z \in H ; \varphi^t (z) \leq k \right \}$ is compact in $H$. \end{itemize} \end{definition} Next, we introduce the class $ \mathcal{G} ( \{ \varphi^t \}) $ of time-dependent multivalued perturbation $ G(t, \cdot )$ associated with $ \{ \varphi^t \} \in \Phi ( \{ a_r \} , \{ b_r \} )$. \begin{definition} \label{def2.3}\rm An operator $ \{ G(t, \cdot )\}$ belongs to $\mathcal{G} ( \{ \varphi^t \}) $ if $ G (t, \cdot )$ is a multivalued operator from $ D(G(t, \cdot )) \subset H$ into $H$ which fulfills the following five conditions: \begin{itemize} \item[(G1)] $D( \varphi^t ) \subset D( G(t, \cdot )) \subset H $ for any $ t \in R_+ $. And for any interval $ J \subset R_+ $ and $ v \in L^2_{\rm loc} (J;H )$ with $ v(t) \in D ( \varphi^t )$ for a.e. $ t \in J $, there exists a strongly measurable function $ g( \cdot ) $ on $ J $ such that $g( t) \in G( t, v(t))$ for a.e. $t \in J $. \item[(G2)] $ G(t , z) $ is a convex subset of $ H $ for any $ z \in D( \varphi^t ) $ and $ t \in R_+ $. \item[(G3)] There are positive constants $ C_2 $, $ C_3 $ such that $$ |g |_H^2 \leq C_2 \varphi^t (z) + C_3 , \quad \forall t \in R_+ ,\ \forall z \in D( \varphi^t ), \forall g \in G( t, z ). $$ \item[(G4)](demi-closedness) If $ z_n \in D( \varphi^{ t_n }) $, $ g_n \in G ( t_n , z_n ) $, $ \{ t_n \} \subset R_+ $, $ \{ \varphi^{ t_n }( z_n ) \} $ is bounded, $ z_n \to z $ in $ H $, $ t_n \to t$ and $ g_n \to g $ weakly in $ H $ as $ n \to +\infty $, then $ g \in G(t , z)$. \item[(G5)] For each bounded subset $ B $ of $ H $, there exist positive constants $ C_4 (B) $ and $ C_5 (B)$ such that $$ \varphi^t (z) + (g,z-b)_H \geq C_4 (B) |z|_H^2 - C_5 (B), $$ for all $t \in R_+$, all $g \in G(t,z)$, all $z \in D( \varphi^t )$, and all $b \in B$. \end{itemize} \end{definition} For a given $ \{ \varphi^t \}$ in $\Phi ( \{ a_r \}, \{ b_r \} )$, $\{ G(t, \cdot ) \}$ in $\mathcal{G} ( \{ \varphi^t \})$ and a forcing term $f$ in $L^2_{\rm loc} ( R_+ ; H)$, we consider the evolution equation \begin{equation} u'(t)+ \partial \varphi^t(u(t))+G(t,u(t)) \ni f(t) \quad \mbox{in }H, \quad t>s \label{Es} \end{equation} for each $ s \in R_+ $. Now we recall the known results on the existence and global estimates of solutions for the Cauchy problem of \eqref{Es}: \begin{itemize} \item[(A)] [Existence of solution for \eqref{Es}] (cf. \cite[Theorem II, III]{O}) The Cauchy problem for \eqref{Es} has at least one solution $ u $ on $ J= [s, +\infty) $ such that $( \cdot -s)^{ \frac12} u' \in L^2_{\rm loc}(J;H)$, $( \cdot -s) \varphi^{( \cdot )}( u( \cdot )) \in L^\infty_{\rm loc}(J)$ and $ \varphi^{( \cdot )}(u( \cdot ))$ is absolutely continuous on any compact subinterval of $( s, +\infty )$, provided that given initial value $ u_0 \in \overline{ D( \varphi^s)}$. In particular, if $ u_0 \in D( \varphi^s)$, then the solution $ u $ satisfies that $ u' \in L^2_{\rm loc}(J;H)$ and $ \varphi^{( \cdot )}(u( \cdot ))$ is absolutely continuous on any compact interval in $J$. \item[(B)] [Global boundedness of solutions for \eqref{Es}] (cf. \cite[Theorem 2.2]{SIKY}) Suppose that $$ S_f := \sup_{ t \in R_+ } |f|_{ L^2 (t, t+1 ;H)}< +\infty . $$ Then, the solution $ u $ of the Cauchy problem for \eqref{Es} on $ [ s , +\infty )$ satisfies the global estimate $$ \sup_{t \geq s}|u(t)|_H^2 + \sup_{ t \geq s} \int_t^{t+1} \varphi^\tau (u( \tau )) d \tau \leq N_1 (1+ S_f^2 + | u_0 |_H^2 ), $$ where $ N_1 $ is a positive constant independent of $ f $, $ s \in R_+ $ and a given initial value $ u_0 \in \overline{ D( \varphi^s )}$. Moreover, for each $ \delta >0 $ and each bounded subset $ B $ of $ H $, there is a constant $ N_2 ( \delta , B )>0 $, depending only on $ \delta >0$ and $ B $, such that $$ \sup_{ t \geq s + \delta }| u' |^2_{ L^2 (t,t+1;H)} + \sup_{ t \geq s + \delta } \varphi^t (u(t)) \leq N_2 ( \delta , B ) $$ for the solution $ u $ of the Cauchy problem for \eqref{Es} on $ [ s , +\infty )$ with $ s \in R_+ $ and $ u_0 \in \overline{D( \varphi^s )} \cap B$. \end{itemize} Next, we remember a notion of convergence for convex functions. \begin{definition}[cf. \cite{M}] \label{def2.4} \rm Let $ \psi $, $ \psi_n $ ($ n \in N $) be proper l.s.c. and convex functions on $ H $. Then we say that $ \psi_n $ converges to $ \psi $ on $ H $ as $ n \to +\infty $ in the sense of Mosco \cite{M}, if the following two conditions are satisfied: \begin{itemize} \item[(i)] For any subsequence $ \{ \psi_{ n_k } \} \subset \{ \psi_n \} $, if $ z_k \to z $ weakly in $ H $ as $ k \to +\infty $, then $$ \liminf_{ k \to +\infty } \psi_{ n_k } ( z_k ) \geq \psi (z). $$ \item[(ii)] For any $ z \in D( \psi ) $, there is a sequence $ \{ z_n \} $ in $ H $ such that $$ z_n \to z \ {\rm in} \ H \ {\rm as} \ n \to +\infty , \quad \lim_{ n \to +\infty } \psi_n ( z_n ) = \psi (z). $$ \end{itemize} \end{definition} Now, we recall a convergence result (cf. \cite[Lemma 4.1]{SIKY}) as follows. \begin{itemize} \item[(C)] Let $\{ \varphi^t_n \} \in \Phi( \{a_r \}, \{ b_r \})$, $\{ G_n ( t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t _n \} )$ with common positive constants $ C_1 , C_2 , C_3 , C_4 (B),C_5 (B)$, $\{ f_n \} \subset L^2 (J;H)$, $J=[ s , t_1 ] \subset R_+ $, and $ u_{0,n} \in \overline{D( \varphi^{ s } _n )} $ for $n = 1, 2 , \dots $. Assume that \begin{itemize} \item[(i)] $ \varphi^t _n $ converges to $ \varphi^t $ on $H$ in the sense of Mosco \cite{M} for each $t \in J $ (as $ n \to +\infty $) and $ \bigcup_{ n =1 }^ { +\infty } \{ z \in H ; \varphi^t _n (z) \le k \} $ is relatively compact in $H$ for every real $k > 0 $ and $ t \in J$, where $\{ \varphi^t \} \in \Phi( \{a_r \}, \{ b_r \}) $ and $ \varphi^t _n = \varphi^t $ if $ n = + \infty $. \item[(ii)] If $ z_n \in D( \varphi^{ t_n } _n ) $, $ g_n \in G_n ( t_n , z_n ) $, $ \{ t_n \} \subset R_+ $, $ \{ \varphi^{ t_n } _n ( z_n ) \} $ is bounded, $ z_n \to z $ in $ H $, $ t_n \to t$ and $ g_n \to g $ weakly in $ H $ as $ n \to +\infty $, then $ g \in G(t , z)$, where $ \{ G ( t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t \} )$. \item[(iii)] $ f_n \to f$ weakly in $ L^2 (J;H) $ for some $ f \in L^2 (J;H) $ and $ u_{0,n} \to u_0$ in $H$ for some $ u_0 \in \overline{ D( \varphi ^{ s } )} $. \end{itemize} Denote by $u$ the solution of the Cauchy problem for \eqref{Es} on $J$ with $u(s)= u_0 $ and by $ u_n $ the solution of the Cauchy problem for \eqref{Es} with $ \varphi^t , G , f $ replaced by $ \varphi^t_n , G_n , f_n $, and with $ u_n (s) = u_{ 0, n } $. Then $ u_n $ converges to $u$ on $J$ in the sense that \begin{gather*} u_n \to u \mbox{ in } C(J;H),\quad (\cdot -s)^{\frac12} u' _n \to ( \cdot -s)^{ \frac12 } u' \mbox{ weakly in } L^2(J;H), \\ \int_{J} \varphi^t_n ( u_n (t))dt \to \int_{J} \varphi^t (u(t))dt \quad \mbox{ as } n \to +\infty . \end{gather*} \end{itemize} \section{Attractor for periodic multivalued dynamical system } In this section we recall the known results obtained in \cite{Yp} for a $ T_0 $-periodic system in $ H $, of the form: \begin{equation} u'(t)+ \partial \varphi^t_p (u(t))+ G_p (t,u(t)) \ni f_p (t) \quad \mbox{in }H, \quad t>s \label{Ps} \end{equation} for each $s \in R_+ $, where $ \varphi^t_p $, $ G_p (t, \cdot ) $ and $ f_p (t) $ are $ T_0 $-periodic, namely periodic in time with the same period $ T_0 $, $ 0 < T_0 < + \infty $. \begin{definition} \label{def3.1}\rm Let $ T_0 $ be a positive number. Then\\ (i) $ \Phi _p ( \{ a_r \}, \{ b_r \} ; T_0 )$ is the set of all $ \{ \varphi ^t _p \} \in \Phi ( \{ a_r \}, \{ b_r \} )$ satisfying the $ T_0 $-periodicity condition \[ \varphi^{t+ T_0 } _p ( \cdot )= \varphi^t _p ( \cdot ) \quad \mbox{ on }H, \quad \forall t \in R_+ . %\label{e3.1} \] (ii) $ \mathcal{G} _p ( \{ \varphi^t_p \} ; T_0 )$ is the set of all $ \{ G_p ( t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t _p \} )$ satisfying the $ T_0 $-periodicity condition \[ G_p ( t+ T_0 , \cdot )= G_p ( t, \cdot ) \quad \mbox{ in }H, \quad \forall t \in R_+ . %\label{e3.2} \] \end{definition} For the rest of this section we assume that $ \{ \varphi^t_p \} \in \Phi_p ( \{ a_r \}, \{ b_r \} ; T_0 )$, $ \{ G_p (t, \cdot ) \} \in \mathcal{G}_p( \{ \varphi^t_p \} ; T_0 )$ and $ f_p \in L^2 _{\rm loc} ( R_+ ; H) $ is $ T_0 $-periodic in time, namely \begin{equation} f_p ( t + T_0 ) = f_p (t) \quad \mbox{ in }H, \quad \forall t \in R_+ . \label{e3.3} \end{equation} Here we note that \eqref{Ps} can be considered as \eqref{Es} in Section 2. So, by the result (A) in Section 2, the Cauchy problem for \eqref{Ps} has at least one solution $u$ on $ [ s , + \infty ) $. Hence we can define the multivalued dynamical process associated with \eqref{Ps} as follows: \begin{definition} \label{def3.2}\rm For every $ 0 \le s \le t< +\infty$ we denote by $U(t,s)$ the mapping from $ \overline{D( \varphi^s _p )}$ into $ \overline{D( \varphi^t _p )}$ which assigns to each $u_0 \in \overline{D( \varphi^s _p )}$ the set \begin{equation} \label{e3.4} \begin{aligned} U(t,s) u_0 := \big\{& z \in H ; \mbox{There is a solution $u$ of \eqref{Ps} on } [s, + \infty ) \\ & \mbox{such that $u(s)= u_0$ and $u(t)=z$}. \big\} \end{aligned} \end{equation} \end{definition} Then we deduce easily the following properties of $ \{ U(t,s) \} := \{ U(t,s) ; 0 \le s \le t< +\infty \}$: \begin{itemize} \item[(U1)] $U(s,s)=I $ on $ \overline{D( \varphi^s _p )} \quad $ for any $s \in R_+ $. \item[(U2)] $U(t_2,s)z=U(t_2,t_1) U(t_1,s) z $ for any $ 0 \le s \le t_1 \le t_2 < +\infty$ and $ z \in \overline{D( \varphi^s _p )}$. \item[(U3)] $U(t+T_0, s+ T_0 ) z =U(t,s)z $ for any $ 0 \le s \le t< +\infty $ and $ z \in \overline{D( \varphi^s _p )}$, that is, $U$ is $T_0$-periodic. \item[(U4)] $ \{ U(t,s)\} $ has the following demi-closedness:\\ If $ 0 \le s_n \le t_n < + \infty $, $ s_n \to s $, $ t_n \to t$, $ z_n \in \overline{D(\varphi _p ^{s_n} )}$, $ z \in \overline{D(\varphi _p ^{s } )}$, $ z_n \to z $ in $H$ and an element $ w_n \in U(t_n , s_n ) z_n $ converges to some element $ w \in H $ as $n \to + \infty $, then $ w \in U(t,s) z $. \end{itemize} Next we define the discrete dynamical system in order to construct a global attractor for \eqref{Ps}. \begin{definition} \label{def3.3} \rm Let $ U ( \cdot , \cdot ) $ be the solution operator for \eqref{Ps} defined in Definition \ref{def3.2}. Then \\ (i) For each $ \tau \in R_+ $, we denote by $ U_\tau $ the $T_0$-step mapping from $ \overline{ D( \varphi^\tau _p )}$ into $ \overline{ D( \varphi ^{ \tau +T_0} _p )} = \overline{ D( \varphi^\tau _p )}$, namely, $U_\tau := U( \tau +T_0 ,\tau )$.\\ (ii) For any $k \in Z_+ := N \cup \{ 0 \} $, we define $$U_\tau^k :=\underbrace{U_\tau \circ U_\tau \circ \dots \circ U_\tau } _{k \mbox{ iterations}}. $$ Clearly we have $ U^k _\tau = U( \tau +kT_0 , \tau ) $ for any $ \tau \in R_+ $ and $ k \in Z_+ $. \end{definition} Now, we recall the known result on the existence of global attractors for discrete multivalued dynamical systems $ U_\tau $ associated with \eqref{Ps}. \begin{theorem}[{\cite[Theorem 3.1]{Yp}}] \label{thm3.1} Assume that $\{ \varphi^t_p \} \in \Phi_p ( \{ a_r \}, \{ b_r \} ; T_0 )$,\break $\{ G_p (t, \cdot ) \} \in \mathcal{G}_p( \{ \varphi^t_p \} ; T_0 )$, and $ f_p \in L^2_{\rm loc}( R_+ ;H)$ satisfies the $ T_0 $-periodicity condition \eqref{e3.3}. Then, for each $ \tau \in R_+ $, there exists a subset $\mathcal{A}_\tau $ of $ D( \varphi^\tau _p )$ such that \begin{itemize} \item[(i)] $\mathcal{A}_\tau $ is non-empty and compact in $H$; \item[(ii)] for each bounded set $B$ in $H$ and each number $ \epsilon >0$ there exists $N_{B, \epsilon } \in N$ such that $$ \mathop{\rm dist}{}_H( U _\tau ^k z, \mathcal{A}_\tau )< \epsilon $$ for all $z \in \overline{D( \varphi^\tau _p )} \cap B$ and all $k \geq N_{B, \epsilon }$; \item[(iii)] $ U_\tau^k\mathcal{A}_\tau =\mathcal{A}_\tau $ for any $k \in N$. \end{itemize} \end{theorem} \begin{remark} \label{rmk3.1} \rm By \cite[Lemma 3.1]{Yp} we can get the compact absorbing set $B_{0, \tau }$ of $ \overline{ D ( \varphi _p ^\tau )} $ for $ U_\tau $ such that for each bounded subset $B$ of $H$ there is a positive integer $ n_B$ (independent of $\tau \in R_+ $) satisfying $$ U^n_\tau \left( \overline{ D(\varphi^\tau _p )} \cap B \right) \subset B_{0, \tau } \quad \mbox{for all }n \geq n_B . $$ Then we observe that the global attractor $\mathcal{A}_\tau $ is given by the $ \omega $-limit set of the absorbing set $ B_{0, \tau }$ for $ U_\tau $, i.e. $$\mathcal{A}_\tau = \bigcap_{n \in Z_+ } \overline{ \bigcup_{ k \geq n} U _\tau ^k B_{0, \tau }}. $$ The next theorem concerns a relationship between global attractors $ \mathcal{A} _s $ and $\mathcal{A}_\tau $. For detail proof, see \cite{Yp}. \end{remark} \begin{theorem}[{\cite[Theorem 3.2]{Yp}}] \label{thm3.2} Suppose the same assumptions are made as in Theorem \ref{thm3.1}. Let $\mathcal{A}_s $ and $\mathcal{A}_\tau $ be global attractors for $ U_s $ and $ U_\tau $, with $ 0 \le s \le \tau \le T_0 $, respectively. Then, we have $$\mathcal{A}_\tau =U(\tau , s)\mathcal{A}_s ,$$ where $U(\tau , s)$ is the $ T_0 $-periodic process given in Definition \ref{def3.2}. \end{theorem} \begin{remark} \label{rmk3.2} \rm By Theorem \ref{thm3.1} (iii) and Theorem \ref{thm3.2}, we see that the global attractor $\mathcal{A}_\tau $ for $ U_\tau $ is $ T_0 $-periodic in $ \tau $. In fact, for each $ \tau \in R_+ $ choose $ m_\tau \in Z_+ $ and $ \sigma_\tau \in [0, T_0 )$ so that $ \tau = \sigma_\tau + m_\tau T_0 $. Then, we have $\mathcal{A}_\tau = \mathcal{A}_{ \sigma_\tau }$. \end{remark} The third known result is the existence of a global attractor for the $ T_0 $-periodic multivalued dynamical system \eqref{Ps}. \begin{theorem}[{cf. \cite[Theorem 3.3]{Yp}}] \label{thm3.3} Under the assumptions of Theorem \ref{thm3.1}, put $$ \mathcal{A}:= \bigcup_{0 \le \tau \le T_0 } \mathcal{A}_\tau , $$ where $\mathcal{A}_\tau $ is as obtained in Theorem \ref{thm3.1}. Then, $\mathcal{A}$ has the following properties: \begin{itemize} \item[(i)] $\mathcal{A} $ is non-empty and compact in $H$; \item[(ii)] for each bounded set $B$ in $H$ and each number $ \epsilon >0$ there exists a finite time $ T_{B, \epsilon } >0 $ such that $$ \mathop{\rm dist}{}_H ( U( t+ \tau , \tau ) z, \mathcal{A} )< \epsilon $$ for all $ \tau \in R_+ $, all $z \in \overline{D( \varphi^{ \tau } _p )} \cap B$ and all $t \geq T_{B, \epsilon }$. \end{itemize} \end{theorem} \begin{remark} \label{rmk3.3} \rm In \cite[Section 4]{Yp} the characterization of the $ T_0 $-periodic global attractor was discussed. The author proved that for each time $ \tau \in R_+ $ the global attractor $ \mathcal{A} _\tau $ for the discrete multivalued dynamical system $ U_\tau $ coincides with the cross-section of the family of all global bounded complete trajectories for the $ T_0 $-periodic system \eqref{Ps}. \end{remark} \section{Attractor for asymptotically periodic multivalued dynamical system} Throughout this section, let $ M >0 $ be a fixed (sufficiently) large positive number. Now we put \begin{align*} \Psi _M := \big\{&\psi ; \psi \mbox{ is proper, l.s.c. and convex on }H, \\ &\exists z \in D( \psi ) \mbox{ s.t. } |z|_H \le M, \; \psi (z) \le M \big\} \end{align*} Then we state the notion of a metric topology on $ \Psi _M $ introduced in \cite{KO3}. Given $ \varphi, \psi \in \Psi _M , $ we define $ \rho ( \varphi, \psi ; \cdot ): D( \varphi) \to R $ by putting $$ \rho ( \varphi, \psi ;z)= \inf\{ \max ( |y-z| _H , \psi (y)- \varphi (z)); y \in D( \psi )\} $$ for each $z \in D( \varphi)$, and for each $ r \geq M $ $$ \rho_r( \varphi, \psi ):= \sup _{ z \in L _ \varphi (r) } \rho ( \varphi, \psi ;z) , $$ where $ L_\varphi (r) := \{ z \in D( \varphi) ; |z|_H \le r, \varphi (z) \le r \}$. Moreover, for each $ r \geq M, $ we define the functional $ \pi_r ( \cdot , \cdot ) $ on $ \Psi _M \times \Psi _M $ by $$ \pi_r ( \varphi , \psi ) := \rho_r ( \varphi , \psi ) + \rho_r ( \psi, \varphi ) \quad \mbox{ for } \varphi , \psi \in \Psi _M . $$ Then, according to \cite[Proposition 3.1]{KO3}, we can define a complete metric topology on $ \Psi _M $ so that the convergence $ \psi _n \to \psi $ in $ \Psi _M $ (as $ n \to +\infty $) if and only if $$ \pi _r ( \psi _n , \psi ) \to 0 \quad \mbox{for every } r \geq M. $$ Now by using the above topology on $ \Psi _M $, we consider an asymptotically $ T_0 $-periodic system as follows. \begin{definition} \label{def4.1} \rm Assume $ \{ \varphi^t \} \in \Phi ( \{ a_r \} , \{ b_r \} ) \cap \Psi _M $, $ \{ G (t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t \} ) $ and $f \in L^2_{\rm loc} (R_+ ; H)$. Then the system \begin{equation} \label{APs} v'(t)+ \partial \varphi^t(v(t))+G(t, v(t)) \ni f(t) \quad \mbox{ in }H, \; t>s \;( \geq 0) \end{equation} is asymptotically $ T_0 $-periodic, if there are $ \{ \varphi^t _p \} \in \Phi _p ( \{ a_r \}$, $\{ b_r \} ; T_0 ) \cap \Psi _M $, \break $ \{ G _p (t, \cdot ) \} \in \mathcal{G} _p ( \{ \varphi^t _p \} ; T_0 ) $ and a $ T_0 $-periodic function $ f_p \in L^2_{\rm loc}( R_+ ; H) $ such that \begin{itemize} \item[(A1)] (Convergence of $ \varphi^t - \varphi^t _p \to 0$ as $t \to +\infty $) For each $ r \geq M$, $$ J_m^{(r)} := \sup_{ \sigma \in [0, T_0 ] } \pi_r( \varphi^{mT_0+ \sigma }, \varphi^{ \sigma } _p ) \to 0 \quad \mbox{ as }m \to +\infty .$$ \item[(A2)] (Convergence of $ G(t, \cdot )- G_p (t, \cdot ) \to 0$ as $t \to +\infty $) If $\{ \tau _n \} \subset [0, T_0 ]$, $ \{ m_n \} \subset Z_+$, $ m_n \to +\infty$, $ z_n \in D( \varphi^{ m_n T_0 + \tau _n } ) $, $ g_n \in G ( m_n T_0 + \tau _n , z_n ) $, $ \{ \varphi^{ m_n T_0 + \tau _n } (z_n) \}$ is bounded, $ z_n \to z $ in $H$, $ \tau _n \to \tau $ and $ g_n \to g $ weakly in $ H $ (as $n \to +\infty $), then $g \in G_p ( \tau ,z)$. \item[(A3)] (Convergence of $ f(t)- f_p (t) \to 0 \mbox{ as }t \to +\infty$) $$| f( mT_0 + \cdot )- f_p |_{L^2(0, T_0 ;H)} \to 0 \quad \mbox{as }m \to +\infty . $$ \end{itemize} \end{definition} By Definition \ref{def4.1} we easily see that a limiting system for \eqref{APs} is a $ T_0 $-periodic one \eqref{Ps} of the form: $$ %( \mbox{P} )_s u'(t)+ \partial \varphi^t _p (u(t))+ G_p (t, u(t)) \ni f_p (t) \quad \mbox{ in }H, \; t>s \;( \geq 0) . $$ Here we note that \eqref{APs} is also considered as \eqref{Es}. So, by the result (A) in Section 2, the Cauchy problem for \eqref{APs} has at least one solution $v$ on $ [ s , + \infty ) $. Hence we can define the multivalued dynamical system associated with \eqref{APs} as follows: \begin{definition} \label{def4.2} \rm For every $ 0 \le s \le t< +\infty$ we denote by $E(t,s)$ the mapping from $ \overline{D( \varphi^s )}$ into $ \overline{D( \varphi^t )}$ which assigns to each $v_0 \in \overline{D( \varphi^s )}$ the set \begin{align*} E(t,s) v_0 := \big\{&z \in H ; \mbox{ There is a solution $v$ of \eqref{APs} on $[s, + \infty )$} \\ & \mbox{such that } v(s)= v_0 \mbox{ and } v(t)=z.\big\} \end{align*} \end{definition} Then we easily see that $ \{ E(t,s) \} := \{ E(t,s) ; 0 \le s \le t< +\infty \}$ has the following evolution properties: \begin{itemize} \item[(E1)] $E(s,s)=I$ on $ \overline{D( \varphi^s )}$ for any $s \in R_+ $. \item[(E2)] $E(t_2,s)z=E(t_2,t_1) E(t_1,s) z $ for any $ 0 \le s \le t_1 \le t_2 < +\infty$ and $ z \in \overline{D( \varphi^s )}$. \item[(E3)] $ \{ E(t,s)\} $ has the following demi-closedness:\\ If $ 0 \le s_n \le t_n < + \infty $, $ s_n \to s $, $ t_n \to t$, $ z_n \in \overline{D(\varphi ^{s_n} )}$, $ z \in \overline{D(\varphi ^{s } )}$, $ z_n \to z $ in $H$ and an element $ w_n \in E(t_n , s_n ) z_n $ converges to some element $ w \in H $ as $n \to + \infty $, then $ w \in E(t,s) z $. \end{itemize} Now we give the definition of a discrete $ \omega $-limit set for $ E ( \cdot , \cdot)$. \begin{definition}[Discrete $ \omega $-limit set for $ E ( \cdot , \cdot)$] \label{def4.3.}\rm Let $ \tau \in R_+ $ be fixed. Let $\mathcal{B} ( H ) $ be a family of bounded subsets of $ H $. Then for each $ B \in \mathcal{B} (H) $, the set $$ \omega _\tau (B) := \bigcap_{n \in Z_+ } \overline{ \bigcup_{k \geq n, m \in Z_+ } E(kT_0+mT_0+ \tau , mT_0+ \tau )( \overline{D( \varphi^{mT_0+ \tau })} \cap B)} $$ is called the discrete $ \omega $-limit set of $ B $ under $ E ( \cdot , \cdot )$. \end{definition} \begin{remark} \label{rmk4.1}\rm By the definition of the discrete $ \omega $-limit set $ \omega _\tau (B) $, it is easy to see that $ x \in \omega _\tau (B) $ if and only if there exist sequences $ \{ k_n \} \subset Z_+ $ with $ k_n \uparrow +\infty $, $\{ m_n \} \subset Z_+ $, $ \{ z_n \} \subset B $ with $ z_n \in \overline{ D( \varphi^{ m_n T_0 + \tau })} $ and $ \{ x_n \} \subset H $ with $ x_n \in E( k_n T_0 + m_n T_0 + \tau , m_n T_0 + \tau ) z_n $ such that $$ x_n \to x \mbox{ in }H \mbox{ as } n \to + \infty. $$ \end{remark} Now we state the main theorems in this paper. \begin{theorem}[Discrete attractors of \eqref{APs}] \label{thm4.1} For each $ \tau \in R_+ $, let $\mathcal{A}_\tau $ be the global attractor of $ T_0 $-periodic dynamical systems $ U_\tau $, which is obtained in Section 3. For $ \{ \varphi^t \} \in \Phi ( \{ a_r \}$, $\{ b_r \} ) \cap \Psi_M $, $ \{ G (t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t \} ) $ and $ f \in L^2 _{\rm loc}( R_+ ; H )$, we assume that the system \eqref{APs} is asymptotically $ T_0 $-periodic. Here we put \begin{equation} \mathcal{A}_{ \tau }^* := \overline{ \bigcup_{ B \in \mathcal{B} (H) } \omega _\tau (B)} . \label{e4.1} \end{equation} Then, we have \begin{itemize} \item[(i)] $\mathcal{A}_{ \tau }^* ( \subset D( \varphi ^\tau _p ) )$ is non-empty and compact in $H$; \item[(ii)] for each bounded set $ B \in \mathcal{B} (H)$ and each number $ \epsilon >0 $ there exists $ N_{B, \epsilon } \in N $ such that $$ \mathop{\rm dist}{}_H ( E ( k T_0 + \tau , \tau ) z,\mathcal{A}_{ \tau }^*) < \epsilon $$ for all $z \in \overline{D( \varphi^\tau )} \cap B$ and all $ k \geq N_{ B, \epsilon }$; \item[(iii)] $ \mathcal{A}_{ \tau }^* \subset U_\tau ^l \mathcal{A}_{ \tau }^* \subset \mathcal{A}_{ \tau } $ for any $ l \in N $, where $ U _\tau $ is the discrete dynamical system for \eqref{Ps} given in Definition \ref{def3.3}. \end{itemize} \end{theorem} \begin{remark} \label{rmk4.2}\rm By the definition of the discrete $ \omega $-limit set $ \omega _\tau (B) $ and $\mathcal{A}_{ \tau }^*$, we easily see that $$\mathcal{A}_{ \tau }^*= \mathcal{A}_{ \tau + n T_0 } ^* , \quad \forall n \in N .$$ Hence $ \mathcal{A}_{ \tau }^* $ is $ T_0 $-periodic in time in the above sense. \end{remark} The second main theorem concerns a relationship between attractors $ \mathcal{A}_{ s }^* $ and $\mathcal{A}_{ \tau }^* $. \begin{theorem} \label{thm4.2} Suppose the same assumptions are made as in Theorem \ref{thm4.1}. Let $\mathcal{A}_{ s }^*$ and $\mathcal{A}_{ \tau }^* $ be discrete attractors for $ E ( \cdot , s ) $ and $ E( \cdot , \tau ) $ with $ 0 \le s \le \tau < + \infty $, respectively. Then, $$\mathcal{A}_{ \tau }^* \subset U( \tau , s) \mathcal{A}_{ s }^* ,$$ where $ U(\tau , s)$ is the $ T_0 $-periodic process for \eqref{Ps} which is given in Definition \ref{def3.2}. \end{theorem} By Theorems \ref{thm4.1}-\ref{thm4.2}, we can get the attractor for the asymptotic $ T_0 $-periodic system \eqref{APs}. \begin{theorem}[Global attractor for \eqref{APs}] \label{thm4.3} Suppose the same assumptions are made as in Theorem \ref{thm4.1}. For any $ \tau \in R_+ $, let $ \mathcal{A}_{ \tau }^*$ be the discrete attractor for $ E( \cdot , \tau ) $ obtained in Theorem \ref{thm4.1}. Here we put \begin{equation} \mathcal{A} ^* := \bigcup_{ \tau \in [ 0 , T_0 ] }\mathcal{A}_{ \tau }^*. \label{e4.2} \end{equation} Then, for any bounded set $ B \in \mathcal{B} (H)$, \begin{equation} \bigcap_{ s \geq 0 } \overline{ \bigcup_{ t \geq s , \tau \in R_+ } E( t+ \tau , \tau )(\overline{D( \varphi ^\tau )} \cap B)} \subset \mathcal{A} ^* . \label{e4.3} \end{equation} \end{theorem} By Theorem \ref{thm4.3}, the set $ \mathcal{A} ^* $ can be called the global attractor of \eqref{APs}. Here we give some key lemmas. \begin{lemma} \label{lm4.1} If $ \{ s_n \} \subset R_+ $, $ \{ \tau _n \} \subset R_+ $, $ s \in R_+ $, $ \tau \in R_+ $, $ s_n \to s $, $ \tau _n \to \tau $, $ \{ m_n \} \subset Z_+ $ with $ m_n \to + \infty $, $ z_n \in \overline{D( \varphi ^{ m_n T_0 + s_n } )}$, $ z \in \overline{ D( \varphi _p ^{ s } )}$, $ z_n \to z $ in $H$ and an element $ w_n \in E ( m_n T_0 + \tau_n + s_n , m_n T_0 + s_n ) z_n $ converges to some element $ w \in H $ as $n \to + \infty $, then $ w \in U( \tau + s ,s) z $. \end{lemma} \begin{proof} Since $ \tau _n \to \tau $, without loss of generality we may assume that there exists a finite time $ T>0 $ such that $ \{ \tau_n \}\subset [0, T] $ and $ \tau \in [ 0, T] $. By $ w_n \in E ( m_n T_0 + \tau_n + s_n , m_n T_0 + s_n ) z_n $, there is a solution $ v_n $ of \eqref{APs} on $ [ m_n T_0 + s_n , + \infty ) $ such that $$ v_n ( m_n T_0 + \tau_n + s_n ) = w_n \mbox{ and } v_n ( m_n T_0 + s_n ) = z_n . $$ Now we put $ u_n ( t ):= v_n ( t + m_n T_0 + s_n )$, then we easily see that $ u_n $ is the solution for \begin{gather*} u_n '( t )+ \partial \varphi^{ t + m_n T_0 + s_n } ( u_n ( t )) + G ( t+ m_n T_0 + s_n , u_n ( t )) \\ \quad \quad \quad \ni f ( t + m_n T_0 + s_n ), \quad t >0 , \\ u_n (0)= z_n. \end{gather*} Let $ \delta \in ( 0 , 1 )$ be fixed. Since $ z_n \to z $ in $ H $ as $ n \to + \infty $, $ \{ z_n \} $ is bounded in $ H$. Hence, from global estimates of solutions (cf. (B) in Section 2) it follows that there is a positive constant $ M_\delta >0 $ (independent of $ n $) satisfying \begin{equation} \sup_{ t \ge \delta }| u_n ( t ) |_H ^2 + \sup_{ t \ge \delta } | u' _n |^2_{ L^2 (t,t+1;H)} + \sup_{ t \ge \delta } \varphi^{ t + m_n T_0 + s_n } ( u_n ( t )) \le M_\delta . \label{e4.4} \end{equation} By \cite[Lemma 4.1]{KO3} we note that the convergence assumption (A1) implies \begin{equation} \label{e4.5} \varphi^{ t+ m_n T_0 + s_n } \to \varphi^{ t+ s }_p \end{equation} in the sense of Mosco \cite{M} for each $ t \geq 0 $ as $ n \to + \infty $. Moreover by the same argument in \cite[Lemma 3.1]{IKY} we can prove that \begin{equation} \bigcup_{ n =1 }^ { +\infty } \{ z \in H ; \varphi^{ t+ m_n T_0 + s_n } (z) \le k \} \label{e4.6} \end{equation} is relatively compact in $H$ for every real $k > 0 $ and $ t \geq 0 $, where $ \varphi^{ t+ m_n T_0 + s_n } = \varphi^{ t + s } _p $ if $ n = + \infty $. Therefore, by \eqref{e4.4}-\eqref{e4.6}, (A2), (A3) and the convergence result (C) in Section 2, (by taking a subsequence of $\{ n \}$, if necessary) we see that there is a function $ u_\delta $ such that $$ u_\delta '( t )+ \partial \varphi _p ^{ t + s } ( u_\delta ( t )) + G_p ( t+ s , u_\delta ( t )) \ni f_p ( t + s ), \quad t > \delta . $$ By the standard diagonal process and the same argument in \cite[Lemma 3.10]{O}, we can construct the solution $ u $ on $[ 0, + \infty ) $ satisfying \begin{gather*} u '( t )+ \partial \varphi _p ^{ t + s } ( u ( t )) + G_p ( t+ s , u ( t )) \ni f_p ( t + s ), \quad t >0 , \\ u (0)= z \end{gather*} and \begin{equation} u_n \to u \mbox{ in } C( [0, T]; H) \quad \mbox{as } n \to + \infty . \label{e4.7} \end{equation} Then, by \eqref{e4.7} and $ u_n ( \tau _n ) = w_n $ we have $ u ( \tau ) = w$, which implies $ w \in U( \tau + s ,s) z $. \end{proof} By (B) in Section 2, for each $ B \in \mathcal{B} (H)$ we can choose constants $ r_B >0$ and $ M_B >0$ so that \begin{equation} |v |_H \le r_B \quad \mbox{ and } \quad \varphi^{t+s}(v) \le M_B , \label{e4.8} \end{equation} for any $ s \in R_+ ,$ $ t \geq T_0 $, $z \in \overline{ D( \varphi^s )} \cap B$ and $ v \in E(t+s,s)z .$ Hence it follows from condition (A1) that for each $m \in Z_+ $, $ \tau \in [ 0 , T_0 ]$, $n \in N$ and $z \in \overline{D( \varphi^{mT_0+ \tau })} \cap B$ there is $ \tilde{z}:= \tilde{z}_{mT_0+ \tau ,z, n T_0} \in D( \varphi^{ \tau } _p )$ such that \begin{gather*} | \tilde{z} - v |_H \le J_{m+ n }^{( r_B + M_B +M )} , \\ \Big( \mbox{hence } | \tilde{z}|_H \le r_B + J_{m+n}^{( r_B + M_B +M)} \Big) \end{gather*} and \begin{gather*} \varphi^{ \tau } _p ( \tilde{z} ) - \varphi^{nT_0+mT_0+ \tau }( v ) \le J_{m+n}^{( r_B + M_B + M )} , \\ \Big( \mbox{hence } \varphi^{ \tau } _p ( \tilde{z}) \le M_B + J_{m+n}^{( r_B + M_B +M )} \Big), \end{gather*} where $ v \in E(n T_0+mT_0+ \tau ,mT_0+ \tau )z $. Since $ J_{ k }^{( r_B + M_B +M )} \to 0 $ as $ k \to + \infty $, there is a number $ N_0 \in N $ such that $$ J_{ k }^{( r_B + M_B +M )} \le 1 , \quad \forall k > N_0 . $$ Now, put $ J_0 := 1 + \sup_{ 1 \le k \le N_0 } J_{ k }^{( r_B + M_B +M )} <+\infty $. Then, we define the bounded set $ \widetilde{B _\tau }$ by $$ \widetilde{B _{ \tau } }:= \{ z \in H ; | z |_H \le r_B + J_0 \} \cap \overline{ D ( \varphi ^\tau _p)} . $$ Let $ B_{0 , \tau } $ be the compact absorbing set for $ U_\tau $ introduced by Remark \ref{rmk3.1}. Then, we see that there exists a number $ \widetilde{ N } \in N $ so that \begin{equation} U _\tau ^l \widetilde{ B _\tau } \subset B_{0 , \tau }, \quad \forall l \geq \widetilde{ N }. \label{e4.9} \end{equation} The next lemma is very important for proving Theorem \ref{thm4.1} (iii). \begin{lemma} \label{lm4.2} Let $ \tau \in R_+ $ and $ B_{0, \tau } $ be the compact absorbing set for $ U_\tau $. Then we have $$ \omega _\tau ( B) \subset B_{0 , \tau }, \quad \forall B \in \mathcal{B} ( H ) . $$ \end{lemma} \begin{proof} At first we assume $ \tau \in [ 0 , T_0]$. For each $ B \in \mathcal{B} (H)$, let $ x $ be any element of $ \omega_\tau ( B ) $. Then, it follows from Remark \ref{rmk4.1} that there exist sequences $ \{ k_n \} \subset Z_+ $ with $ k_n \to + \infty $, $ \{ m_n \} \subset Z_+ $, $ \{ z_n \} \subset B $ with $ z_n \in \overline{ D ( \varphi^{ m _n T_0 + \tau })} $ and $ \{ x_n \} \subset H $ with $ x_n \in E( k_n T_0 + m_n T_0 + \tau , m_n T_0 + \tau ) z_n $ such that \begin{equation} x_n \to x \mbox{ in }H \quad \mbox{as } n \to + \infty . \label{e4.10} \end{equation} Let $ \widetilde{ N } $ be the positive integer obtained in \eqref{e4.9}. Then by (E2) we have \begin{equation} \begin{aligned} x_n \in &E( k_n T_0 + m_n T_0 + \tau , k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau )\\ & \circ E( k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau , m_n T_0 + \tau ) z_n \end{aligned}\label{e4.11} \end{equation} for any $ n $ with $k_n \geq \widetilde{ N } + 1 $. Hence, there exists an element $ y_n \in E( k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau , m_n T_0 + \tau ) z_n $ such that \begin{equation} x_n \in E( k_n T_0 + m_n T_0 + \tau , k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau ) y_n . \label{e4.12} \end{equation} Since $ \{ z_n \} \subset B $, we see that $| y_n |_H \le r_B$ and $$ \varphi^{ k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau } ( y_n ) \le M_B $$ for any $ n $ with $k_n\geq \widetilde{ N } +1 $, where $ r_B $ and $ M_B $ are same positive constants in \eqref{e4.8}. From the convergence condition (A1) it follows that for $ y_n \in E( k_n T_0 - \widetilde{ N } T_0 + m_n T_0 + \tau , m_n T_0 + \tau ) z_n $ there is $ \widetilde{ z } _n \in D( \varphi _p ^\tau )$ such that \begin{gather*} | \widetilde{ z }_n - y_n |_H \le J_{ k_n - \widetilde{ N }+ m_n } ^{ ( r_B + M_B + M )}, \\ \Big(\mbox{hence } | \widetilde{ z }_n |_H \le r_B + J_{ k_n - \widetilde{ N }+ m_n } ^{ ( r_B + M_B + M )}\Big) \end{gather*} and $$ \varphi _p ^\tau ( \widetilde{ z }_n ) \le M_B + J_{ k_n - \widetilde{ N }+ m_n } ^{ ( r_B + M_B + M )} . $$ Since $ \{ \widetilde{ z }_n \in D( \varphi _p^\tau ) \ ; \ n \in N \mbox{ with } k_n \geq \widetilde{ N } +1 \} ( \subset \widetilde{ B _\tau }) $ is relatively compact in $ H $, we may assume that $$ \widetilde{ z }_n \to \widetilde{ z }_\infty \mbox{in } H \quad \mbox{ as } n \to + \infty $$ for some $ \widetilde{ z }_\infty \in H$. Then we easily see that $ \widetilde{ z }_\infty \in \widetilde{ B _\tau }$ and \begin{equation} y_n \to \widetilde{ z }_\infty \mbox{ in } H \quad \mbox{as } n \to + \infty . \label{e4.13} \end{equation} By Lemma \ref{lm4.1} and \eqref{e4.10}-\eqref{e4.13}, we observe that $x \in U ( \widetilde{ N } T_0 + \tau , \tau ) \widetilde{ z }_\infty $, which implies that $$ x \in U ( \widetilde{ N } T_0 + \tau , \tau ) \widetilde{ B _\tau } = U ^{ \widetilde{ N } } _\tau \widetilde{ B _\tau } \subset B_{ 0 , \tau }. $$ Hence we have $\omega_\tau ( B) \subset B_{0 , \tau } $. For the general case of $ \tau \in R_+ $, choose positive numbers $ i_\tau \in N $ and $ \tau _0 \in [ 0 , T_0 ] $ so that $ \tau = \tau_0 + i_\tau T_0 $. Then, we can show $ \omega_\tau ( B) \subset B_{0 , \tau } $ by the same argument as above. \end{proof} \begin{proof}[Proof of Theorem \ref{thm4.1}] On account of Lemma \ref{lm4.2} we can get $ \mathcal{A}_{ \tau }^* \subset B_{ 0 , \tau }$. Hence, Theorem \ref{thm4.1} (i) holds. Also, by \eqref{e4.1} and Remark \ref{rmk4.1} we observe that Theorem \ref{thm4.1} (ii) holds. Now, we prove Theorem \ref{thm4.1} (iii). At first, let us prove that $ \mathcal{A}_{ \tau }^* \subset U _\tau ^l \mathcal{A}_{ \tau }^* $ for any $ l \in N $. Let $ x $ be any element of $ \mathcal{A}_{ \tau }^* $. By the definition of $ \mathcal{A}_{ \tau } ^* $, there are sequences $ \{ B_n \} \subset \mathcal{B} ( H ) $ and $ \{ x_n \} \subset H $ with $ x_n \in \omega _\tau ( B_n ) $ such that \begin{equation} x_n \to x \quad \mbox{ in } H \quad \mbox{as } n \to + \infty . \label{e4.14} \end{equation} Then, for each $ n $ it follows from Remark \ref{rmk4.1} that there exist sequences $ \{ k_{n, j} \} \subset Z_+ $ with $ k_{n, j} \to + \infty $, $ \{ m_{n, j} \} \subset Z_+ $, $ \{ z_{n, j} \} \subset B_n $ with $ z_{n, j} \in \overline{ D ( \varphi^{ m_{n, j} T_0 + \tau })} $ and $ \{ v_{n,j} \} \subset H $ with $ v_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , \ m_{n, j} T_0 + \tau ) z_{n, j} $ such that \begin{equation} v_{n, j} \to x_n \mbox{ in }H \quad \mbox{as } j \to + \infty . \label{e4.15} \end{equation} Let $ l $ be any number in $ N $, then we see that \begin{align*} v_{n, j} &\in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , \ k_{n, j} T_0 - l T_0+ m_{n, j} T_0 + \tau ) \\ &\circ E( k_{n, j} T_0 - l T_0+ m_{n, j} T_0 + \tau , \ m_{n, j} T_0 + \tau ) z_{n, j} \end{align*} for $ j $ with $ k_{n, j} \geq l +1 $. So, there exists an element $ w_{n, j} \in E( k_{n, j} T_0 - l T_0+ m_{n, j} T_0 + \tau , m_{n, j} T_0 + \tau ) z_{n, j} $ such that \begin{equation} v_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , k_{n, j} T_0 - l T_0+ m_{n, j} T_0 + \tau ) w_{n, j} . \label{e4.16} \end{equation} By the global estimates (B) in Section 2, $ \{ w_{n,j} \in H \ ; \ j \in N \mbox{ with } k_{n,j} \geq l +1 \} $ is relatively compact in $ H $ for each $ n $. Therefore we may assume that the element $ w_{n, j} $ converges to some element $ \widetilde{ w }_{ n, \infty } \in H $ as $ j \to + \infty $. Clearly, $ \widetilde{ w }_{ n , \infty } \in \omega _\tau ( B_n ) $. Moreover, it follows from Lemma \ref{lm4.1} and \eqref{e4.15}-\eqref{e4.16} that $$ x_n \in U ( l T_0 + \tau , \tau ) \widetilde{ w }_{ n , \infty } \subset U ( l T_0 + \tau , \tau ) \omega _\tau ( B_n ) , $$ hence, we have \begin{equation} x_n \in \bigcup_{ n \geq 1 } U^l _\tau \omega _\tau ( B_n ) , \quad \forall n \geq 1 . \label{e4.17} \end{equation} Here, by the closedness of $ U ( \cdot , \cdot )$ we note that for each subset $ X $ of $ B_{ 0, \tau } $, \begin{equation} \overline{ U^l _\tau X} \subset U_\tau ^l \overline{ X } , \quad \forall l \in N . \label{e4.18} \end{equation} Taking into account Lemma \ref{lm4.2}, \eqref{e4.14}, \eqref{e4.17} and \eqref{e4.18}, we observe that \[ x \in \overline{ \bigcup_{ n \geq 1 } U_\tau ^l \omega _\tau ( B_n ) } = \overline{ U_\tau ^l \bigcup_{ n \geq 1 } \omega _\tau ( B_n ) } \subset U_\tau ^l \overline{ \bigcup_{ n \geq 1 } \omega _\tau ( B_n ) } \subset U_\tau ^l \mathcal{A}_{ \tau }^* , \] which implies that $ \mathcal{A}_{ \tau }^* $ is semi-invariant under the $ T_0 $-periodic dynamical systems $ U_\tau $, i.e. \begin{equation} \mathcal{A}_{ \tau }^* \subset U _\tau ^l \mathcal{A}_{ \tau }^* , \quad \forall l \in N. \label{e4.19} \end{equation} Next we shall prove that $ U _\tau ^l \mathcal{A}_{ \tau }^* \subset \mathcal{A}_{ \tau } $ for any $ l \in N $. By \eqref{e4.19}, for each $ l \in N $ \begin{equation} U _\tau ^l \mathcal{A}_{ \tau }^* \subset U _\tau ^l U _\tau ^n \mathcal{A}_{ \tau }^* = U _\tau ^{l + n } \mathcal{A}_{ \tau }^* , \quad \forall n \in N . \label{e4.20} \end{equation} By $ \mathcal{A}_{ \tau }^* \subset B_{ 0 , \tau }$, \eqref{e4.20} and the attractive property of $ \mathcal{A}_{ \tau } $, we have $$ U _\tau ^l \mathcal{A}_{ \tau }^* \subset \mathcal{A}_{ \tau } , \quad \forall l \in N. $$ Therefore, we conclude that $\mathcal{A}_{ \tau }^* \subset U _\tau ^l \mathcal{A}_{ \tau }^* \subset \mathcal{A} _\tau $ for all $l \in N $. \end{proof} \begin{proof}[Proof of Theorem \ref{thm4.2}] Let $ x $ be any element of $ \mathcal{A}_{ \tau }^* $. Then by the definition of $ \mathcal{A}_{ \tau }^* $, there exist sequences $ \{ B_n \} \subset \mathcal{B} ( H ) $ and $ \{ x_n \} \subset H $ with $ x_n \in \omega _\tau ( B_n ) $ such that \begin{equation} x_n \to x \mbox{ in } H \quad\mbox{as } n \to + \infty . \label{e4.21} \end{equation} From Remark \ref{rmk4.1} it follows that for each $ n $, there are sequences $ \{ k_{n, j} \} \subset Z_+ $ with $ k_{n, j} \to + \infty $, $ \{ m_{n, j} \} \subset Z_+ $, $ \{ z_{n, j} \} \subset B_n $ with $ z_{n, j} \in \overline{ D ( \varphi^{ m_{n, j} T_0 + \tau })} $ and $ \{ v_{n,j} \} \subset H $ with $ v_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , m_{n, j} T_0 + \tau ) z_{n, j} $ such that \begin{equation} v_{n, j} \to x_n \mbox{ in }H \quad \mbox{ as } j \to + \infty . \label{e4.22} \end{equation} Note that for given $ s , \tau \in R_+ $ with $ s \le \tau $ there is a positive number $ l_s \in N $ satisfying $$ s \le \tau \le l_s T_0 +s .$$ Using the property (E2) we see that \begin{align*} v_{n, j} &\in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , k_{n, j} T_0 + m_{n, j} T_0 + s ) \\ &\circ E( k_{n, j} T_0 + m_{n, j} T_0 + s , T_0 +m_{n, j} T_0 +l_s T_0 + s ) \\ &\circ E( T_0+m_{n, j} T_0 + l_s T_0 + s , m_{n, j} T_0 + \tau ) z_{n, j} \end{align*} for any $ j \in Z_+ $ with $ k_{ n , j } \geq l_s + 2 $. Here we can take elements $ w_{n, j} \in H $ and $ y_{n, j} \in H $ so that \begin{gather} v_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + \tau , k_{n, j} T_0 + m_{n, j} T_0 + s ) w_{n, j} , \label{e4.23}\\ w_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + s , T_0 +m_{n, j} T_0 +l_s T_0 + s ) y_{n, j}, \label{e4.24} \\ y_{n, j} \in E( T_0 + m_{n, j} T_0 + l_s T_0 +s , m_{n, j} T_0 + \tau ) z_{n, j} . \label{e4.25} \end{gather} By $ \{ z_{n, j} \} \subset B_n $ and the global boundedness result (B) in Section 2, we can get a positive constant $ C_n := C_n ( B_n ) >0 $ satisfying \begin{equation} | y_{n, j} |_H \le C_n , \quad \forall y_{n, j} \in E( T_0 + m_{n, j} T_0 +l_s T_0 + s , m_{n, j} T_0 + \tau ) z_{n, j}. \label{e4.26} \end{equation} Here we define the bounded set $ B_{ C_n } $ by $$ B_{ C_n } :=\{ b \in H : | b |_H \le C_n \}. $$ From \eqref{e4.26} and the result (B) in Section 2 it follows that the set \begin{align*} \big\{& w_{n, j} \in H ; w_{n, j} \in E( k_{n, j} T_0 + m_{n, j} T_0 + s , T_0 + m_{n, j} T_0 + l_s T_0 +s ) y_{n, j} \\ &\mbox{ for any $j \in Z_+ $ with $ k_{ n , j } \geq l_s + 2 $}\big\} \end{align*} is relatively compact in $ H $. Hence, we may assume that the element $ w_{n, j} $ converges to some element $ \widetilde{ w }_{ n, \infty } \in H $ as $ j \to + \infty $. Clearly, $ \widetilde{ w }_{ n , \infty } \in \omega _s ( B_{ C_n } ) $, and it follows from Lemma \ref{lm4.2} that $$ \omega _s ( B_{ C_n } ) \subset B_{ 0 , s} \subset \overline{ D ( \varphi^s _p)}\,. $$ Moreover, by Lemma \ref{lm4.1} and \eqref{e4.22}-\eqref{e4.23} we have $$ x_n \in U ( \tau , s ) \widetilde{ w }_{ n , \infty } \subset U ( \tau , s ) \omega _s ( B_{ C_n } ) , \quad \forall n \geq 1 , $$ hence, we see that \begin{equation} x_n \in \bigcup_{ n \geq 1 } U ( \tau , s ) \omega _s ( B_{ C_n } ) , \quad \forall n \geq 1\, . \label{e4.27} \end{equation} Here, by the closedness of $ U ( \cdot , \cdot )$, we note that for each subset $ X $ of $ B_{ 0, s} $, \begin{equation} \overline{ U ( \tau , s ) X} \subset U ( \tau , s ) \overline{ X } . \label{e4.28} \end{equation} On account of Lemma \ref{lm4.2}, \eqref{e4.21}, \eqref{e4.27} and \eqref{e4.28}, we observe that \[ x \in \overline{ \bigcup_{ n \geq 1 } U ( \tau , s ) \omega _s ( B_{ C_n }) } = \overline{ U( \tau , s ) \bigcup_{ n \geq 1 } \omega _s ( B_{ C_n } ) } \subset U( \tau , s ) \overline{ \bigcup_{ n \geq 1 } \omega _s ( B_{ C_n } ) } \subset U ( \tau , s ) \mathcal{A}_{ s }^* , \] which implies that $ \mathcal{A}_{ \tau }^* $ is a subset of $ U ( \tau , s ) \mathcal{A}_{ s }^* $, namely $\mathcal{A}_{ \tau }^* \subset U ( \tau , s ) \mathcal{A}_{ s }^*$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm4.3}] For any $ B \in \mathcal{B}(H)$, let $ z_0 $ be any element of the $ \omega $-limit set $ \omega _E (B) $ which is define by $$ \omega _E (B):= \bigcap _{ s \geq 0 } \overline{ \bigcup_{ t \geq s , \tau \in R_+ }E( t+ \tau , \tau )( \overline{D( \varphi ^\tau )} \cap B)}. $$ Then we easily see that there exist sequences $ \{ t_n \} \subset R_+ $ with $ t_n \to +\infty$, $\{ \tau _n \} \subset R_+ $, $ \{ y_n \} \subset B $ with $ y_n \in \overline{D( \varphi ^{ \tau _n } ) } $ and $ \{ z_n \} \subset H $ with $ z_n \in E( t_n + \tau _n , \tau _n ) y_n $ such that \begin{equation} \begin{gathered} t _n := k_n T_0 + t ' _n ,\quad k _n \in Z_+ , \; k_n \to + \infty ,\quad t ' _n \in [ T_0 , 2 T_0 ] ,\; t ' _n \to t ' _0 , \\ \tau _n := l_n T_0 + \tau ' _n ,\quad l _n \in Z_+ ,\; \tau ' _n \in [ 0 , T_0 ] ,\; \tau ' _n \to \tau ' _0,\\ z_n \to z_0 \quad \mbox{ in }H \end{gathered} \label{e4.29} \end{equation} as $ n \to +\infty $. Without loss of generality, we may assume that \begin{itemize} \item[(a)] $t ' _n + \tau ' _n \nearrow t ' _0 + \tau ' _0$ or \item[(b)] $t ' _n + \tau ' _n \searrow t ' _0 + \tau ' _0 $. \end{itemize} Now, assume that (a) holds. Then let us consider the multivalued semiflow \begin{equation} v_n \in E( 1+ k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , \ k_n T_0 + l_n T_0 + t_n ' + \tau_n ' ) z_n .\label{e4.30} \end{equation} Then, there is a solution $ u _n $ on $ [ k_n T_0 + l_n T_0 + t_n ' + \tau_n ' , + \infty ) $ for \begin{gather*} u_n '( t )+ \partial \varphi^{ t + k_n T_0 + l_n T_0 + t_n ' + \tau_n ' } ( u_n ( t ))+ G ( t+ k_n T_0 + l_n T_0 + t_n ' + \tau_n ' , u_n ( t )) \\ \ni f ( t + k_n T_0 + l_n T_0 + t_n ' + \tau_n ' ), \quad t >0 , \\ u_n (0)= z_n \quad \mbox{ and } \quad u_n ( 1 + t_0 ' + \tau_0 ' - t_n ' - \tau_n ') = v_n. \end{gather*} Since $ z_n \to z_0 $ in $ H$, $ \{ z_n \} $ is bounded in $ H $. Therefore, by the global estimate (B) in Section 2, we see that the set \begin{align*} &\big\{ v_n \in H ; v_n \in E( 1+ k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , k_n T_0 + l_n T_0 + t_n ' + \tau_n ' ) z_n \\ &\mbox{ for any } n \in N\big\} \end{align*} is relatively compact in $H$. Hence we may assume that \begin{equation} v_n \to v \mbox{ in } H \mbox{ for some } v \in H . \label{e4.31} \end{equation} Now applying Lemma \ref{lm4.1} with \eqref{e4.29}-\eqref{e4.31}, we obtain $$ v \in U( 1+ t ' _0 + \tau_0 ' , \ t_0 ' + \tau_0 ' ) z_0 , $$ more precisely, (taking the subsequence of $ \{ n \} $ if necessary) we observe that \begin{equation} u_n \to u \quad \mbox{ in } C( [ 0, 1 ] ; H) \quad \mbox{ as } n \to + \infty , \label{e4.32} \end{equation} where $ u $ is the solution on $ [ t_0 ' + \tau_0 ' , + \infty ) $ satisfying \begin{gather*} u '( t )+ \partial \varphi^{ t + t_0 ' + \tau_0 ' } _p ( u ( t )) + G_p ( t+ t_0 ' + \tau_0 ' , u ( t )) \ni f_p ( t + t_0 ' + \tau _0 ' ), \quad t >0 , \\ u (0)= z_0 \quad \mbox{ and } \quad u ( 1 ) = v . \end{gather*} By \eqref{e4.32} we easily see that \begin{equation} u_n ( t_0 ' + \tau _0 ' - t_n ' - \tau_n ' ) \to z_0 \quad \mbox{ as } n \to + \infty. \label{e4.33} \end{equation} Note that \begin{align*} &u_n ( t_0 ' + \tau _0 ' - t_n ' - \tau_n ' ) \\ &\in E( k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , \ k_n T_0 + l_n T_0 + t_n ' + \tau_n ' ) z_n \\ &= E( k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , \ l_n T_0 + \tau _n ' ) y_n \\ &= E( k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , \ l_n T_0 + t_0 ' + \tau_0 ' ) E( l_n T_0 + t_0 ' + \tau_0 ', \ l_n T_0 + \tau _n ' ) y_n . \end{align*} So, we can take an element $ x_n \in E( l_n T_0 + t_0 ' + \tau_0 ', \ l_n T_0 + \tau _n ' ) y_n $ such that \begin{equation} u_n ( t_0 ' + \tau _0 ' - t_n ' - \tau_n ' ) \in E( k_n T_0 + l_n T_0 + t ' _0 + \tau_0 ' , \ l_n T_0 + t_0 ' + \tau_0 ' ) x_n . \label{e4.34} \end{equation} By $ \{ y_n \} \subset B $ and the global estimate (B) in Section 2, we easily see that $ \{ x_n \} $ is bounded, i.e. \begin{equation} \{ x_n \} \subset \widetilde{ B } \mbox{ for some } \widetilde{ B } \in \mathcal{B} (H ) . \label{e4.35} \end{equation} Therefore, from Remarks \ref{rmk4.1}-\ref{rmk4.2} and \eqref{e4.33}-\eqref{e4.35} we observe that $$ z_0 \in \omega _{ t ' _0 + \tau_0 ' } ( \widetilde{B}) \subset \mathcal{A} ^* _{ t_0 ' + \tau_0 ' } \subset \mathcal{A} ^* .$$ Thus \eqref{e4.3} holds. In the case (b) when $ t ' _n + \tau ' _n \searrow t ' _0 + \tau ' _0 $, we can prove \eqref{e4.3} by a slight modification of the proof as above. \end{proof} Note that Theorem \ref{thm4.1} implies that the attracting set $ \mathcal{A}_{ \tau }^* $ for \eqref{APs} is semi-invariant under $ U_\tau $ associated with the limiting $ T_0 $-periodic system \eqref{Ps}, in general. Moreover, from Theorem \ref{thm4.2} we observe that $$ \mathcal{A}_{ \tau }^* \subset U( \tau , s) \mathcal{A}_{ s }^* \quad \mbox{ for any } 0 \le s \le \tau < + \infty . $$ To get the invariance of $ \mathcal{A}_{ \tau }^* $ under $ U_\tau $ and $ \mathcal{A}_{ \tau }^* = U( \tau , s) \mathcal{A}_{ s }^* $, let us use a concept of a regular approximation, which was introduced in \cite{KY}. \begin{definition}[Regular approximation] \label{def4.4}\rm Let $ s \in R_+ $ be fixed. Let $ z \in D( \varphi _p ^s ) $. Then, we say that $ U( t + s , s ) z $ is regularly approximated by $ E( t + k T_0 + s , \ k T_0 + s ) $ as $ k \to + \infty$, if for each finite $ T > 0 $ there are sequences $ \{ k_n \} \subset Z_+ $ with $ k_n \to + \infty $ and $ \{ z_n \} \subset H $ with $ z_n \in D( \varphi^{ k_n T_0 + s } ) $ and $ z_n \to z $ in $H$ satisfying the following property: for any function $ u \in W^{1,2} ( 0, T ; H) $ satisfying $ u(t) \in U(t + s , s ) z $ for all $ t \in [ 0 , T ] $ there is a sequence $ \{ u_n \} \subset W^{1,2} (0, T ; H) $ such that $ u_n ( t ) \in E(t+ k_n T_0 + s , \ k_n T_0 + s ) z_n $ for all $ t \in [ 0 , T] $ and $ u_n \to u $ in $ C([0, T ] ; H) $ as $ n \to + \infty$. \end{definition} Using the above concept, we can show the invariance of $ \mathcal{A}_{ \tau }^* $ under $ U_\tau $. Moreover we can get $$\mathcal{A}_{ \tau }^* = U( \tau , s) \mathcal{A}_{ s }^*.$$ \begin{theorem} \label{thm4.4} Suppose all assumptions in Theorem \ref{thm4.1}. Let $\mathcal{A}_{ s }^*$ and $\mathcal{A}_{ \tau }^* $ be discrete attractors for $ E ( \cdot , s ) $ and $ E( \cdot , \tau ) $, with $ 0 \le s \le \tau < + \infty $, respectively. Assume that for any point $ z $ of $ \mathcal{A}_{ s } ^*$, $ U(t+ s , s ) z $ is regularly approximated by $ E(t + k T_0 + s , k T_0 + s ) $ as $ k \to + \infty $. Then we have $$ \mathcal{A}_{ \tau }^* = U( \tau , s) \mathcal{A}_{ s }^*.$$ \end{theorem} \begin{proof} By Theorem \ref{thm4.2}, we have only to show that $$ U( \tau , s) \mathcal{A}_{ s }^* \subset \mathcal{A}_{ \tau }^* .$$ To do so, let $ x $ be any element of $ U( \tau , s) \mathcal{A}_{ s }^* $. At first, taking into account Definitions \ref{def3.2}-\ref{def3.3} and Theorem \ref{thm4.1} (iii), we see that for each $ n \in N$ \begin{equation} \begin{aligned} \ & U_\tau ^n U ( \tau , s) \mathcal{A}_{ s }^* \\ & = U( n T_0 + \tau , \tau ) U ( \tau , s) \mathcal{A}_{ s }^* = U( n T_0 + \tau , n T_0 + s ) U ( n T_0 +s , s) \mathcal{A}_{ s }^* \\ & = U( \tau , s ) U_s ^n \mathcal{A}_{ s }^* \supset U ( \tau , s) \mathcal{A}_{ s }^* . \end{aligned} \label{e4.36} \end{equation} Hence, there exists an element $ y_n \in \mathcal{A}_{ s }^* $ such that $$ x \in U_\tau ^n U ( \tau , s) y_n = U( n T_0 + \tau -s +s, s) y_n. $$ Using our assumption as $ t = n T_0 + \tau -s $, we observe that for each $ n $, there are sequences $ \{ k_{n,j} \} \subset Z_+ $, $ \{ x_{n,j} \} \subset H $ and $ \{ y_{n,j} \} \subset H $ such that $$ k_{n,j} \to +\infty, \quad y_{n,j} \in D( \varphi^{ k_{n,j} T_0 + s }), \quad y_{n,j} \to y_n \quad \mbox{in } H $$ and \begin{equation} x_{n,j} \in E( n T_0 + \tau -s + k_{n,j} T_0 + s , \ k_{n,j} T_0 + s ) y_{n,j}, \quad x_{n,j} \to x \quad \mbox{in } H \label{e4.37} \end{equation} as $j \to + \infty $. Therefore, by the usual diagonal argument, we can find a subsequence $ \{ j_n \}$ of $ \{ j \} $ such that $ \widetilde x_n := x_{n,j_n} $, $ \widetilde y_n:=y_{n,j_n} $ and $ \widetilde k_n:= k_{n,j_n} $ satisfy \begin{equation} \begin{gathered} | \widetilde x_n- x |_H <\frac 1n, \quad \widetilde x_n \in E( n T_0 + \tau -s +\widetilde k_n T_0 + s , \widetilde k_n T_0 + s ) \widetilde y_n, \\ \quad |\widetilde y_n - y_n |_H < \frac 1n \end{gathered} \label{e4.38} \end{equation} for $n=1,2,\dots$. Since $\{ \widetilde y_n \}$ is bounded in $H$, there is a bounded set $ B \in \mathcal{B} (H) $ so that $\{ \widetilde y_n \} \subset B $. By (E2), we see that \begin{align*} \widetilde x_n & \in E( n T_0 + \tau -s +\widetilde k_n T_0 + s , \widetilde k_n T_0 + s ) \widetilde y_n \\ & = E( n T_0 + \widetilde k_n T_0 + \tau , T_0 + \widetilde k_n T_0 + \tau ) E( T_0 + \widetilde k_n T_0 + \tau , \widetilde k_n T_0 + s ) \widetilde y_n , \end{align*} hence there is an element $ \widetilde z_n \in E( T_0 + \widetilde k_n T_0 + \tau , \widetilde k_n T_0 + s ) \widetilde y_n $ such that \begin{equation} \widetilde x_n \in E( n T_0 + \widetilde k_n T_0 + \tau , T_0 + \widetilde k_n T_0 + \tau ) \widetilde z_n . \label{e4.39} \end{equation} Since $\{ \widetilde y_n \}\subset B $ and the global estimate (B) in Section 2, we see that $\{ \widetilde z_n \}$ is also bounded in $H$. Hence, there is a bounded set $ \widetilde B \in \mathcal{B} (H) $ so that $\{ \widetilde z_n \} \subset \widetilde B $. The above fact \eqref{e4.37}-\eqref{e4.39} implies (cf. Remark \ref{rmk4.1}) that $ x \in \omega _\tau ( \widetilde B ) \subset \mathcal{A}_{ \tau }^*$. Thus we have $ U ( \tau , s ) \mathcal{A}_{ s }^* \subset \mathcal{A}_{ \tau }^*$. \end{proof} By Remark \ref{rmk4.2} and the same argument in Theorem \ref{thm4.4}, we can get the following corollary. \begin{corollary} \label{coro4.1} (i) Suppose the same assumptions of Theorem \ref{thm4.4}. Then, $ \mathcal{A}_{ s }^* $ is invariant under the $ T_0 $-periodic dynamical system $ U_s (:= U ( T_0 + s , s) )$. Namely, $$ \mathcal{A}_s ^* = U_s^l \mathcal{A}_s ^* \quad \mbox{ for any } l \in N. $$ (ii) Assume that for any point $ z $ of $ \mathcal{A}_{ \tau } $, $ U(t+ \tau , \tau ) z $ is regularly approximated by $ E(t + k T_0 + \tau , k T_0 + \tau ) $ as $ k \to + \infty $. Then, $ \mathcal{A} _\tau ^* \supset \mathcal{A}_{ \tau }$. Hence we have $\mathcal{A}_{ \tau }^* = \mathcal{A} _{ \tau } $ (cf. Theorem \ref{thm4.1} (iii)). \end{corollary} \begin{remark} \label{rmk4.3}\rm If the solution operator $ U(t,s) $ is single valued, namely the solution for the Cauchy problem of \eqref{Ps} is unique, the assumptions of Theorem \ref{thm4.4} always hold. Thus, Theorem \ref{thm4.4} implies the abstract results obtained in \cite{IKYp} which was concerned with the asymptotically $ T_0 $-periodic stability for the single valued dynamical system associated with time-dependent subdifferentials. \end{remark} \section{Applications to obstacle problems for PDE's} Let $ \Omega $ be a bounded domain in $ R^N $ ($ 1 \le N< + \infty $) with smooth boundary $ \Gamma = \partial \Omega $, $q$ be a fixed number with $ 2 \le q < + \infty $ and $ T_0 $ be a fixed positive number. We use the notation $$ a_q ( v , z ) := \int_{ \Omega } | \nabla v |^{ q-2 } \nabla v \cdot \nabla z dx, \quad \forall v, \ z \in W^{1,q} ( \Omega ) $$ and denote by $ ( \cdot , \cdot )$ the usual inner product in $ L^2 ( \Omega )$. For prescribed obstacle functions $ \sigma_{0 } \le \sigma_{1 } $ and each $ t \in R_+ $ we define the set $$ K (t) := \big\{ z \in W^{1,q} ( \Omega ) ; \sigma _{0 } ( t , \cdot ) \le z \le \sigma _{1} ( t , \cdot ) \mbox{ a.e. on } \Omega \big\} . $$ Let $ f $ be a function in $ L^2_{\rm loc} ( R_+ ; L^2 ( \Omega ))$ and $ h $ be a non-negative function on $ R_+ \times R $. Then for given ${\bf b} \in L^\infty ( \Omega ) ^N $ we consider an interior asymptotically $ T_0 $-periodic double obstacle problem for each initial time $s \in R_+$: \\ Find functions $ v \in C([s , + \infty ) ; L^2 ( \Omega)) $ and $ \theta \in L^2_{\rm loc} (( s , + \infty ) ; L^2 ( \Omega )) $ such that \begin{equation} \label{OPap} \begin{gathered} v \in L^{q}_{\rm loc} ( ( s , + \infty ) ; W^{1,q} ( \Omega )) \cap W^{1,2}_{\rm loc}( ( s, + \infty ) ; L^2 ( \Omega )); \\ v(t)\in K (t) \quad \mbox{ for a.e. } t \geq s ; \\ 0 \le \theta (t , x ) \le h (t , v(t,x)) \quad \mbox{ a.e. on } ( s , + \infty ) \times \Omega ;\\ (v'(t)+ \theta (t) + {\bf b} \cdot \nabla v(t) - f (t), v(t) -z)+ a_q ( v(t), v(t) -z ) \le 0 \\ \mbox{for } z \in K (t) \mbox{ and a.e. }t \geq s. \end{gathered} \end{equation} The main object of this section is to consider the large-time behavior of solution for \eqref{OPap} under asymptotically $ T_0 $-periodicity assumptions $$ \sigma _i (t) - \sigma _{ i,p } (t) \to 0 \; (i=0,1),\quad h (t, \cdot ) - h_p (t , \cdot ) \to 0, \quad f(t) - f_p (t) \to 0 $$ as $ t \to \infty $ in the sense specified below, where $ \sigma _{ i,p } (t) $, $ h_p (t , \cdot ) $, $ f_p (t) $ are periodic in time with the same period $ T_0 $. By the above assumptions, the limiting system of \eqref{OPap} is a $ T_0 $-periodic one as follows: %\mbox{ (OP)$_s ^P $ } \\ Find functions $ u \in C([s , + \infty ) ; L^2 ( \Omega)) $ and $ \theta \in L^2_{\rm loc} (( s , + \infty ) ; L^2 ( \Omega )) $ such that \begin{equation} \label{OPp} \begin{gathered} u \in L^{q}_{\rm loc} ( ( s , + \infty ) ; W^{1,q} ( \Omega )) \cap W^{1,2}_{\rm loc}( ( s, + \infty ) ; L^2 ( \Omega )); \\ u(t)\in K_p (t) \quad \mbox{ for a.e. } t \geq s ; \\ 0 \le \theta (t , x ) \le h_p (t , u(t,x)) \quad \mbox{ a.e. on } ( s , + \infty ) \times \Omega ;\\ (u'(t)+ \theta (t) + {\bf b} \cdot \nabla u(t) - f_p (t), u(t) -z)+ a_q ( u(t), u(t) -z ) \le 0 \\ \mbox{for any } z \in K_p (t) \mbox{ and a.e. }t \geq s, \end{gathered} \end{equation} where $ K_p (t) := \big\{ z \in W^{1,q} ( \Omega ) : \sigma _{0, p } ( t , \cdot ) \le z \le \sigma _{1 , p} ( t , \cdot )\mbox{ a.e. on } \Omega\big\}$. Now we suppose the following conditions: \begin{itemize} \item $ \sigma_{i } $ and $ \sigma_{ i,p} $ are functions on $ R_+ \times \Omega $ such that $$ \sup_{ t \in R_+ } \Big| \frac{ d \sigma _{i } }{ dt } \Big|_{ L ^2 ( t, t+1 ; W^{1,q} ( \Omega ))} + \sup_{ t \in R_+ } \Big| \frac{ d \sigma _{i } }{ dt } \Big|_{ L ^2 ( t, t+1 ; L^{ \infty } ( \Omega ))} < + \infty ,$$ $$ \sup_{ t \in R_+ } \Big| \frac{ d \sigma _{i,p} }{ dt } \Big|_{ L ^2 ( t, t+1 ; W^{1,q} ( \Omega ))} + \sup_{ t \in R_+ } \Big| \frac{ d \sigma _{i,p} }{ dt } \Big|_{ L ^2 ( t, t+1 ; L^{ \infty } ( \Omega ))} < + \infty $$ and $ \sigma_{i ,p} $ is a $ T_0 $-periodic obstacle function, i.e. $$ \sigma_{i,p} ( t + T_0 ,x ) = \sigma _{i,p} (t,x) \quad \mbox{ for a.e. } x \in \Omega \mbox{ and any } t \in R_+ $$ for $ i= 0 , 1$. Moreover, there are positive constants $ k_1 >0 $ and $ k_2 >0$ such that $$ \sigma_{1 } - \sigma_{0 } \geq k_1 \quad \mbox{ and } \quad \sigma_{1,p} - \sigma_{0,p} \geq k_1 \quad \mbox{ a.e. on } R_+ \times \Omega $$ and $$ | \sigma_{i } | _{L^\infty ( R_+ ; W^{1,q} ( \Omega ))} + | \sigma _{i} |_{ L^\infty ( R_+ \times \Omega )} + | \sigma_{i,p} | _{L^\infty ( R_+ ; W^{1,q} ( \Omega ))} + | \sigma _{i,p} |_{ L^\infty ( R_+ \times \Omega )} \le k_2 $$ for $ i = 0 ,1 $. \item $ h $ and $ h_p $ are non-negative continuous functions on $ R_+ \times R $. There is a positive constant $ L $ such that \begin{gather*} |h ( t , z_1 ) - h ( t , z_2 )| \leq L | z_1 - z_2 | \\ |h_p ( t , z_1 ) - h_p ( t , z_2 )| \leq L | z_1 - z_2 | \end{gather*} for all $ t \in R_+ $, $ z_i \in R $ and $ i=1,2 $. Moreover, $ h_p $ is a $ T_0 $-periodic function, i.e. for any $ z \in R $, $ h_p ( t + T_0 , z) = h_p (t , z) $ for any $ t \in R_+ $. \item $ f $, $ f_p \in L^2_{\rm loc} ( R_+ ; L^2 ( \Omega ))$, and $ f_p $ is a $ T_0 $-periodic function, i.e. $$ f_p ( t + T_0 ) = f_p (t) \quad \mbox{ in } L^2 ( \Omega ) , \quad \forall t \in R_+ . $$ \end{itemize} Moreover, we suppose the following convergence conditions: \begin{itemize} \item (Convergence of $ \sigma _i (t) - \sigma _{ i,p } (t) \to 0 $ as $ t \to + \infty $) Put \begin{align*} I_m &:= \sup_{ t \in [ 0 , T_0]} | \sigma_0 ( m T_0 + t ) - \sigma _{ 0, p} (t)|_{ W^{ 1,q } ( \Omega )}\\ &+\sup_{ t \in [ 0 , T_0]} | \sigma_1 ( m T_0 + t ) - \sigma _{ 1, p} (t)|_{ W^{ 1,q } ( \Omega )}\\ &+\sup_{ t \in [ 0 , T_0]} | \sigma_0 ( m T_0 + t ) - \sigma _{ 0, p} (t)|_{ L^\infty ( \Omega )}\\ &+\sup_{ t \in [ 0 , T_0]} | \sigma_1 ( m T_0 + t ) - \sigma _{ 1, p} (t)|_{ L^\infty ( \Omega )} . \end{align*} Then, $I_m \to 0$ as $m \to + \infty$. \item (Convergence of $ h (t, \cdot ) - h_p (t , \cdot ) \to 0 $ as $ t \to + \infty $) For any $ z \in R $, \begin{equation} \sup_{ t \in [ 0 , T_0]} | h ( m T_0 + t , z ) - h_p (t,z) | \to 0 \quad \mbox{ as } m \to +\infty . \label{e5.1} \end{equation} \item (Convergence of $ f(t) - f_p (t) \to 0 $ as $ t \to + \infty $) \begin{equation} | f ( m T_0 + \cdot ) - f_p |_{ L^2 ( 0 , T_0 ; L^2 ( \Omega ))} \to 0 \quad \mbox{ as } m \to +\infty . \label{e5.2} \end{equation} \end{itemize} Under the above assumptions, let us consider problems \eqref{OPap} and \eqref{OPp}. To apply the abstract results in Sections 2-4, we choose $ L^2 ( \Omega ) $ as a real separable Hilbert space $ H $. And we define a proper l.s.c. convex function $ \varphi^t $ on $ L^2( \Omega )$ by \begin{equation} \varphi^t (z) = \begin{cases} \displaystyle \frac{1}{q} \int_\Omega | \nabla z|^q dx &\mbox{if } z \in K (t) , \\[0.2cm] + \infty &\mbox{if } z \in L^2 ( \Omega ) \setminus K (t) , \end{cases} \label{e5.3} \end{equation} and define $ \varphi^t_p $ by replacing $ K(t) $ by $ K_p (t) $ in \eqref{e5.3}. Also, we define a multivalued operator $ G ( \cdot , \cdot ) $ from $ R_+ \times H^1 ( \Omega ) $ into $ L^2 ( \Omega ) $ by \begin{equation} \begin{aligned} G (t,z) := \big\{ g \in L^2 ( \Omega ) ; g= l + {\bf b} \cdot \nabla z \quad \mbox{in } L^2 ( \Omega ) \\ 0 \le l( x ) \le h (t , z(x)) \quad \mbox{a.e. on } \Omega\big\} \end{aligned}\label{e5.4} \end{equation} for all $ t \in R_+ $ and $ z \in H^1 ( \Omega ) $. And we define $ G_p ( \cdot , \cdot ) $ by replacing $ h(t , \cdot ) $ by $ h_p (t , \cdot ) $ in \eqref{e5.4}. By the same argument as in \cite[Lemma 5.1]{YIK}, we can obtain the following lemmas. \begin{lemma}[{cf. \cite[Lemma 5.1]{YIK}}] \label{lm5.1} For any $ r > 0 $ and $ t \in R_+ $, put \begin{align*} a_r (t) &= b_r (t) \\ &:= k_3 \int_0^t \left\{ | \sigma_{0,p}'|_{ L^\infty ( \Omega )}+ | \sigma_{0,p} ' |_{ W^{1,q} ( \Omega )}+| \sigma_{1,p} ' |_{ L^\infty ( \Omega )}+ | \sigma_{1,p} '|_{ W^{1,q} ( \Omega )} \right\} d \tau \\ &\quad + k_3 \int_0^t \left\{ | \sigma_{0}'|_{ L^\infty ( \Omega )}+ | \sigma_{0} ' |_{ W^{1,q} ( \Omega )}+| \sigma_{1} ' |_{ L^\infty ( \Omega )}+ | \sigma_{1} '|_{ W^{1,q} ( \Omega )} \right\} d \tau , \end{align*} where $ k_3 $ is a (sufficiently large) positive constant. Then, $\{ \varphi^t \} \in \Phi ( \{ a_r \}, \{ b_r \} ) $ and $\{ \varphi^t_p \} \in \Phi_p ( \{ a_r \}, \{ b_r \} ; T_0 ) $. Moreover we have $ \{ G (t, \cdot ) \} \in \mathcal{G} ( \{ \varphi^t \} )$ and $ \{ G_p (t, \cdot ) \} \in \mathcal{G}_p( \{ \varphi^t_p \} ; T_0 )$. \end{lemma} \begin{lemma} \label{lm5.2} The convergence assumptions (A1)-(A3) hold. \end{lemma} \begin{proof} We see easily that (A2) and (A3) hold by assumptions \eqref{e5.1} and \eqref{e5.2}. Now let us show (A1). For each $ t \in R_+ $ there are $ m \in Z_+ $ and $ \tau \in [ 0 , T_0 ] $ so that $ t = m T_0 + \tau $. For each $ z_p \in D( \varphi^t _p ) = K_p (t) $, we put $$ z := ( z_p - \sigma_{0,p}(t)) \frac{\sigma_1(t)-\sigma_0(t)}{\sigma_{1,p}(t) -\sigma_{0,p}(t)}+\sigma_0(t) . $$ Then we see that $ z \in D( \varphi^t ) = K (t) $. Moreover, by the same argument in \cite[Lemma 5.1]{YIK}, we see that \begin{equation} | z - z_p |_{ L^2 ( \Omega)} \le k_4 I_m \quad \mbox{and} \quad | \nabla z - \nabla z_p |_{ L^q ( \Omega)} \le k_4 I_m ( 1 + | \nabla z_p |_{L^q ( \Omega) }) \label{e5.5} \end{equation} for some constant $ k_4 >0 $. Hence we have \begin{equation} \varphi^t ( z) - \varphi^t_p ( z_p ) \le k_5 I_m ( 1 + \varphi^t _p ( z_p )) \label{e5.6} \end{equation} for a sufficiently large $ k_5 >0$. Conversely, let $ z \in D( \varphi^t ) = K (t) $ and we put $$ z_p := ( z - \sigma_{0}(t)) \frac{\sigma_{1,p} (t) -\sigma_{0,p} (t)}{\sigma_{1}(t)-\sigma_{0}(t)}+\sigma_{0,p}(t) . $$ Then, we observe that $ z_p \in D( \varphi^t _p ) = K_p (t) $ and \begin{equation} | z_p - z |_{ L^2 ( \Omega)} \le k_4 I_m \quad \mbox{ and } \quad \varphi^t _p ( z_p ) - \varphi^t ( z ) \le k_5 I_m ( 1 + \varphi^t ( z )) . \label{e5.7} \end{equation} Therefore, by \eqref{e5.5}-\eqref{e5.7} we see that the convergence assumption (A1) holds. \end{proof} Clearly, the obstacle problem \eqref{OPap} can be reformulated as an evolution equation \eqref{APs} involving the subdifferential of $ \varphi ^t $ given by \eqref{e5.3} and the multivalued operator $ G (t , \cdot )$ defined by \eqref{e5.4}. Also, the limiting $ T_0 $-periodic problem \eqref{OPp} can be reformulated as an evolution equation \eqref{Ps}. Therefore, by Lemmas \ref{lm5.1}-\ref{lm5.2} we can apply abstract results in Section 2-4. Namely, we can obtain an attractor $ \mathcal{A}_s ^* $ for \eqref{OPap}, a $ T_0 $-periodic attractor $ \mathcal{A}_s $ for \eqref{OPp} and the relationships between \eqref{OPap} and \eqref{OPp} Additionally, we assume that $ f(t) \equiv f_p (t) $ for any $ t \in R_+ $ and $$ \sigma _{0 } (t, z ) \equiv \sigma _{0, p } ( t, z) , \quad \sigma _{1, p } (t, z ) \equiv \sigma _{1 } ( t, z) , \quad h_p ( t, z ) \le h ( t, z) $$ for any $ 0 \le t < + \infty $ and $ z \in R$. Then we easily see that the assumptions of Theorem \ref{thm4.4} and its Corollary hold. Hence we can get $\mathcal{A}_s ^* = \mathcal{A}_s $ by the same argument in \cite[Theorem 5.4]{Y3}. Unfortunately, we do not give assumptions for $ \sigma _i ( t , \cdot )$, $ h ( t , \cdot ) $ and $ f (t)$ in order to get \begin{equation} U ( \tau , s )\mathcal{A}_s ^* = \mathcal{A}_\tau ^* \subset \mathcal{A}_\tau \mbox{ for any } 0 \le s \le \tau < + \infty . \label{e5.8} \end{equation} It seems difficult to show \eqref{e5.8}, so we leave it as an open problem. \begin{thebibliography}{99} \bibitem{Au} J. P. Aubin and H. F. Frankowska, {\it Set-Valued Analysis,} Systems \& Control: Foundations \& Applications {\bf 2}, Bikha\" user, Boston-Basel-Berlin, 1990. \bibitem{AD} H. Attouch and A. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math., {\bf 12}(1972), 373-390. \bibitem{AD2} H. Attouch and A. Damlamian, Problemes d'evolution dans les Hilberts et applications, J. Math. Pures Appl., {\bf 54}(1975), 53--74. \bibitem{Bre} H. Br\'ezis, {\it Op\'erateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert}, North-Holland, Amsterdam, 1973. \bibitem{CVp} V. V. Chepyzhov and M. I. Vishik, Attractors of periodic processes and estimates of their dimensions, Mathematical Notes, {\bf 57}(1995), 127-140. \bibitem{cv1} V. V. Chepyzhov and M. I. Vishik, {\it Attractors for Equations of Mathematical Physics, } Colloquium Publications {\bf 49}, Amer. Math. Soc., Providence, R. I., 2002. \bibitem{D} A. Damlamian, {\it Non linear evolution equations with variable norms,} Thesis, Harvard University, 1974. \bibitem{FMK} H. Furuya, K. Miyashiba and N. Kenmochi, Asymptotic behavior of solutions to a class of nonlinear evolution equations, J. Differential Equations, \textbf{62}(1986), 73-94. \item J. K. Hale, {\it Asymptotic Behavior of Dissipative Systems}, Mathematical Surveys and Monographs {\bf 25}, Amer. Math. Soc., Providence, R. I., 1988. \bibitem{IKY} A. Ito, N. Yamazaki and N. Kenmochi, Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces, pp. 327-349, in {\it Dynamical Systems and Differential Equations, Missouri 1996 Volume 1}, ed. W. Chen and S. Hu, Southwest Missouri State University, 1998. \bibitem{IKYp} A. Ito, N. Kenmochi and N. Yamazaki, Attractors of periodic systems generated by time-dependent subdifferentials, Nonlinear Anal. TMA., {\bf 37}(1999), 97-124. \bibitem{KV} A. V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations, Abstract and Applied Anal., {\bf 5}(2000), 33-46. \bibitem{K} N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., {\bf 39}(1981), 1-87. \bibitem{KO} N. Kenmochi and M. \^Otani, Instability of periodic solutions of some evolution equations governed by time-dependent subdifferential operators, Proc. Japan Acad., {\bf 61}(1985), 4-7. \bibitem{KO2} N. Kenmochi and M. \^Otani, Asymptotic behavior of periodic systems generated by time-dependent subdifferential operators, Funk. Ekvac., {\bf 29}(1986), 219-236. \bibitem{KO3} N. Kenmochi and M. \^Otani, Nonlinear evolution equations governed by subdifferential operators with almost periodic time-dependence, Rend. Accad. Naz. Sci. XL, Memorie di Mat., {\bf 10}(1986), 65-91. \bibitem{KY} N. Kenmochi and N. Yamazaki, Global attractors for multivalued flows associated with subdifferentials, pp. 135-144, in {\it Elliptic and Parabolic Problems, Proceeding of the 4th European Conference, Rolduc, Netherlands, Gaeta, Italy, 2001, ed. J. Bemelmans et al,} World Scientific, 2002. \bibitem{Ku} M. Kubo, Characterization of a class of evolution operators generated by time-dependent subdifferentials, Funk. Ekvac., \textbf{32}(1989), 301-321. \bibitem{MV2} V. S. Mel'nik and J. Valero, On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., {\bf 8}(2000), 375-403. \bibitem{M} U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math., {\bf 3}(1969), 510-585. \bibitem{O} M. \^Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, {\bf 46}(1982), 268-299. \bibitem{O2} M. \^Otani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems, J. Differential Equations, {\bf 54}(1984), 248--273. \bibitem{O3} M. \^Otani, Nonlinear evolution equations with time-dependent constraints, Adv. Math. Sci. Appl., {\bf 3}(1993/94), Special Issue, 383--399. \bibitem{O4} M. \^Otani, Almost periodic solutions of periodic systems governed by subdifferential operators, Proc. Amer. Math. Soc., {\bf 123}(1995), 1827--1832. \bibitem{SIKY} K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials, pp. 287-310, in {\it Recent Developments in Domain Decomposition Methods and Flow Problems}, GAKUTO Intern. Ser. Math. Appl., vol 11, Gakkotosho, Tokyo, 1998. \item R. Temam, {\it Infinite Dimensional Dynamical Systems in Mechanics and Physics}, Springer-Verlag, Berlin, 1988. \bibitem{YIK} N. Yamazaki, A. Ito and N. Kenmochi, Global attractor of time-dependent double obstacle problems, pp. 288-301, in {\it Functional Analysis and Global Analysis}, ed. T. Sunada and P. W. Sy, Springer-Verlag, Singapore, 1997. \bibitem{Y} N. Yamazaki, Attractors for non-autonomous multivalued evolution systems generated by time-dependent subdifferentials, Abstract and Applied Analysis, {\bf 7}(2002), 453-473. \bibitem{Yp} N. Yamazaki, Global attractor for periodic multivalued dynamical systems generated by time-dependent subdifferential operators, Adv. Math. Sci. Appl., {\bf 13}(2003), 663--683. \bibitem{Y3} N. Yamazaki, Stability for asymptotically periodic multivalued dynamical systems generated by double obstacle problems, pp. 352--367, in {\it Nonlinear Partial Differential Equations and Their Applications}, GAKUTO Intern. Ser. Math. Appl., vol 20 Gakkotosho, Tokyo, 2004. \end{thebibliography} \end{document}