
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 130, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

CHARACTERIZING DEGENERATE STURM-LIOUVILLE
PROBLEMS

ANGELO B. MINGARELLI

Dedicated to the memory of F. V. Atkinson, - with profound respect and gratitude

for the magic and beauty he brought to differential equations

Abstract. Consider the Dirichlet eigenvalue problem associated with the real
two-term weighted Sturm-Liouville equation −(p(x)y′)′ = λr(x)y on the finite
interval [a, b]. This eigenvalue problem will be called degenerate provided its
spectrum fills the whole complex plane. Generally, in degenerate cases the
coefficients p(x), r(x) must each be sign indefinite on [a, b]. Indeed, except in
some special cases, the quadratic forms induced by them on appropriate spaces

must also be indefinite. In this note we present a necessary and sufficient
condition for this boundary problem to be degenerate. Some extensions are
noted.

1. Introduction

Ever since the pioneering work of Sturm, and Sturm and Liouville in the 1830’s
the study of eigenvalue problems for the Sturm-Liouville equation (1.1),

−(p(x)y′)′ + q(x)y = λr(x)y, (1.1)

y(a) = y(b) = 0, (1.2)

and resultant spectral theory has acquired momentum and remains of great interest
even today due, in part, to its original roots as a branch of applied mathematics
(arising from the separation of variables method in the wave and heat equations
etc.) In these cases of physical interest it is imperative that the spectrum of the
problem (1.1)-(1.2), say, always be infinitely countable and having no finite point
of accumulation. In such cases one can then ask questions about an eigenfunction
expansion theorem, eigenvalue asymptotics, oscillation theorems for the eigenfunc-
tions etc. as has been done in the past (cf., for example, [[2], Chapter 8], [9]).
However, in the event where the spectrum fails to be infinitely countable few re-
sults are known. On the one hand, the spectrum may be finite perhaps even empty,
since the problem may be restated so as to include three-term recurrence relations
[[2],Theorem 8.4.5], and thus it reduces to a question about the eigenvalues of a
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generalized matrix eigenvalue problem (see also [10]). For a recent construction of
such special examples see [8].

On the other hand, Sturm himself noted in [12] that if the coefficient p(x)
vanishes in the interior of [a, b] then there may be a blow-up of the derivative
at that point, a concern that was eventually handled using quasi-derivatives and
Carathéodory conditions for existence and uniqueness of solutions in the case of
Lebesgue measurable coefficients (e.g., [2]). For this reason among others (likely
of a physical nature), Sturm restricted himself to cases where the leading term
p(x) > 0 in the interval under consideration (and then also to cases where the
weight r(x) > 0). See [9] for a review of cases where the weight r(x) changes sign.

Allowing the quadratic form associated with the principal part (i.e., −(p(x)y′)′)
to be indefinite on a suitable space (which forces p(x) to actually change its sign
on sets of positive measure) led Atkinson and the author to construct the first
example of a degenerate Sturm-Liouville operator in [3] (see also [1]). To set the
scene we point out that whenever 1/p, q, r ∈ L1[a, b] and all are real-valued the
initial value problem associated with (1.1), for a fixed λ, and given initial conditions
on y(a, λ), (py′)(a) has a unique solution with the property that y(x) is absolutely
continuous along with (py′)(x) and that this y satisfies the equation (1.1) almost
everywhere (Lebesgue).

Example 1.1. Given an arbitrary p-term such that 1/p ∈ L1[a, b], 1/p(x) 6= 0, it
is a simple matter for the reader to verify that the class of equations

−(p(x)y′)′ = λ
( α

p(x)
)
y,

y(a) = y(b) = 0,

where α ∈ R is fixed, can lead to a class of degenerate Sturm-Liouville eigenvalue
problems by noting that for given λ ∈ C, λ 6= 0 an eigenfunction can be found by
setting

y(x, λ) =
1√
λα

sin
(
P (x)

√
λα

)
,

where P (x) ≡
∫ x

a
p(s)−1ds is chosen so that P (b) = 0. If λ = 0 an eigenfunction is

obtained by setting

y(x, λ) = P (x).

Note that although the function y is absolutely continuous here, y′ is not (recall
Sturm’s remark, above) but yet (py′)(x) is, and this y satisfies the equation a.e.

Next, whenever the zero-set of r is a set of measure zero, the operator T defined
by setting

Tf(x) = − 1
r(x)

(p(x)f ′)′,

on a suitable space (see [1]) is actually self-adjoint in the Krěin space L2
r[a, b],

(see [5], [1]). Thus, in an interesting connection with operator theory, degenerate
Sturm-Liouville operators give rise to self-adjoint operators on a Krěin space whose
spectrum is all of C (see [1], Section 4] for more details about this connection. This
particular class of degenerate problems may be expanded somewhat by relaxing the
condition on r(x) but this is not our concern at the moment.
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The question at the core of this paper involves the determination of a set of
explicit conditions that will ensure that the Sturm-Liouville problem

−(p(x)y′)′ = λr(x)y, (1.3)

y(a) = 0, y(b) = 0, (1.4)

is degenerate that is, its eigenvalue spectrum fills the whole complex plane, C.

2. The Main Result

Theorem 2.1. Consider the boundary value problem associated with the two-term
Sturm-Liouville equation (1.3)-(1.4) on the finite interval [a, b]. The following state-
ments are equivalent:

(1) The collection of eigenvalues of (1.3)-(1.4) fills all of C,
(2) There exists an eigenvalue λ = λ∗ of (1.3)-(1.4) for which a sequence of

eigenvalues λn ∈ C of (1.3)-(1.4) exists with the property that λn → λ∗ as
n →∞.

(3) Define a0(x) = P (x) ≡
∫ x

a
p(s)−1ds and

an+1(x) ≡ −
∫ x

a

P ′(s)
∫ s

a

r(t)an(t) dt ds.

Then the coefficients p, r in (1.3) satisfy

an(b) = 0 (2.1)

for each n = 0, 1, 2, . . . .

Notes: 1. Observe that the conditions in (2.1) are equivalent to solving the
boundary problem for the differential equations

−(p(x)a′n+1(x))′ = r(x)an(x), an+1(a) = an+1(b) = 0,

for n = 0, 1, 2, . . .
2. In addition, more general separated homogeneous boundary conditions are easily
handled using the same technique since the function (py′)(b, λ) + h · y(b, λ) where
h is a fixed constant, is an entire function of λ once again. In this case, there is a
parallel theorem to Theorem 2.1 where the conditions (2.1) are more complicated
looking but can nevertheless be written down. The technique can be modified easily
to yield recursions of the form (2.1) in cases where the boundary conditions are even
non-linear in the eigenvalue parameter (e.g., if the resulting boundary condition is
an entire function of λ), subject to some simple yet lengthy calculations.
3. Finally, the addition of a potential term q(x) as in (1.1) causes no serious
difficulty to the technique presented here since an analogous set of conditions of
the type described in (2.1) can be formulated. Once again the results are somewhat
less elegant than those in the case considered here.
4. Note that one cannot find an example where we will “see” an accumulation of
eigenvalues at a certain point in the complex plane without the spectrum being the
whole complex plane, by item 2) in the Theorem. Furthermore, note that if either
P ′(x) and/or r(x) are a.e. zero on [a, b], then (2.1) is automatically satisfied and so
once again the spectrum fills the complex plane. Thus, in this sense, semidefinite
problems may also lead to degeneracy. Generally, however, the coefficients p, r are
sign-indefinite.
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3. Proof of the Main Result

Lemma 3.1. For a fixed initial condition y(a, λ) and (py′)(a, λ), the function
y(b, λ), where y is a solution of (1.3), or more generally (1.1), is an entire function
of λ ∈ C of order at most one-half, in some cases of order zero.

Proof. Without loss of generality, we fix the initial condition for a given λ, at x = a
by means of y(a, λ) = 0, (py′)(a, λ) = 1 and prove this for the case where q(x) = 0.
This will then define a unique solution that is bounded on [a, b] for each choice of
λ ∈ C. The eigenvalues of (1.3)-(1.4) are then given by the (possibly complex) zeros
of the function y(b, λ).

First, we note that even in cases where the principal part of (1.3) is indefinite
the function y(b, λ) is an entire function of λ. The argument is actually classical
and we need only sketch the proof; one can either simulate the proof in Bôcher [4],
or Ince [7] using care due to the indefiniteness of the sign of p(x). For example, in
[7, Section 10.72], one finds the derivation of the equation∫ b

a

r(x)y(x, λi)y(x, λ) dx = (py′)(b, λ)
y(b, λ)− y(b, λi)

λ− λi
,

without any reference to sign definiteness of any of the coefficients p, q, r in (1.1),
for a given λ ∈ C. It is easily seen that the limit as λ → λi exists and is finite (since
r ∈ L1[a, b]) and is given by the left side. Thus y is differentiable as a function of λ
etc. The end result is that both y(b, λ) and (py′)(b, λ) are entire functions of λ for
λ ∈ C. To obtain an estimate of the order of y(b, λ) as an entire function in this
sign-indefinite case, we adapt an argument in [11] (where there is also an extension
to coefficients with a possibly nonlinear dependence on λ). To this end we write
(1.3) as a first order system u′ = v/p, v′ = −λru. Then

d

dx
{|λ|uū + vv̄} =

|λ|
p

(uv̄ + ūv)− r(λuv̄ + λ̄ūv),

from which we get ∣∣∣ d

dx

{
|λ||u|2 + |v|2

} ∣∣∣ ≤ 2|λ||uv|
{ 1
|p|

+ |r|
}
.

But for λ 6= 0 we have 2|u||v| ≤
{
|λ||u|2 + |v|2

}
/
√
|λ|. It follows that∣∣∣( d

dx

)
log{|λ||u|2 + |v|2}

∣∣∣ ≤ √
|λ|{ 1

|p|
+ |r|}.

An integration with respect to x shows that the estimate

u(x, λ), v(x, λ) = O{exp(const ·
√
|λ|)}

holds for every x ∈ (a, b] therefore proving our estimate on the order. �

Remark 3.2. A highly degenerate case could be characterized by the (semidefinite)
case where 1/p(x) = 0 = r(x) a.e. in [a, b], or more generally, where r(x) = 0
a.e., and p has a primitive P (x) with P (a) = P (b) = 0. In this case the bounds
above would give that y(b, λ) is an entire function of order zero. Thus, one can
find examples of semidefinite problems that are degenerate. Whether there is an
example where y(b, λ) is not a polynomial in λ but still an entire function of order
zero is an open problem.
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Remark 3.3. It is of interest to determine conditions under which u(b, λ), v(b, λ),
are either of order exactly 1/2 or of order zero, and we leave this as an open problem.
In connection with this we note the partial results [6], where it is proved that (1.1) is
of order exactly 1/2 when p(x) = 1, and r, q are arbitrary, and [3] where it is shown
that the order is again 1/2 in the more general situation where p(x) has finitely
many sign changes and r, q are arbitrary. The question here deals with arbitrary
p-terms: That is, there appears to be no example where the order is anything but 0
or 1/2 for all cases (sign-definite or not) of p, q, r as above. The preceding indicates
that if an example of such an entire function of order ν where 0 < ν < 1/2 does
exist then, in indefinite cases, p(x) changes sign an infinite number of times on
intervals or more generally, sets of positive measure.

Proof of the Theorem 2.1. The equivalence of 1) and 2) is clear from the theory of
analytic functions. The equivalence of 1) and 3) is proved as follows. Since y(x, λ)
is entire for each x ∈ [a, b], there is a classical representation

y(x, λ) =
∞∑

n=0

an(x) λn (3.1)

where the series converges uniformly on every compact subset of the complex plane,
and the an(x) are to be determined. On the other hand, the solution y(x, λ)
satisfying y(a, λ) = 0, (py′)(a, λ) = 1, is identical to the solution of the integral
equation

y(x, λ) = P (x)−
∫ x

a

P ′(s)
∫ s

a

λ r(t)y(t, λ) dt ds, (3.2)

where P (x) is defined above as a primitive of 1/p. Inserting (3.1) into (3.2), ex-
panding and collecting terms we obtain the (necessarily unique) representation for
the an(x), n = 0, 1, 2, . . . , as

a0(x) = P (x), (3.3)

a1(x) = (−1)
∫ x

a

P ′(s)
∫ s

a

r(t)P (t) dt ds (3.4)

a2(x) = (−1)
∫ x

a

P ′(s)
∫ s

a

r(t)a1(t) dt ds (3.5)

...

an+1(x) = (−1)
∫ x

a

P ′(s)
∫ s

a

r(t)an(t) dt ds, (3.6)

...

It follows that if condition 1) holds, then y(b, λ) = 0 for every λ ∈ C and this
implies that an(b) = 0, for every n = 0, 1, 2, . . . , which is 3). On the other hand, if
3) holds for every n = 0, 1, . . . , then the function y(b, λ) = 0 for any value of λ ∈ C.
Hence every λ ∈ C is an eigenvalue and this completes the proof.

Note that the coefficients in Example 1.1 above satisfy the conditions of this
theorem (so as to obtain an independent verification of the result). To see this fix
an α ∈ R and set r(x) = α/p(x), where p(x) is chosen so that P (b) = 0. Then
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a0(b) = 0, by our choice of P ,

a1(b) = −α

∫ b

a

P ′(s)
∫ s

a

P ′(t)P (t) dt ds = 0,

since P (a) = P (b) = 0. Since a1(t) = −αP 3(t)/3! we see that a2(t) = (−α)2P 5(t)/5!
so that once again, a2(b) = 0. We can now proceed by induction in order to verify
the remaining conditions, a calculation that we omit. This example includes the
one presented in [3, p. 381], as a special case. �

Definition For given coefficients p, q, r as usual, we will call the problem (1.1)-(1.2)
totally non-definite (as opposed to simply non-definite, see [9]) if the problem
itself is non-definite and the quadratic form defined by the principal part of (1.1),
that is, ∫ b

a

p(x)|y′(x)|2 dx

is non-definite on the space of complex-valued functions y defined on the interval
[a, b] that are absolutely continuous along with the function py′ and that satisfy the
boundary conditions y(a) = 0 = y(b). That is, the quadratic form defined above
takes on both signs for suitable functions.

We produce a final example that indicates the kind of behaviour that can be
expected when one is approximating the situation of degeneracy of the problem
(1.1)-(1.2).

Example 3.4. To this end, let ε > 0, and consider the totally non-definite problem
defined by setting p(x) = r(x) = sgnx, the function that represents the sign of x,
and q(x) = ε, is a function that is identically constant on [−1, 1]. Thus, we consider
the eigenvalue problem

−(sgn x y′)′ + ε y = λ sgn x y, (3.7)

y(−1) = y(1) = 0, (3.8)

where λ ∈ C is a generally complex parameter. Recall that an eigenfunction of
(3.7-3.8) is necessarily an absolutely continuous function y on [−1, 1] along with
py′ such that y(x) satisfies (3.7) almost everywhere along with the boundary con-
ditions. This said, a straightforward calculation shows that the form of a typical
eigenfunction of (3.7-3.8) normalized by setting (py′)(−1) = 1 is given by

y(x, λ) =


− sin((x+1)

√
λ+ε )√

λ+ε
for − 1 ≤ x ≤ 0,

sin(
√

λ+ε) sin((x−1)
√

λ−ε )√
λ+ε sin(

√
λ−ε)

for 0 ≤ x ≤ 1,
(3.9)

for suitable eigenvalues λ. These eigenvalues are obtained by solving the dispersion
relation

f(λ, ε) ≡
√

λ + ε cos
(√

λ + ε
)
sin

(√
λ− ε

)
−
√

λ− ε cos
(√

λ− ε
)
sin

(√
λ + ε

)
= 0,

(3.10)

obtained by setting (py′)(0−) = (py′)(0+) in (3.9) as required for the existence
of a solution. Observe that f(λ,−ε) = −f(λ, ε) so that a typical eigenvalue λ
(whenever it exists) is at the same time an eigenvalue of the problem (3.7-3.8) and
its counterpart obtained by replacing ε by−ε in (3.7). Also note that asymptotically
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the total number, N(λ), of zeros of our solution (3.9) in (−1, 1) is independent of
ε (even if the problem is degenerate) and in fact asymptotic to

N(λ) ∼ 2π−1
√

λ,

as λ →∞ by the Atkinson-Mingarelli theorem (cf., [2]).
However, there is no Sturm oscillation theorem (or even its extension by Haupt

and Richardson, cf., [9]) for the eigenfunctions as we show presently. Indeed, using
elementary trigonometric identities we see that

f(λ, ε) =
√

λ + ε−
√

λ− ε

2
sin

(√
λ + ε +

√
λ− ε

)
−
√

λ + ε +
√

λ− ε

2
sin

(√
λ + ε−

√
λ− ε

)
,

an expression that can be rewritten as

f(λ, ε) = ε
sin

(√
λ + ε +

√
λ− ε

)
√

λ + ε +
√

λ− ε
− ε

sin
(√

λ + ε−
√

λ− ε
)

√
λ + ε−

√
λ− ε

. (3.11)

However, the first term in (3.11) is o(1) as λ →∞. On the other hand, since
√

λ + ε−
√

λ− ε → 0, λ →∞,

the second term is easily seen to converge to the quantity −ε. It follows that

f(λ, ε) → −ε, λ →∞.

Thus, whenever ε 6= 0, we must have f(λ, ε) of constant sign for all sufficiently
large λ. In other words, given such an ε at the outset, there is a Λ > 0 such that
there are no real eigenvalues in the region |λ| > Λ. On the other hand, since f(λ, ε)
is entire in λ, for given ε, there cannot be an accumulation of zeros either (i.e.,
eigenvalues) in the finite region |λ| ≤ Λ. Thus, the collection of eigenvalues of the
problem (3.7) is finite (and possibly empty). It follows that given ε 6= 0, there can
be no oscillation theorem of traditional type for the eigenfunctions corresponding
to these eigenvalues.

Incidentally, this construction provides an alternate example of a boundary prob-
lem of Sturm-Liouville type whose spectrum is finite and possibly empty (compare
with [8]). In fact, numerical evidence here indicates that given a positive integer n
there exists a value of ε (usually large) such that correpsonding eigenfunctions will
oscillate n−times in (−1, 1). This is because one can show that the total number
of eigenvalues of (3.7-3.8) tends to infinity as |ε| → ∞.

As |ε| → 0 we observe the following phenomena in the spectrum of (3.7-3.8).
First, given ε 6= 0, λ = ±ε is an eigenvalue of (3.7-3.8) if and only if the corre-
sponding right-semidefinite problem (see [9])

−(sgn(x) y′)′ = λ (sgn(x)∓ 1) y, y(−1) = y(1) = 0,

admits λ = ±ε as an eigenvalue, respectively. The existence of a doubly infinite
sequence of real eigenvalues for the right-semidefinite problem above (albeit left-
indefinite) is known (see [1]), where this can be shown using the reciprocal transfor-
mation. Assimilating our results we get that given ε 6= 0, λ = ±ε is an eigenvalue
for at most countably many such ε (where these are characterized above). Since
these special ε-values form a countable set with no finite point of accumulation,
there must be a smallest such set characterized by a particular ε = ε0 such that
whenever |ε| < ε0, λ = ±ε cannot be an eigenvalue of (3.7-3.8). But as |ε| → 0
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the number of zeros of (3.9) decreases steadily. Thus, there is a critical value of
|ε| below which there is no real eigenvalue, that is the real spectrum is an empty
set for all sufficiently small values of |ε|. The limiting case of ε = 0 gives a de-
generate problem as is shown above (also because f(λ, 0) ≡ 0 for all λ, real or
complex). Thus, the process leading from non-degeneracy to degeneracy may be a
discontinuous one as exemplified here for three-term problems of the form (3.7-3.8).

Concluding Remarks. It follows that if for some given choice of coefficients p, r,
at least one condition in part 3) of Theorem 2.1 above is violated, then the spectrum
of (1.3)-(1.4) must be countable (finite or infinite or even empty) and may even con-
sist of non-real eigenvalues (see e.g., [9]). Finally, we point out that any eigenvalue
problem corresponding to a second order differential equation that is transformable
into one of the type found in Example 1.1 will also have its spectrum equal to the
whole complex plane. Thus, by transforming back starting from Example 1.1 such
degenerate eigenvalue problems can be found at will.
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