\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 112, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/112\hfil Internal exact controllability] {Internal exact controllability of the linear population dynamics with diffusion} \author[B. Ainseba, S. Ani\c{t}a\hfil EJDE-2004/112\hfilneg] {Bedr'Eddine Ainseba, Sebastian Ani\c{t}a} % in alphabetical order \address{Bedr'Eddine Ainseba \hfill\break Math\'{e}matiques Appliqu\'{e}es de Bordeaux, UMR CNRS 5466\\ Case 26, UFR Sciences et Mod\'elisation\\ Universit\'{e} Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France} \email{ainseba@sm.u-bordeaux2.fr} \address{Sebastian Ani\c{t}a \hfill\break Faculty of Mathematics, University ``Al.I. Cuza'' and Institute of Mathematics of the Romanian Academy, Ia\c{s}i 6600, Romania} \email{sanita@uaic.ro} \date{} \thanks{Submitted January 4, 2004. Published September 29, 2004.} \subjclass[2000]{93B05, 35K05, 46B70, 92D25} \keywords{Exact controllability; age-structured population dynamics} \begin{abstract} We consider the internal exact controllability of a linear age and space structured population model with nonlocal birth process. The control acts only in a spatial subdomain and only for small age classes. The methods we use combine the Carleman estimates for the backward adjoint system, some estimates in the theory of parabolic boundary value problems in $L^k$ and the Banach fixed point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Let $\Omega $ be a bounded domain in $\mathbb{R}^n$ $(n\leq 3)$ with a smooth boundary $\partial \Omega $. Assume that a biological population is free to move in the environment $\Omega$. We denote by $y(a,t,x) $ the density of individuals of age $a\geq 0$ at time $t\geq 0$ and location $x \in \overline{ \Omega}$ and assume that the flux of population takes the form $k\nabla y(a,t,x)$ with $k>0$, where $\nabla $ is the gradient vector with respect to the spatial variable. Let $A$ be the life expectancy of an individual and $T$ be a positive constant. Let $\beta (a)$ be the natural fertility rate and $\mu (a)$ the natural mortality rate corresponding to individuals of age $a$. The dynamics of the population is described by the following model \begin{equation} \begin{gathered} Dy+\mu (a)y-k\Delta y = f(a,x)+m(a,x)u(a,t,x), \quad (a,t,x)\in Q_T \\ \frac{\partial y}{\partial \nu }(a,t,x) =0, \quad (a,t,x)\in \Sigma _T \\ y(0,t,x)=\int_0^A\beta (a)y(a,t,x) da, \quad (t,x)\in (0,T)\times \Omega \\ y(a,0,x)=y_0(a,x) , \quad (a,x)\in (0,A ) \times \Omega , \end{gathered} \label{e1} \end{equation} where $u$ is the control and $m$ is the characteristic function of $(0,a^*)\times \omega $, $f$ is the density of an infusion of population and $y_0$ is the initial population density. Here $a^*\in (0,A]$ and $\omega \subset \subset \Omega $ is a nonempty open subset, $Q_T=(0,A)\times (0,T)\times \Omega $, $\Sigma_T=(0,A)\times (0,T)\times \partial \Omega $. We denote by \[ Dy(a,t,x)={\lim_{\varepsilon \to 0} }\frac{y\left( a+\varepsilon ,t+\varepsilon, x \right) -y\left( a,t,x\right) }{\varepsilon } \] the directional derivative of $y$ with respect to the direction $\left( 1,1,0\right) $. If $y$ is smooth enough then \[ Dy=\frac {\partial y}{\partial t}+\frac {\partial y}{\partial a}. \] The control acts only in the spatial set $\omega $ and for ages between $0$ and $a^*$. Let $y_s$ be a nonnegative steady-state of \eqref{e1}, corresponding to $u \equiv 0$ and such that \begin{equation} y_s(a,x)\geq \rho _0>0\quad \mbox{\rm a.e. }(a,x)\in (0,a_1^*)\times \Omega , \label{e2} \end{equation} where $\rho _0>0$ is constant and $a_1^*\in (0,A)$ is a constant which will be defined later. The main goal of this paper is to prove the existence of a control $u$ such that the solution $y$ of \eqref{e1} satisfies \begin{equation} \begin{gathered} y(a,T,x)=y_s(a,x) \quad \mbox{\rm a.e. }(a,x)\in (0,A)\times \Omega,\\ y(a,t,x)\geq 0 \quad \mbox{\rm a.e. }(a,t,x)\in Q_T. \end{gathered}\label{e3} \end{equation} Condition \eqref{e3} is natural because $y$ represents the density of a population. We notice that if $y$ is the solution to \eqref{e1}, then $y-y_s$ is the solution to \begin{equation} \begin{gathered} Dz+\mu (a)z-k\Delta z=m(a,x)u(a,t,x), \quad (a,t,x)\in Q_T \\ \frac{\partial z}{\partial \nu }(a,t,x) =0,\quad (a,t,x)\in \Sigma _T \\ z(0,t,x)=\int_0^A\beta (a)z(a,t,x) da, \quad (t,x)\in (0,T)\times \Omega \\ z(a,0,x)=z_0(a,x) , (a,x)\in (0,A)\times \Omega , \end{gathered} \label{e4} \end{equation} where $z_0=y_0-y_s$. The above formulated problem is equivalent to the exact null controllability problem with state constraints for \eqref{e4}. Indeed, if we denote now by $z$ the solution to \eqref{e4}, then condition \eqref{e3} becomes \[ z(a,t,x)\geq -y_s(a,x) \quad \mbox{\rm a.e. }(a,t,x)\in Q_T . \] We recall that the internal null controllability of the linear heat equation, when the control acts on a subset of the domain, was established by G. Lebeau and L. Robbiano \cite{l4} and was later extended to some semilinear equation by A.V. Fursikov and O.Yu. Imanuvilov \cite{f2}, in the sublinear case and by V. Barbu \cite{b1} and E. Fernandez--Cara \cite{f1}, in the superlinear case. The internal null controllability of the age-dependent population dynamics in the particular case when the control acts in a spatial subdomain $\omega $ but for all ages $a$ (this is the particular case corresponding to $a^*=A$) was investigated by B. Ainseba and S. Ani\c{t}a \cite{a2}. This paper is organized as follows. We first give the hypotheses and state the main result. The existence of a steady--state of \eqref{e1} with $u \equiv 0$ is established in Section 3. The proof of the local exact null controllability is given in Section 4. The proof is based on Carleman's inequality for the backward adjoint system associated with \eqref{e4}. \section{Assumptions and the main result} Assume that the following hypotheses hold: \begin{itemize} \item[(H1)] $\beta \in L^{\infty }(0,A)$, $\beta (a)\geq 0$ a.e. $a\in (0,A)$ \\ There exists $a_{0},a_{1}\in (0,A)$, $a_{0}0$ a.e. in $(a_{0},a_{1})$ \item[(H2)] $\mu \in C([0,A))$, $\mu (a)\geq 0$ a.e. $a\in (0,A)$, $ \int_{0}^{A}\mu (a)da=+\infty $ \item[(H3)] $y_{0}\in L^{\infty }((0,A)\times \Omega )$, $y_{0}(a,x)\geq 0$ a.e. in $(0,A)\times \Omega $\\ $f\in L^{\infty }((0,A)\times \Omega )$, $f(a,x)\geq 0 $ a.e. in $(0,A)\times \Omega $. \end{itemize} For the biological significance of the hypotheses and the basic existence results for the solution to \eqref{e1} we refer to \cite{a3,g1,g2,i1,l2,w1}. Let $y_s$ be a nonnegative steady-state of \eqref{e1}, corresponding to $u \equiv 0$ and such that \[ y_s(a,x)\geq \rho _0>0\quad \mbox{\rm a.e. }(a,x)\in (0,a_1)\times \Omega , \] where $\rho _0>0$ is a constant. Denote by $z_0=y_0-y_s$. Then we have the following internal controllability result \begin{theorem} \label{thm2.1} Let $T>A-a^{*}$ be arbitrary but fixed. If $\| y_{0}-y_{s}\| _{L^{\infty }((0,A)\times \Omega )}$ is small enough, then there exists $u\in L^{2}(Q_{T})$ such that the solution $y$ of \eqref{e1} satisfies \begin{equation} \begin{gathered} y(a,T,x)=y_{s}(a,x)\quad \mbox{\rm a.e. }(a,x)\in (0,A)\times \Omega \\ y(a,t,x)\geq 0\quad \mbox{\rm a.e. }(a,t,x)\in Q_{T}. \end{gathered} \label{e51} \end{equation} If $T0$, then there is no $u\in L^{2}(Q_{T})$ such that the solution $y$ of \eqref{e1} to satisfy \eqref{e51}. \end{theorem} This result can be equivalently formulated as follows \begin{theorem} \label{thm2.2} Let $T>A-a^{*}$ be arbitrary but fixed. If $\| z_{0} \|_{L^{\infty }((0,A)\times \Omega )}$ is small enough, then there exists $u\in L^{2}(Q_{T})$ such that the solution $z$ of \eqref{e4} satisfies \begin{equation} \begin{gathered} z(a,T,x)=0\quad \mbox{\rm a.e. }(a,x)\in (0,A)\times \Omega \\ z(a,t,x)\geq -y_{s}(a,x)\quad \mbox{\rm a.e. }(a,t,x)\in Q_{T}. \end{gathered}\label{e5} \end{equation} If $T0$, then there is no $u\in L^{2}(Q_{T})$ such that the solution $z$ of \eqref{e4} to satisfy \eqref{e5}. \end{theorem} \section{Existence of steady states for \eqref{e1}} In this section we shall remind some results (see \cite{a2}) concerning the existence of $y_s$, a nonnegative steady-state of \eqref{e1}, corresponding to $u \equiv 0$, which satisfies \eqref{e2}. $y_s$ should be a solution to \begin{equation} \begin{gathered} \frac{\partial y_s}{\partial a}+\mu (a)y_s -k\Delta y_s=f(a,x), \quad (a,x)\in (0,A)\times \Omega \\ \frac{\partial y_s}{\partial \nu }(a,x)=0, \quad (a,x)\in (0,A) \times \partial \Omega \\ y_s(0,x)=\int_0^{A }\beta (a) y_s(a,x) da, \quad x\in \Omega\,. \end{gathered} \label{e6} \end{equation} Denote by $$ R= \int_0^{A }\beta (a)\exp\big({-\int_0^a\mu(s)ds}da\big) $$ the reproductive number and consider $f_0$ a nonnegative constant. \begin{theorem} \label{thm3.1} \begin{itemize} \item If $R<1$ and $f(a,x)\geq f_0>0$ a.e. $(a,x)\in (0,A)\times \Omega $, then there exists a unique nonnegative solution to \eqref{e6}, which in addition satisfies \eqref{e2}. \item If $R=1$ and $f\equiv 0$, then there exist infinitely many nonnegative solutions to \eqref{e6}, which satisfy \eqref{e2}. \item If $R>1$, then there is no nonnegative solution to \eqref{e6}, satisfying \eqref{e2}. \end{itemize} \end{theorem} \begin{proof} If $R<1$, then there exists a unique and nonnegative solution to \eqref{e6} (this follows by Banach's fixed point theorem). Since $f(a,x)\geq f_0>0$ a.e. $(a,x)\in (0,A)\times \Omega $, then by the comparison result in \cite{g1}(see also \cite{a3}) we get that \[ y_s(a,x)\geq y_i(a,t,x) \quad \mbox{\rm a.e. }(a,t,x)\in Q= (0,A )\times (0,+\infty )\times \Omega , \] where $y_i$ is the solution to \begin{gather*} Dy_i+\mu y_i-k\Delta y_i=f_0, \quad (a,t,x) \in Q \\ \frac{\partial y_i}{\partial \nu }=0, \quad (a,t,x)\in \Sigma \\ y_i(0,t,x) =\int_0^{A }\beta (a)y_i(a,t,x) da, \quad (t,x)\in (0,+\infty )\times \Omega \\ y_i(a,0,x)=0, \quad (a,x)\in (0,A )\times \Omega \end{gather*} Note that $\Sigma =(0,A)\times (0,+\infty )\times \partial \Omega $); $y_i$ does not explicitly depend on $x$. So, we shall write $y_i(a,t)$ instead of $ y_i(a,t,x)$. It means that \[ y_s(a,x)\geq y_i(a,t)\quad \forall t\in [0,+\infty ), \quad \mbox{\rm a.e.} (a,x)\in (0,A)\times \Omega, \] and that $y_i$ is the solution of \begin{gather*} Dy_i+\mu y_i=f_0, \quad (a,t)\in (0,A)\times (0,+\infty ) \\ y_i(0,t)=\int_0^{A}\beta (a)y_i(a,t)da, \quad t\in (0,+\infty ) \\ y_i(a,0)=0, \quad a\in (0,A) . \end{gather*} For $t>A$ we have $y_i(0,t)>0$ and $y_i(0,t)$ is continuous with respect to $ t$ (see \cite{a3}). As a consequence we obtain that there exists $\rho _0>0$ such that, for $t$ large enough, and for any $a \in (0,a_1^*) $, \[ y_i(a,t) >\rho _0, \] and in conclusion we get that $y_s$ satisfies \eqref{e2}. If $R=1$ and $f\equiv 0$, then all the solutions of \eqref{e6} which are satisfying \eqref{e2} are given by \[ y(a,x)= ce^{-\int_0^a\mu (s)ds},\quad (a,x)\in (0,A ) \times \Omega, \] where $c\in \mathbb{R}^*_+$ is an arbitrary constant. The conclusion is now obvious. If $R>1$ and if it would exist a nonnegative solution $y_s$ to \eqref{e6} satisfying \eqref{e2}, then $y(a,t,x)=y_s(a,x)$, $(a,t,x)\in \overline{Q}$ is the solution to \begin{gather*} Dy+\mu y-k\Delta y=f(a,x), \quad (a,t,x)\in Q \\ \frac{\partial y}{\partial \nu }=0, \quad (a,t,x)\in \Sigma \\ y(0,t,x)=\int_0^{A}\beta (a)y(a,t,x) ,\quad (t,x)\in (0,+\infty )\times \Omega \\ y(a,0,x)=y_s(a,x) , \quad (a,x)\in (0,A)\times \Omega \end{gather*} and for $t\to +\infty $ we have (see \cite{a3,l3}) \[ \lim_{t\to +\infty }\| y(t) \|_{L^2((0,A)\times \Omega )}=+\infty . \] On the other hand \[ \| y(t)\| _{L^2((0,A)\times \Omega )}= \| y_s \|_{L^2((0,A)\times \Omega )}, \] and so $\| y_s\| _{L^2((0,A)\times \Omega )}=+\infty $, which is absurd.\end{proof} \section{Proof of the main result} We shall prove Theorem \ref{thm2.2} (which is equivalent to Theorem \ref{thm2.1}). We intend to use the general Carleman inequality for linear parabolic equations given in \cite{f2}. Namely, let $\widetilde{\omega }\subset \subset \omega $ be a nonempty bounded set, $T_0\in (0,+\infty )$ and $\psi \in C^2(\overline{ \Omega })$ be such that \[ \psi (x)>0, \ \forall x\in \Omega , \quad \psi (x)=0, \ \forall x\in \partial \Omega , \quad \left| \nabla \psi (x)\right| >0, \ \forall x\in \overline{\Omega }\setminus \widetilde{\omega } \] and set \[ \alpha (t,x) = \frac{e^{\lambda \psi (x)}-e^{2\lambda \| \psi \| _{C(\overline{\Omega }) }}}{t(T_0-t) }, \] where $\lambda $ is an appropriate positive constant. Denote by $D_{T_0}=(0,T_0)\times \Omega $. \begin{lemma} \label{lm4.1} There exist positive constants $C_{1},s_{1}$ such that \begin{equation} \label{e7} \begin{aligned} &\frac{1}{s}\int_{D_{T_{0}}}t\left( T_{0}-t\right) e^{2s\alpha } \left( \left| w_{t}\right| ^{2}+\left| \Delta w\right| ^{2}\right) dx\,dt\\ &+s\int_{D_{T_{0}}}\frac{e^{2s\alpha }}{t\left( T_{0}-t\right) }\left| \nabla w\right| ^{2}dx\,dt +s^{3}\int_{D_{T_{0}}}\frac{e^{2s\alpha }}{t^{3}\left( T_{0}-t\right) ^{3}} \left| w\right| ^{2}dx\,dt\\ &\leq C_{1}\Big[ \int_{D_{T_{0}}}e^{2s\alpha }\left| w_{t}+\Delta w\right| ^{2}dx\,dt+s^{3}\int_{(0,T_{0})\times \omega }\frac{e^{2s\alpha }}{ t^{3}\left( T_{0}-t\right) ^{3}}\left| w\right| ^{2}dx\,dt\Big] , \end{aligned} \end{equation} for all $w\in C^{2}(\overline{D}_{T_{0}})$, $\frac{\partial w}{\partial \nu }(t,x)=0$, $\forall (t,x)\in (0,T_{0})\times\partial \Omega $ and $s\geq s_{1}$. \end{lemma} The proof of this result can be found in \cite{f2}. \smallskip If $a^{*}=A$, the result has already been proved in \cite{a2}. We shall treat now the case $a^*\in (0,A)$. Consider $a_1^*:=a^*$. Let us choose $T_{0}\in (0,\min\{a_{0},a^{*},A-a^{*},T-A+a^{*},A-a_{1}\})$. Define \[ K=L^{\infty }\left( (0,A-a^{*}+T_{0})\times \Omega \right) . \] In what follows we shall denote by the same symbol $C$, several constants independent of $z_0$ and all other variables. For $b\in K$ arbitrary but fixed and for any $\varepsilon >0$, consider the following optimal control problem:\\ Minimize \begin{equation} \Big\{ \int_G\int_\Omega \varphi (a,t,x)|u(a,t,x)|^2dx\,dt\,da+ \frac1\varepsilon \int_{\Gamma _0}\int_\Omega \left| z(a,t,x) \right|^2dx\,dl \Big\} , \label{Pe} % (P_\varepsilon) \end{equation} subject to \eqref{e8} ($u\in L^2(G\times \Omega )$ and $z$ is the solution of \eqref{e8} corresponding to $u$). Here \begin{gather*} G=(0,a^*)\times (0,T_0)\cup (0,T_0)\times (0,A-a^*+T_0), \\ \Gamma _0=\{ T_0\} \times (T_0, A-a^*+T_0)\cup (T_0,a^*)\times \{ T_0\},\\ \varphi (a,t,x)=\begin{cases} e^{-2s\alpha (t,x) }t^3(T_0-t) ^3, &\mbox{if } t0$ and consequently \[ \| \widetilde{v}_\varepsilon \| _{W_2^{1,2}\left( (0,T_0)\times \Omega \right) }^2\leq C\| \widetilde{z}_\varepsilon (0) \| _{L^2(\Omega )}^2, \] where $\widetilde{v}_\varepsilon (t,x)=\frac {e^{2s\alpha (t,x)}}{t^{3}(T_0-t)^{3}} \widetilde{q}_\varepsilon$, $(t,x)\in (0,T_0)\times \Omega $. As \[ W_2^{1,2}\left( (0,T_0)\times \Omega \right) \subset L^l((0,T_0)\times \Omega ) \] (where $l=+\infty $ for $N=1,2$ and $ l=10$ for $N=3$), we may infer that \begin{equation} \| \widetilde{u}_\varepsilon \| _{L^{10}\left( (0,T_0)\times \Omega \right) }^2=\| m\widetilde{v}_\varepsilon \|_{L^{10}\left( (0,T_0)\times \Omega \right) }^2\leq C\| \widetilde{z} _\varepsilon (0) \| _{L^2(\Omega )}^2 ,\label{e17} \end{equation} for any $\varepsilon >0$ and $ s\geq \max(s_1,\,C\| \mu \| _{C\left( \left[ 0,a^*\right] \right) }^{\frac 23}).$ The last estimate and the existence theory of parabolic boundary value problems in $L^r$ (see \cite{l1}) imply that on a subsequence (also denoted by $(\tilde{u}_{\varepsilon })$) we have that \begin{gather*} \widetilde{u}_\varepsilon \to \widetilde{u}\quad \mbox{weakly in }L^{10}\left( (0,T_0)\times \Omega \right) \\ \widetilde{z}_\varepsilon \to \widetilde{z}^{\widetilde{u}}\quad \mbox{weakly in }W_{10}^{1,2}\left( (0,T_0)\times \Omega \right) , \end{gather*} where $\left(\widetilde{u},\widetilde{z}^{\widetilde{u}}\right) $ satisfies \eqref{e11} and \[ \widetilde{z}^{\widetilde{u}}(T_0,x)=0\quad \mbox{\rm a.e. }x\in \Omega . \] By \eqref{e11} we get that \[ \| \widetilde{z}^{\widetilde{u}}\| _{L^\infty \big((0,T_0)\times \Omega \big)}^2 \leq C\left( \| \widetilde{z}^{\tilde{u}} (0) \| _{L^\infty (\Omega )}^2 +\| m\widetilde{u} \| _{L^3\left((0,T_0)\times \Omega \right)}^2\right) \] (we recall that $W_3^{1,2}\left( (0,T_0)\times \Omega \right) \subset L^\infty \left( (0,T_0)\times \Omega \right)$ for $N\in \left\{ 1,2,3\right\} $; see \cite{a1,l1}). So by \eqref{e17} we have \[ \| \widetilde{z}^{\widetilde{u}}\| _{L^\infty \left( (0,T_0)\times \Omega \right) }^2 \leq C\| \widetilde{z}^{\tilde{u}}(0) \| _{L^\infty (\Omega )}^2 . \] We extend $u$ given by $\widetilde{u}$ (on each characteristic line) by $0$. In this manner we get that $u\in L^2(Q_T) $. Let $z^u$ be the solution to \begin{gather*} Dz+\mu z-k\Delta z =m(a,x)u(a,t,x) , \quad(a,t,x)\in (0,A)\times (0,A-a^*+T_0)\times \Omega \\ \frac{\partial z}{\partial \nu }=0, \quad (a,t,x)\in (0,A)\times (0,A-a^*+T_0)\times \partial \Omega \\ z(0,t,x)=b(t,x) , \quad (t,x)\in (0,A-a^*+T_0)\times \Omega \\ z(a,0,x)=z_0(a,x), \quad (a,x)\in (0,A )\times \Omega . \end{gather*} Since $z^u=0$ on $\Gamma_0\times \Omega $ and $u=0$ outside $G\times \Omega $ we conclude that $z^u(a,t,x)=0$ a.e. in $\{ (a,t,x); t\in (T_0,A-a^*+T_0)$, $T_0T_{0}$, then $ \int_{0}^{A}\beta (a)z^{u}(a,t,x)da=\int_t^A\beta (a)z^u(a,t,x)da$ and does not depend on $b$. \\ If $t\in (0,T_{0})$, then $\int_{0}^{A}\beta (a)z^{u}(a,t,x)da=\int_{T_{0}}^{A-T_{0}}\beta (a)z^{u}(a,t,x)da$, and this depends only on $z_{0}$ and not on $b$. \smallskip We also have that $z^u(a,A-a^*+T_0,x)=0$ a.e. $(a,x)\in (T_0,A )\times \Omega $ and \begin{equation} \big|\int_{T_0}^{A -T_0}\beta (a)z^u(a,t,x) da \big|\leq C\| \beta \| _{L^\infty (0,A ) }\cdot \| z_0 \|_{ L^\infty \left( (0,A ) \times \Omega \right) } \label{e19} \end{equation} a.e. in $(0,A-a^*+T_0)\times \Omega $. It also follows that $$ \int_0^A\beta (a)z^u(a,t,x)da=\int_0^{T_0}\beta (a)z^u(a,t,x)da +\int_{A-T_0}^A\beta (a)z^u(a,t,x)da=0 $$ a.e. $(t,x)\in (A-a^*,A-a^*+T_0)$ (because $\beta (a)=0$ on $(0,T_0)\cup (A-T_0,A)$). So, for any $u$ as above we can take \[ b(t,x)=\begin{cases} 0 & \mbox{a.e. } (t,x)\in (A-a^*,A-a^*+T_0)\times \Omega \\[3pt] \int_0^{A }\beta (a)z^u(a,t,x) da & \mbox{\rm a.e. } (t,x)\in (0,A-a^*)\times \Omega \end{cases} \] a fixed point of the multivalued function $\Phi$. In addition, by \eqref{e18} and \eqref{e19} we have \[ \| z^u\| _{L^\infty (Q_{A-a^*+T_0}) }\leq C \|z_0\| _{L^\infty \left((0,A )\times \Omega \right) }. \] So, if $\| z_0\| _{L^\infty \left( (0,A ) \times \Omega \right) }$ is small enough, there exists $u\in L^2(Q_{A-a^*+T_0})$, $u=0$ on $(a^*,A)\times (A-a^*,A-a^*+T_0)\times \Omega $, such that $z$, the solution of \eqref{e4} (with $T:=A-a^*+T_0$) satisfies \begin{gather*} z(a,A-a^*+T_0,x)=0\quad \mbox{\rm a.e. }(a,x)\in (0,A)\times \Omega,\\ \| z\| _{L^\infty (Q_{A-a^*+T_0})}\leq C\|z_0 \| _{L^\infty \left( (0,A)\times \Omega \right) } \leq \rho _0 \ . \end{gather*} In conclusion $z(a,t,x)\geq -\rho _0$ a.e. $(a,t,x)\in Q_{A-a^*+T_0}$. This implies (via Theorem \ref{thm3.1}) that $$z(a,t,x)\geq -y_s(a,x) \quad\mbox{a.e. } (a,t,x)\in (0,a^*)\times (0,T)\times \Omega . $$ On the other hand $mu=0$ on $(a^*,A)\times (0,T)\times \Omega $. The comparison principle for parabolic equations allows us to conclude that $$ z(a,t,x)\geq -y_s(a,x) \quad\mbox{a.e. } (a,t,x)\in (a^*, A)\times (0,T)\times \Omega . $$ For the second assertion of Theorem \ref{thm2.2} we assume by contradiction that $T0$ and there exists $u\in L^2(Q_T)$ such that $z^u$ the solution of \eqref{e4} satisfies \eqref{e5} (see figure 2). \begin{figure} \unitlength=0.6mm \begin{picture}(123.00,75.00)(10,10) %\put(37.00,14.00){\vector(0,1){71}} \put(37.00,14.00){\vector(0,1){61}} \put(37.00,14.00){\vector(1,0){86}} \put(33.00,10.00){\makebox(0,0)[cc]{$O$}} \put(30.00,45.00){\makebox(0,0)[cc]{$A-a^*$}} \put(85.00,10.00){\makebox(0,0)[cc]{$a^*$}} \put(115.00,10.00){\makebox(0,0)[cc]{$A$}} \put(115.00,14.00){\line(0,1){30}} \put(37.00,44.00){\line(1,0){78}} \put(37.00,29.00){\line(1,0){78}} \put(85.00,14.00){\line(1,1){30}} \put(123.00,10.00){\makebox(0,0)[cc]{$a$}} \put(33.00,30.00){\makebox(0,0)[cc]{$T$}} %\put(33.00,85.00){\makebox(0,0)[cc]{$t$}} \put(33.00,75.00){\makebox(0,0)[cc]{$t$}} \end{picture} \caption{} \end{figure} Since $mu=0$ on $(a^{*},A)\times (0,T)\times \Omega $ we may conclude that $z^{u}$ does not explicitly depend on $u$ on $\mathcal{S}\times \Omega $, where $\mathcal{S}= \{(a,t);a\in (a^{*},A),t\in (0,T),t0$, we conclude that $\|z^u(\cdot ,T,\cdot )\|_{L^{\infty }((0,A)\times \Omega )}>0$ (this follows via the backward uniqueness theorem); which is in contradiction to \eqref{e5}. So, we get the conclusion. \begin{thebibliography}{00} \bibitem{a1} R. A. Adams, \emph{Sobolev Spaces}, Academic Press, New York, 1975. \bibitem{a2} B. Ainseba, S. Ani\c{t}a, Local exact controllability of the age-dependent population dynamics with diffusion, Abstract Appl. Anal., \textbf{6} (2001), 357--368. \bibitem{a3} S. Ani\c{t}a, \emph{Analysis and Control of Age-Dependent Population Dynamics}, Kluwer Acad. Publ., 2000. \bibitem{b1} V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim., \textbf{42} (2000), 73--89. \bibitem{f1} E. Fernandez-Cara, Null controllability of the semilinear heat equation, ESAIM:COCV, \textbf{2} (1997), 87--107. \bibitem{f2} A. V. Fursikov, O.Yu. Imanuvilov, \emph{Controllability of Evolution Equations}, Lecture Notes Series 34, RIM Seoul National University, Korea, 1996. \bibitem{g1} M. G. Garroni, M. Langlais, Age dependent population diffusion with external constraints, J. Math. Biol., \textbf{14} (1982), 77--94. \bibitem{g2} M. E. Gurtin, A system of equations for age dependent population diffusion, J. Theor. Biol., \textbf{40} (1972), 389--392. \bibitem{i1} M. Iannelli, \emph{Mathematical Theory of Age-Structured Population Dynamics}, Giardini Editori e Stampatori, Pisa, 1995. \bibitem{l1} O. A. Ladyzenskaya, V.A. Solonnikov, N.N. Uraltzeva, \emph{ Linear and Quasilinear Equations of Paraboic Type}, Nauka, Moskow, 1967. \bibitem{l2} M. Langlais, A nonlinear problem in age dependent population diffusion, SIAM J. Math. Analysis, \textbf{16} (1985), 510--529. \bibitem{l3} M. Langlais, Large time behaviour in a nonlinear age dependent population dynamics problem with spatial diffusion, J. Math. Biol., \textbf{26} (1988), 319--346. \bibitem{l4} G. Lebeau, L. Robbiano, Contr\^ole exact de l'equation de la chaleur, Comm. P.D.E., \textbf{30} (1995), 335--357. \bibitem{l5} J. L. Lions, \emph{Contr\^ole des syst\`emes distribu\'es singuliers}, MMI 13, Gauthier--Villars, Paris, 1983. \bibitem{w1} G. F. Webb, \emph{Theory of Nonlinear Age-Dependent Population Dynamics}, Marcel Dekker, New York, 1985. \end{thebibliography} \end{document}