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ON PONTRYAGIN-RODYGIN’S THEOREM FOR
CONVERGENCE OF SOLUTIONS OF SLOW AND FAST

SYSTEMS

TEWFIK SARI, KARIM YADI

Abstract. In this paper we study fast and slow systems for which the fast

dynamics has limit cycles, for all fixed values of the slow variables. The fun-
damental tool is the Pontryagin and Rodygin theorem which describes the

limiting behavior of the solutions in the continuously differentiable case, when

the cycles are exponentially stable. We extend this result to the continuous
case, and exponential stability is replaced by asymptotic stability. We give two

examples with numerical simulations to illustrate the problem. Our results

are formulated in classical mathematics. They are proved using Nonstandard
Analysis.

1. Introduction

This paper will focus on slow and fast systems of the form

ε
dx

dt
= f(x, y, ε),

dy

dt
= g(x, y, ε), (1.1)

where x ∈ Rn, y ∈ Rm and ε is a small positive parameter. The variable x is called
a fast variable, y is called a slow variable. The change of time τ = t/ε transforms
system (1.1) into

dx

dτ
= f(x, y, ε),

dy

dτ
= εg(x, y, ε). (1.2)

This system is a one parameter deformation of the unperturbed system

dx

dτ
= f(x, y, 0),

dy

dτ
= 0, (1.3)

which is called the fast equation.
In the case where solutions of (1.3) tend toward an equilibrium point ξ(y), where

x = ξ(y) is a root of equation

f(x, y, 0) = 0, (1.4)

Tykhonov’s theorem [15, 17] gives the limiting behavior of system (1.1). A fast
transition brings the solution near the slow manifold (1.4). Then, a slow motion
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takes place near the slow manifold and is approximated by the solution of the
reduced equation

dy

dt
= g(ξ(y), y, 0). (1.5)

This result was obtained in [15] for continuous vector fields f and g, under the
assumption that ξ(y) is an asymptotically stable equilibrium of the fast equation
(1.3), uniformly in y. It was extended in [6] to all systems that belong to a small
neighborhood of the unperturbed system. For differentiable systems, if the varia-
tional equation has eigenvalues with negative real part for all y in the domain of
interest, then the uniform asymptotic stability of the equilibrium ξ(y) holds.

In the case where solutions of (1.3) tend toward a cycle Γy, Pontryagin and
Rodygin’s theorem [11] gives the limiting behavior of system (1.1) : after a fast
transition that brings the solutions near the cycles, the solutions of system (1.1)
are approximated by the solutions of the average system

dy

dt
=

1
T (y)

∫ T (y)

0

g(x∗(τ, y), y, 0) dτ, (1.6)

where x∗(τ, y) is a periodic solution of the fast equation (1.3) corresponding to the
cycle Γy and T (y) is its period. This result was obtained for at least continuously
differentiable vector fields f and g, under the assumption that the cycles Γy are
asymptotically stable in the linear approximation, that is, the variational equation
corresponding to the cycle has multipliers with moduli less than 1 with a single
exception. To our knowledge the continuous case with asymptotic stability instead
of exponential stability was not considered in the literature.

Assume that the equilibrium ξ(y) (resp. the cycle Γy) loses its stability, but
remains nondegenerate. Neishtadt [8] proved, in analytic systems, that there is a
delayed loss of stability of the solutions of (1.1) : the solutions remain for a long
time near the unstable equilibrium (resp. the unstable cycle) and the slow variable
y remains approximated by the solution of the reduced equation (1.5) (resp. the
averaged system (1.6)).

The aim of this work is to extend the result of [11] to continuous vector fields
and to define a topology such that the description of the solutions holds for systems
that belong to a small neighborhood of the unperturbed system. Following [6], we
define in Section 2 a suitable function space of Initial Value Problems (IVPs) in
order to study small neighborhoods of the unperturbed problem. The main results
concerning approximations of solutions on finite and infinite time interval (Theorem
2.2, Theorem 2.3) are stated. In the present work, the results are formulated in
classical mathematics and proved within Internal Set Theory (IST) [9] which is an
axiomatic approach of Nonstandard Analysis (NSA) [12]. The idea to use NSA
in perturbation theory of differential equations goes back to the seventies with
the Reebian school [7]. It has become today a well-established tool in asymptotic
theory (see the five-digits classification 34E18 of the 2000 Mathematical Subject
Classification). We give in Section 3 a short tutorial on IST in order to characterize
the notion of stability and to translate our main results in nonstandard words
(Theorem 3.5 and Theorem 3.6). Section 4 consists of presenting some lemmas in
view of the proofs of Theorem 3.5 and Theorem 3.6. In Section 5, we apply our
result to two examples and we give numerical simulations.
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2. Results

Let us consider the differential system

ε ẋ = f(x, y), x(0) = α,

ẏ = g(x, y), y(0) = β,
(2.1)

where ε is a positive real number in ]0, ε0], f : Ω → Rn, g : Ω → Rm are continuous
on an open subset Ω of Rn+m and (α, β) ∈ Ω. The dot (·) means d/dt. The set

T = {(Ω, f, g, α, β) : Ω open subset of Rn+m, (α, β) ∈ Ω,

f : Ω → Rn, g : Ω → Rm continuous}

is provided with the topology of uniform convergence on compacta [6]. This topology
is the topology for which the neighborhood system of an element (Ω0, f0, g0, α0, β0)
is generated by the sets

V (D, a) = {(Ω, f, g, α, β) ∈ T : D ⊂ Ω, ‖f − f0‖D < a, ‖g − g0‖D < a,

‖α− α0‖ < a, ‖β − β0‖ < a}.

Here ‖h‖D = supu∈D ‖h(u)‖, where h is defined on the set D with values in a
normed space. The aim is to study the system (2.1 ) when ε is sufficiently small
and (Ω, f, g, α, β) sufficiently close to an element (Ω0, f0, g0, α0, β0) of T in the sense
of this topology. The fast equation is then defined by

x′ = f0(x, y), (2.2)

where y is considered as a parameter and (′) means the derivative with respect to
the fast time τ = t/ε. We make the following assumptions:

(A) For all y, the fast equation (2.2) has the uniqueness of the solutions with
prescribed initial conditions.

(B) There exists a family of solutions x∗(τ, y) depending continuously on y ∈ G,
where G is a compact subset of Rm with a non empty interior, such that
x∗(τ, y) is a periodic solution of the fast equation (2.2) of period T (y) > 0,
the mapping y → T (y) is continuous, and the cycle Γy corresponding to the
periodic solution x∗(τ, y) is asymptotically stable and its basin of attraction
is uniform over G.

From Assumption (B) it follows that the cycle Γy depends continuously on y and is
locally unique, that is, there exists an neighborhood W of Γy such that the equation
(2.2) has no other cycle in W .

Definition 2.1. The periodic solution x∗(τ, y) of (2.2) is said to be orbitally
asymptotically stable (in the sense of Lyapunov) if its orbit Γy is :
1. Stable, i.e. for every µ > 0, there exists η > 0 such that any solution x̃(τ) of
(2.2) for which dis(x̃(0),Γy) < η can be continued for all τ ≥ 0 and satisfies the
inequality dis(x̃(τ),Γy) < µ.
2. and Attractive, i.e. Γy admits a neighborhood V (basin of attraction) such that
any solution x̃(τ) of (2.2) for which x̃(0) ∈ V can be continued for all τ ≥ 0 and
satisfies lim

τ→∞
dis(x̃(τ),Γy) = 0.

Moreover, the basin of attraction of the orbit Γy is uniform over G if there exists a
real number a > 0 such that, for all y in G, the set {x ∈ Rn : dis(x,Γy) ≤ a} is in
the basin of attraction of Γy.
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We define the slow equation on the interior G0 of G by the averaged system

·
y = ḡ0(y) :=

1
T (y)

∫ T (y)

0

g0(x∗(τ, y), y) dτ, (2.3)

and we add the following two assumptions:
(C) The slow equation (2.3) has the uniqueness of the solutions with prescribed

initial conditions.
(D) β0 is in G0 and α0 is in the basin of attraction of Γβ0 .

We refer to the boundary layer equation as

x′ = f0(x, β0), x(0) = α0, (2.4)

and to the reduced problem as
·
y = ḡ0(y), y(0) = β0. (2.5)

We can state the first result.

Theorem 2.2. Let (Ω0, f0, g0, α0, β0) be in T . Assume that (A)−(D) are satisfied.
Let x̃(τ) and ȳ(t) be the respective solutions of (2.4) and (2.5) and L ∈ I, where I
is the positive interval of definition of ȳ(t). Then for all η > 0, there exist ε∗ > 0
and a neighborhood V of (Ω0, f0, g0, α0, β0) in T such that for all ε < ε∗ and all
(Ω, f, g, α, β) in V, any solution (x(t), y(t)) of (2.1) is defined at least on [0,L]
and there exists ω > 0 such that εω < η, ‖x(ετ) − x̃(τ)‖ < η for 0 ≤ τ ≤ ω,
‖y(t)− ȳ(t)‖ < η for 0 ≤ t ≤ L and dis(x(t),Γȳ(t)) < η for εω ≤ t ≤ L.

Suppose in addition that there exists a point ȳ∞ such that ḡ0(ȳ∞) = 0. Under
the following assumption, the previous theorem holds for all t ≥ 0.

(E) The point ȳ∞ is an asymptotically stable equilibrium of (2.3) and β0 is in
its basin of attraction.

Theorem 2.3. Let (Ω0, f0, g0, α0, β0) be in T . Let ȳ∞ be in G0. Assume that (A)−
(E) are satisfied. Let x̃(τ) and ȳ(t) be the respective solutions of (2.4) and (2.5).
Then for all η > 0, there exist ε∗ > 0 and a neighborhood V of (Ω0, f0, g0, α0, β0) in
T such that for all ε < ε∗ and all (Ω, f, g, α, β) in V, any solution (x(t), y(t)) of (2.1)
is defined for all t ≥ 0 and there exists ω > 0 such that εω < η, ‖x(ετ)− x̃(τ)‖ < η
for 0 ≤ τ ≤ ω, ‖y(t)− ȳ(t)‖ < η for t ≥ 0 and dis(x(t),Γȳ(t)) < η for t ≥ εω.

The proofs of the two theorems are postponed to Subsections 4.3 and 4.4.

3. Nonstandard formulations of the results

3.1. A short tutorial on IST. As it was outlined in the introduction, Internal
Set Theory (IST ) [9] is an extension of ordinary mathematics, that is, Zermelo-
Fraenkel set theory plus axiom of choice (ZFC). The theory IST gives an axiomatic
approach of Robinson’s Nonstandard Analysis [12]. We adjoin to ZFC a new un-
defined unary predicate standard (st) and add to the usual axioms of ZFC three
others for governing the use of the new predicate. All theorems of ZFC remain
valid in IST. What is new in IST is an addition, not a change. We call a formula
of IST internal in the case where it does not involve the new predicate “st” ; oth-
erwise, we call it external. The theory IST is a conservative extension of ZFC,
that is, every internal theorem of IST is a theorem of ZFC. Some of the theorems
which are proved in IST are external and can be reformulated so that they become
internal. Indeed, there is a reduction algorithm due to Nelson which reduces any
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external formula F (x1,...,xn) of IST without other free variables than x1,...,xn to
an internal formula F ′(x1 ,...,xn) with the same free variables, such that F ≡ F ′,
that is, F ⇔ F ′ for all standard values of the free variables. We will need the
following reduction formula which occurs frequently:

∀x (∀sty A ⇒ ∀stz B) ≡ ∀z ∃finy′ ∀x (∀y ∈ y′ A ⇒ B), (3.1)

where A (respectively B) is an internal formula with free variable y (respectively
z) and standard parameters. The notation ∀st means “for all standard” and ∃fin

means “there is a finite”.
A real number x is infinitesimal, denoted by x ' 0, if |x| < a for all standard
positive real numbers a, limited if |x| < a for some standard a, appreciable if it
is limited and not infinitesimal, and unlimited and denoted by x ' ±∞, if it is
not limited. Let (E,d) be a standard metric space. Two points x and y in E are
infinitely close, denoted by x ' y, if d(x, y) ' 0. The element x is nearstandard in
E if there exists a standard x0 ∈ E such that x ' x0. Note that a real number is
nearstandard in R if and only if it is limited. The point x0 is called the standard
part of x (it is unique) and is also denoted ◦x. A vector x in Rd, d standard,
is infinitesimal (respectively limited, unlimited) if |x| is infinitesimal (respectively
limited, unlimited), where |.| is a standard norm in Rd.

Only internal formulas can be used to define subsets. However, notations as
{x ∈ R : x limited} or {x ∈ R : x infinitesimal} can be considered as external sets.
For instance, we can prove that there do not exist subsets L and I of R such that,
for all x in R, x is in L if and only if x is limited, or x is in I if and only if x is
infinitesimal. This result is frequently used to prove that the validity of a property
exceeds the domain where it was established in direct way. Suppose that we have
shown that a certain internal property A holds for every limited x, then we know
that A holds for some unlimited x, for otherwise we could let L = {x ∈ R : A}.
This statement is called the Cauchy principle. It has the following consequence [12]

Lemma 3.1 (Robinson’s Lemma). Let r be a real function such that r(t) ' 0 for
all limited t ≥ 0, then there exists an unlimited ω such that r(t) ' 0 for all t in
[0, ω].

3.2. External characterizations of orbital stability. We give in this subsec-
tion external characterizations of orbital stability.

Lemma 3.2. Assume that f0 and x∗(τ, y) are standard. The periodic solution
x∗(τ, y) of the equation (2.2) with orbit Γy is
1. Orbitally stable, if and only if any solution x̃(τ) of (2.2) for which dis(x̃(0),Γy) '
0 can be continued for all τ ≥ 0 and satisfies dis(x̃(τ),Γy) ' 0.
2. Orbitally attractive if and only if Γy admits a standard neighborhood V (basin
of attraction) such that any solution x̃(τ) of (2.2) for which x̃(0) is standard in V
can be continued for all τ ≥ 0 and satisfies dis(x̃(τ),Γy) ' 0 for all τ ' +∞.

Proof. 1. We denote by B the formula “Any solution x̃(τ) of (2.2) for which
x̃(0) = α can be continued for all τ ≥ 0 and satisfies dis(x̃(τ),Γy) < µ”. To
say in the lemma dis(α,Γy) ' 0 is the same as to say ∀stη dis(α,Γy) < η and
to say dis(x̃(τ),Γy) ' 0 is the same as to say ∀stµ dis(x̃(τ),Γy) < µ. Then, the
characterization of orbital stability is

∀α (∀stη dis(α, Γy) < η ⇒ ∀stµ B).
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In this formula, f0 and Γy are standard parameters and η, µ range over the positive
real numbers. By the reduction formula (3.1), this is equivalent to

∀µ ∃finη′ ∀α (∀η ∈ η′ dis(α, Γy) < η ⇒ B).

But η′ being a finite set, there exists η such that η = min η′ and the last formula
becomes

∀µ ∃η ∀α (dis(α, Γy) < η ⇒ B).

This is exactly the usual definition of orbital stability.
2. By transfer, the orbital attractivity of a solution is equivalent to the existence of
a standard basin of attraction. In the lemma, the characterization of the standard
basin of attraction V is that any solution x̃(τ) of the equation (2.2) for which x̃(0)
is standard in V can be continued for all τ ≥ 0 and satisfies

∀τ (∀str τ > r) ⇒ ∀stµ dis(x̃(τ),Γy) < µ .

In this formula, x̃(.) and Γy are standard parameters while r, µ range over the
positive real numbers. By (3.1), this is equivalent to

∀µ ∃finr′ ∀τ (∀r ∈ r′ τ > r ⇒ dis(x̃(τ),Γy) < µ).

But to say, for r′ a finite set, ∀r ∈ r′ τ > r is the same as to say τ > r for r = max r′

and the formula is equivalent to

∀µ ∃r ∀τ (τ > r ⇒ dis(x̃(τ),Γy) < µ).

Hence, for all standard α in V, any solution x̃(τ) of the equation (2.2) for which
x̃(0) = α, can be continued for all τ ≥ 0 and satisfies lim

τ→∞
dis(x̃(τ),Γy) = 0. By

transfer, this property remains true for all α in V. This is the usual definition of
the orbital attractivity. �

The following lemma is needed to reformulate the Assumption (B) and its proof
is postponed to subsection 4.1.

Lemma 3.3. Assume that hypothesis (A) is satisfied and that f0 and x∗(τ, y) are
standard. Then the periodic solution x∗(τ, y) of (2.2) is orbitally asymptotically
stable if and only if there exists a standard a > 0 such that any solution x̃(τ) of
(2.2) for which dis(x̃(0), Γy) < a can be continued for all τ ≥ 0 and satisfies
dis(x̃(τ),Γy) ' 0 for all τ ' +∞.

Finally, according to Lemma 3.3 and assuming that f0 is standard, the Assump-
tion (B) is equivalent to:

(B’) There exists a standard family of solutions x∗(τ, y) depending continuously
on y ∈ G, where G is a standard compact subset of Rm with a non empty
interior, such that x∗(τ, y) is a periodic solution of the fast equation (2.2)
of period T (y) > 0, the mapping y → T (y) is continuous, and there exists
a standard a > 0 such that, for all standard y, any solution x̃(τ) of (2.2)
for which dis(x̃(0), Γy) < a can be continued for all τ ≥ 0 and satisfies
dis(x̃(τ), Γy) ' 0 for all τ ' +∞.
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3.3. External results. In classical mathematics we do not have to our disposal a
notion of perturbation despite of the fact that we have a well established Perturba-
tion Theory. In the language of Nonstandard Analysis (NSA), we have a notion of
perturbation. Indeed, while this notion is classically described via deformations or
neighborhoods, a perturbation of a standard object in NSA is just another object,
which is nonstandard and infinitely close to it. Its properties are then investigated
directly without using extra-properties with respect to the parameters of deforma-
tion.

Definition 3.4. An element (Ω, f, g, α, β) of T is said to be a perturbation of the
standard element (Ω0, f0, g0, α0, β0) of T if Ω contains all the nearstandard elements
in Ω0, f(x, y) ' f0(x, y) and g(x, y) ' g0(x, y) for all (x, y) nearstandard in Ω0 and
α ' α0, β ' β0.

Let us state now the nonstandard version of Theorem 2.2 and Theorem 2.3 where
the notation x(t) ' Γy(t) means dis(x(t), Γy(t)) ' 0.

Theorem 3.5. Let (Ω0, f0, g0, α0, β0) be a standard element of T . Assume that
(A) − (D) are satisfied. Let x̃(τ) and ȳ(t) be the respective solutions of (2.4)
and (2.5) and L be standard in I, where I is the positive interval of definition
of ȳ(t). Let ε > 0 be infinitesimal and (Ω, f, g, α, β) ∈ T be a perturbation of
(Ω0, f0, g0, α0, β0) ∈ T . Then any solution (x(t), y(t)) of (2.1) is defined at least
on [0,L] and there exists ω > 0 such that εω ' 0, x(ετ) ' x̃(τ) for 0 ≤ τ ≤ ω,
y(t) ' ȳ(t) for 0 ≤ t ≤ L and x(t) ' Γȳ(t) for εω ≤ t ≤ L.

Theorem 3.6. Let (Ω0, f0, g0, α0, β0) be a standard element of T . Let ȳ∞ be stan-
dard in G0. Assume that (A)−(E) are satisfied. Let x̃(τ) and ȳ(t) be the respective
solutions of (2.4) and (2.5). Let ε > 0 be infinitesimal and (Ω, f, g, α, β) ∈ T be
a perturbation of (Ω0, f0, g0, α0, β0) ∈ T . Then any solution (x(t), y(t)) of (2.1) is
defined for all t ≥ 0 and there exists ω > 0 such that εω ' 0, x(ετ) ' x̃(τ) for
0 ≤ τ ≤ ω, y(t) ' ȳ(t) for t ≥ 0 and x(t) ' Γȳ(t) for t ≥ εω.

We propose to show that Theorem 3.5, which is external, reduces by Nelson’s
algorithm to its internal equivalent Theorem 2.2 while we let to the reader the
reduction of Theorem 3.6 to Theorem 2.3. We need the following lemma :

Lemma 3.7. The element (Ω, f, g, α, β) of T is a perturbation of the standard
element (Ω0, f0, g0, α0, β0) of T if and only if (Ω, f, g, α, β) is infinitely close to
(Ω0, f0, g0, α0, β0) for the topology of uniform convergence on compacta, that is,
(Ω, f, g, α, β) is in any standard neighborhood of (Ω0, f0, g0, α0, β0).

The proof of this lemma can be found in [6, Lemma 2, page 11.].

Reduction of Theorem 3.5. We design by F the formula: “Any solution (x(t), y(t))
of (2.1) is defined at least on [0,L] and there exists ω > 0 such that εω < η, ‖x(ετ)−
x̃(τ)‖ < η for 0 ≤ τ ≤ ω, ‖y(t) − ȳ(t)‖ < η for 0 ≤ t ≤ L and dis(x(t),Γȳ(t)) < η
for εω ≤ t ≤ L” and respectively by u0 and u the variables (Ω0, f0, g0, α0, β0) and
(Ω, f, g, α, β) of T . We also design by F ′ the formula “any solution (x(t), y(t))
of (2.1) is defined at least on [0, L] and there exists ω > 0 such that εω ' 0,
x(ετ) ' x̃(τ) for 0 ≤ τ ≤ ω, y(t) ' ȳ(t) for 0 ≤ t ≤ L and x(t) ' Γȳ(t) for
εω ≤ t ≤ L” On the other hand, to say that “ε is infinitesimal” is the same as to
say that “∀st ε∗, ε < ε∗”, to say that “u is a perturbation of u0” is the same as to
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say that “u is in any standard neighborhood V of u0”. Finally, the formula F ′ is
equivalent to the formula ∀stη F . Then, Theorem 3.5 can be formalized by

∀ε ∀u (∀stε∗ ∀stV K ⇒ ∀stη F ), (3.2)

where K designates the formula ε < ε∗ & u ∈ V. Here, u0 and L are standard
parameters, u ranges over T , while ε and ε∗ range over the positive real numbers
and V ranges over the neighborhoods of u0. Using the reduction formula (3.1),
(3.2) is equivalent to

∀η ∃finε∗′ ∃finV ′ ∀ε ∀u (∀ε∗ ∈ ε∗′ ∀V ∈ V ′ K ⇒ F ).

But, ε∗′ and V ′ being finite sets, there exists ε∗ and V such that ε∗ = min ε∗′ and
V = ∩

V ∈V′
V and the last formula becomes equivalent to

∀η ∃ε∗ ∃V ∀ε ∀u (K ⇒ F ).

Hence, the statement of Theorem 2.2 holds for any standard u0 and L ∈ I. By
transfer, it holds for any u0 and L ∈ I. �

4. Proofs of Theorems 3.5 and 3.6

4.1. Fundamental lemmas. We present in this subsection two fundamental lem-
mas of the nonstandard perturbation theory of differential equations. The strobo-
scopic method was proposed by J. L. Callot and G. Reeb and improved by R. Lutz
and T. Sari (see [2], [7], [13], [14]).

Let O be a standard open subset of Rn, F : O → Rn a standard continuous
function. Let J be an interval of R containing 0 and φ : J → Rn a function such
that φ(0) is nearstandard in O, that is, there exists a standard x0 ∈ O such that
φ(0) ' x0. Let I be a connected subset of J , eventually external, such that 0 ∈ I.

Definition 4.1 (Stroboscopic property). Let t and t′ be in I. The function φ is
said to satisfy the stroboscopic property S(t, t′) if t′ ' t, and φ(s) ' φ(t) for all s
in [t, t′] and

φ(t)− φ(t′)
t− t′

' F (φ(t)).

Under suitable conditions, the Stroboscopy Lemma asserts that the function φ
is approximated by the solution of the initial value problem

dx

dt
= F (x), x(0) = x0. (4.1)

Theorem 4.2 (Stroboscopy Lemma). Suppose that

(i) There exists µ > 0 such that, whenever t ∈ I is limited and φ(t) is nearstan-
dard in O, there is t′ ∈ I such that t′ − t ≥ µ and the function φ satisfies
the stroboscopic property S(t, t′).

(ii) The initial value problem (4.1) has a unique solution x(t).

Then, for any standard L in the maximal positive interval of definition of x(t), we
have [0, L] ⊂ I and φ(t) ' x(t) for all t ∈ [0, L].
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An other tool which is related to the theory of regular perturbations is needed.
Let us define the two initial value problems

dx

dt
= F0(x), x(0) = a0 ∈ O, (4.2)

dx

dt
= F (x), x(0) = a ∈ O. (4.3)

The so-called Short Shadow Lemma answers to the problem of comparing the so-
lutions of (4.2) and (4.3) when F is close to F0 and the initial condition a is close
to a0 (see [14]).

Theorem 4.3 (Short Shadow Lemma). Let O be a standard open subset of Rn

and let F0 : O →Rn be standard and continuous. Let a0 ∈ O be standard. Assume
that the initial value problem (4.2) has a unique solution x0(t) and let J = [0,
ω), 0 < ω ≤ +∞, be its maximal positive interval of definition. Let F : O →Rn

be continuous such that F (x) ' F0(x) for all x nearstandard in O. Then, every
solution x(t) of the initial value problem (4.3) with a ' a0, is defined for all t
nearstandard in J and satisfies x(t) ' x0(t).

With the help of the last theorem, we give now the proof of Lemma 3.3.

Proof of Lemma 3.3. Assume that the periodic solution x∗(τ, y) is orbitally asymp-
totically stable. By attractivity, its orbit Γy has a standard basin of attraction V.
Let a > 0 be standard such that the closure of the set A = {x ∈ Rn : dis(x,
Γy) < a} is included in V. Let α ∈ A and x̃(τ) be the solution of (2.2) such that
x̃(0) = α. Let α0 be standard in V such that α ' α0. By attractivity of Γy, the
solution x̃0(τ) of (2.2) starting by α0 is defined for all τ ≥ 0 and satisfies dis(x̃0(τ),
Γy) ' 0 for all τ ' +∞. By the Short Shadow Lemma, x̃(τ) ' x̃0(τ) for all limited
τ > 0. By Robinson’s Lemma, there exists υ ' +∞ such that x̃(τ) ' x̃0(τ) for all
τ in [0, υ]. Thus, dis(x̃(τ), Γy) ' 0 for all unlimited τ ≤ υ. By stability of the
closed orbit, this approximation still holds for all τ > υ. Hence, dis(x̃(τ), Γy) ' 0
for all τ ≥ 0. Conversely, if the orbit Γy is assumed to satisfy the property in the
lemma, then by definition, the standard set A is in the basin of attraction of Γy.
Hence, the considered closed orbit is attractive. Let x̃(τ) be a solution of (2.2) such
that x̃(0) = α, where α is infinitely close to a standard α0 ∈ Γy. Since α ∈ A,
by hypothesis, x̃(τ) can be continued for all τ ≥ 0 and satisfies dis(x̃(τ), Γy) ' 0
for all τ ' +∞. On the other hand, if x̃0(τ) is the maximal solution of (2.2) such
that x̃0(0) = α0, its trajectory is the closed orbit Γy. Hence, by the Short Shadow
Lemma, dis(x̃(τ), Γy) ' 0 for all limited τ ≥ 0. Finally,Γy is stable. �

4.2. Preparatory lemmas. Let C = ∪
y∈G

(Γy × {y}) and consider the system

ε ẋ = f(x, y),

ẏ = g(x, y).
(4.4)

The following lemma asserts that a trajectory of (4.4) which comes infinitely close
to C remains close to it as long as y is not infinitely close to the boundary of G.

Lemma 4.4. Let Assumptions (A) and (B′) be satisfied. Let (x(t), y(t)) be a
solution of (4.4) such that y(t) is nearstandard in G0 for t ∈ [t0,t1] and x(t0) '
Γy(t0), then x(t) ' Γy(t) for all t in [t0,t1].
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Proof. Let y0 be standard in G0 and let x0 be standard in Γy0 such that x(t0) ' x0

and y(t0) ' y0. As a function of τ , (x(t0 + ετ),y(t0 + ετ)) is the solution of system

x′ = f(x, y),

y′ = εg(x, y),
(4.5)

with initial condition (x(t0), y(t0)). This IVP is a regular perturbation of system

x′ = f0(x, y),

y′ = 0,
(4.6)

with initial condition (x0,y0). According to the Short Shadow Lemma, we obtain

x(t0 + ετ) ' Γy0 , y(t0 + ετ) ' y0 for limited τ ≥ 0. (4.7)

Assume that there exists s ∈]t0, t1] such that dis(x(s),Γy(s)) = γ0 is not infinitesi-
mal. Since the asymptotic stability of the cycles Γy is uniform over G, there exists
a > 0 satisfying the property stated in Assumption (B′). Let γ < γ0 be such that
0 < γ ≤ a and γ 6' 0 and let chose s ∈]t0, t1] such that dis(x(s),Γy(s)) = γ. Since
dis(x(t0),Γy(t0)) ' 0 and y(t) is nearstandard in G0 for all t ∈ [t0, s], there exists
a smallest m ∈]t0, t1] such that dis(x(m), Γy(m)) = γ and a standard (x1,y1) such
that y1 ∈ G0 and (x1,y1) ' (x(m), y(m)). If τ0 = (m− t0)/ε was limited, by (4.7)
one will have x(m) ' Γy0 and y(m) ' y0, thus x(m) ' Γy(m). This contradicts
dis(x(m), Γy(m)) = γ. The value τ0 is then unlimited. Let us consider the solution
(x(m + ετ), y(m + ετ)) of (4.5) with initial condition (x(m), y(m)). This problem
is a regular perturbation of (4.6) with initial condition (x1,y1), of maximal solu-
tion (x̃(τ), y1). According to the Short Shadow Lemma, x(m + ετ) ' x̃(τ) and
y(m+ετ) ' y1 for all limited τ ≤ 0. By Robinson’s Lemma, there exists τ1 < 0 un-
limited, which can be chosen such that −τ0 < τ1, still satisfying x(m+ετ1) ' x̃(τ1).
By noting that dis(x(m + ετ),Γy(m+ετ)) < γ for all τ ∈ [−τ0, 0[, we will have in
particular dis(x̃(τ1), Γy1) < γ ≤ a. According to Assumption (B′), x̃(τ1 + τ) is
defined for all τ ≥ 0 and satisfies x̃(τ1 + τ) ' Γy1 for all τ positive and unlimited.
In particular, for τ = −τ1, x̃(0) ' Γy1 i.e. x(m) ' Γy1 ' Γy(m). This contradicts
the fact that dis(x(m), Γy(m)) = γ. �

The following lemma asserts that the y-component of a trajectory of (4.4) which
is infinitely close to C is approximated by a solution of the slow equation (2.3).

Lemma 4.5. Let Assumptions (A), (B’) and (C) be satisfied. Let (x(t), y(t)) be
a solution of (4.4) such that y(t0) is nearstandard in G0. Let y0 be standard in
G0 such that y(t0) ' y0. Let ȳ(t) be the solution of (2.3) with initial condition y0

and defined on the standard interval [0, L]. Let t1 ≥ t0 such that t1 ≤ t0 + L and
x(t) ' Γy(t) for t ∈ [t0,t1]. Then y(t0 + s) ' ȳ(s) for all 0 ≤ s ≤ L such that
t0 + s ≤ t1.

Proof. Let (x(t), y(t)) be a solution of (4.4) such that y(t0) is nearstandard in G0.
Let us consider the external set

I = {t ≥ t0 : (x(s), y(s)) is defined and x(s) ' Γy(s) for all s ∈ [t0, t]}

which contains, by hypothesis, the interval [t0,t1]. Let us show that y(t) satisfies the
hypothesis (i) of the Stroboscopy Lemma (Theorem 4.2). Let µ = εminy∈GT (y).
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Since T is continuous and G is compact, µ > 0. Let tλ limited be in I such that
y(tλ) is nearstandard in G0. The change of variables

τ =
t− tλ

ε
, X(τ) = x(tλ + ετ), Y (τ) =

y(tλ + ετ)− y(tλ)
ε

, (4.8)

transforms the problem (4.4) with initial condition (x(tλ), y(tλ)) into

X ′ = f(X, y(tλ) + εY ), X(0) = x(tλ), (4.9)

Y ′ = g(X, y(tλ) + εY ), Y (0) = 0. (4.10)

For τ and Y limited, this problem is a regular perturbation of

X ′ = f0(X, yλ), X(0) = xλ,

Y ′ = g0(X, yλ), Y (0) = 0,
(4.11)

where xλ and yλ are standard and such that xλ ' x(tλ), yλ ' y(tλ). The Short
Shadow Lemma gives

X(τ) ' X0(τ), Y (τ) ' Y0(τ), (4.12)

for all limited τ , where (X0(τ), Y0(τ)) is the solution of (4.11). Knowing that
x(tλ) ' Γy(tλ) ' Γyλ

and that xλ and Γyλ
are standard, we obtain that xλ ∈ Γyλ

.
The first equation of (4.11) is nothing else than the fast equation (2.2) with initial
condition xλ and parameter y = yλ. There exists τλ ∈ [0, T (yλ)] such that x∗(τλ,
yλ) = xλ. Hence,

X0(τ) = x∗(τ + τλ, yλ), Y0(τ) =
∫ τ

0

g0(x∗(s + τλ, yλ), yλ)ds. (4.13)

Using (4.12) and (4.13) and the periodicity of x∗, we obtain

Y (T (yλ)) '
∫ T (yλ)

0

g0(x∗(s, yλ), yλ)ds. (4.14)

Let us consider now the instant tν := tλ + εT (yλ). We claim that tν ∈ I, that
is, x(s) ' Γy(s) for all s in [t0, tν ]. Since tλ is in I, this property holds for all s
in [t0, tλ]. Its remains to show that its holds also for all s in [tλ, tν ]. Indeed, let
s = tλ + ετ . We have y(s) = y(tλ) + εY (τ) ' y(tλ), for all τ in [0, T (yλ)]. Since
y(tλ) is nearstandard in G0 and x(tλ) ' Γy(tλ), by Lemma 4.4 we have x(s) ' Γy(s)

for all s in [tλ, tν ].
We have proved that, for tλ limited in I and y(tλ) nearstandard in G0, there

exists tν such that 0 ' tν − tλ ≥ µ, [tλ, tν ] ⊂ I, y(s) ' y(tλ) for all s in [tλ, tν ]. By
(4.14), we have

y(tν)− y(tλ)
tν − tλ

=
Y (T (yλ))

T (yλ)
' ḡ0(yλ) ' ḡ0(y(tλ)).

By the Stroboscopy Lemma, [t0, t0 + L] ⊂ I and y(t0 + s) ' ȳ(s) for all 0 ≤ s ≤ L.
Therefore, this approximation holds for all s such that t0 + s ≤ t1. �

4.3. Proof of Theorem 3.5. Let (x(t), y(t)) be a solution of the system (2.1).
Then (x(ετ), y(ετ)) is a solution of (4.5) with initial condition (α, β). This problem
is a regular perturbation of (4.6) with initial conditions (α0, β0). By the Short
Shadow Lemma, x(ετ) ' x̃(τ) and y(ετ) ' β0 for all limited τ ≥ 0. By Robinson’s
Lemma, there exists ω positive unlimited such that those approximations still hold
for all τ ∈ [0, ω]. One can chose ω such that εω ' 0. On the other hand, by
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Assumptions (B′) and (D), x̃(τ) is defined for all τ ≥ 0 and satisfies x̃(τ) ' Γβ0

for all τ positive and unlimited. This last property is true in particular for τ = ω,
which means that after a time t0 := εω the solution of (2.1) is infinitely close to
Γβ0 ⊂ C. Assume that there exists s ∈]t0, L] such that y(s) 6' ȳ(s). Let r > 0 be
standard such that ‖y(s) − ȳ(s)‖ ≥ r. Since ȳ(t) is nearstandard in G0, we can
chose r small enough such that the tubular neighborhood

B = {(t, y) : t ∈ [0, L], y ∈ G0 and ‖ȳ(t)− y‖ < r}

satisfies the property that y is nearstandard in G0 for every (t, y) ∈ B. Let t1 < L
be the smallest value of t for which y(t1) is on the boundary of B. Lemma 4.4
ensures that the solution stays infinitely close to C for t ∈ [t0, t1]. Lemma 4.5
permits to assert that y(t) ' ȳ(t) for t ≤ t1. In particular, y(t1) ' ȳ(t1) which
contradicts ‖y(t1) − ȳ(t1)‖ = r. Therefore, y(t) is defined at least on [0, L] and
satisfies y(t) ' ȳ(t). Hence x(t) ' Γy(t) ' Γȳ(t) for all t in [εω, L].

Remark 4.6. It is useful to add that a trajectory which is infinitely close to C
at a time t̄ stays near the cycle Γȳ(t) while performing rapid oscillations along it
of period approximately εT (ȳ(t)). More exactly, for all t̄ ∈ [εω, L], there exists
δ(t̄) ∈ [0, T (ȳ(t̄))] such that for τ limited,

x(t + ετ) ' x∗ (τ + δ(t̄), ȳ(t̄)) .

Indeed, let t̄ ∈ [εω, L]. By what precedes, x(t̄) ' Γy(t̄). Let x◦ be standard such
that x◦ ' x(t̄) and x◦ ∈ Γy(t̄). Then there exists δ(t̄) ∈ [0, T (y(t̄))] such that
x∗(δ(t̄), y(t̄)) = x◦. By setting τ = (t − t̄)/ε in (4.4), the Short Shadow Lemma
gives the approximation x(t̄ + ετ) ' x∗(τ + δ(t̄), y(t̄)) for all limited t. Finally, the
assertion is proved knowing that y(t̄) ' ȳ(t̄).

4.4. Proof of Theorem 3.6. According to Theorem 3.5 and Assumption (E), one
has

y(t) ' ȳ(t) for all t ∈ [0, L],

x(t) ' Γȳ(t) for all t ∈ [εω, L],

for all limited L > 0. By Robinson’s Lemma, those approximations still hold for a
certain L ' +∞. Thus, using Assumption (E), y(L) ' ȳ(L) ' ȳ∞ and x(L) ' Γȳ∞ .
Applying again Theorem 3.5 to the solution starting from (x(L), y(L)) gives

y(L + k) ' ȳ∞, x(L + k) ' Γȳ∞ for all limited k ≥ 0. (4.15)

Suppose that there exists s ≥ L such that y(s) is not infinitely close to ȳ∞ and
let us find a contradiction. Then we can suppose that ‖y(s) − ȳ∞‖ = µ standard.
The value s is chosen such that the ball B of center ȳ∞ and radius µ is contained
in the basin of attraction of ȳ∞. Let m be the smallest value of such numbers s
(this m exists by compactness of ∂B and ‖y(m) − ȳ∞‖ = µ). It can be seen from
(4.15) that k0 := m − L is positive unlimited. The solution starting by (x(m),
y(m)) satisfies y(m + k) ∈ B for all k in [−k0, 0]. Let ȳ(k) be the solution of the
slow equation (2.3) with initial condition ȳ(0) = y0(m), where y0(m) is a standard
verifying y0(m) ' y(m). Lemma 4.5 asserts that y(m + k) ' ȳ(k) for all limited
k ≤ 0 provided x(m + k) ' Γy(m+k), which can be established by contradiction as
in the proof of Lemma 4.4. By Robinson’s Lemma, there exists k1 < 0 unlimited
such that y(m+k1) ' ȳ(k1) which may be chosen such that −k0 ≤ k1. This means
that ȳ(k1) is in B, thus in the basin of attraction of ȳ∞. Assumption (E) then
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gives ȳ(k1 + k) ' ȳ∞ for all unlimited k > 0. In particular, for k = −k1, one
has ȳ(0) ' ȳ∞. But ȳ(0) = y0(m) and y0(m) ' y(m), then y(m) ' ȳ∞, which is
absurd.

5. Applications

5.1. A system with delayed loss of stability. The aim of this example is to
illustrate both the result of Theorem 2.2 and the delayed loss of stability phenome-
non pointed out in the introduction. Let us consider the three dimensional slow-fast
system

εẋ1 = x2 − yx1(1− x2
1 − x2

2)
3,

εẋ2 = −x1 − yx2(1− x2
1 − x2

2)
3,

ẏ = x2
1.

(5.1)

The fast equation is
x′1 = x2 − yx1(1− x2

1 − x2
2)

3,

x′2 = −x1 − yx2(1− x2
1 − x2

2)
3,

(5.2)

where y is a parameter. In terms of the polar coordinates (x1 = r cos θ, x2 = r sin θ),
the equation (5.2) is written as

r′ = −ry(1− r2)3,

θ′ = −1.
(5.3)
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Figure 1. A solution of (5.1) with ε = 0.1, x0
1 = 2, x0

2 = 2, y0 =
−1 in the phase space (x1, x2, y). The functions r(t, ε) and y(t, ε)
are approximated respectively by the functions r̄(t), and ȳ(t) even
after t = 2 where the cycles become unstable.

r̄(t)

ȳ(t)

r(t, ε)

y(t, ε)

x1

x2

y

From (5.3) it is seen that the fast equation (5.2) admits a unique cycle Γy for all
y 6= 0, namely the circle of center the origin and radius 1. This cycle corresponds
for instance to the 2π-periodic solution x∗(τ, y) = (cos τ,− sin τ). The cycles are
asymptotically stable for all y < 0, while they are unstable for y > 0. If y = 0, the
origin of (5.2) is a center. Notice that the cycles Γy are not exponentially stable,
so that the result of Pontryagin and Rodygin does not apply. Note that the basin
of attraction of Γy is the whole plan (x1, x2) for all y < 0, except the origin.
The asymptotic stability is therefore uniform over any interval G of ]−∞, 0[. We
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consider the IVP consisting of the system (5.1) together with the initial condition
(x0

1, x
0
2, y

0), such that y0 < 0. The reduced problem is defined by

ẏ =
1
2π

∫ 2π

0

cos2 τdτ =
1
2
, y(0) = y0.

Its solution is ȳ(t) = y0 + t/2. According to Theorem 2.2, the solution of (5.1)
satisfies limε→0y(t, ε) = ȳ(t) as long as 0 ≤ t ≤ L < −2y0. By Remark 4.6,
(x1(t, ε), x2(t, ε)) stays near the cycle Γȳ(t) while performing rapid oscillations along
it of period approximately 2πε, that is, r(t) is approximated by the solution of the
averaged equation

εṙ = −rȳ(t)(1− r2)3, r(0) =
√

(x0
1)2 + (x0

2)2. (5.4)
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Figure 2. A solution of (5.1) with ε = 0.01, x0
1 = 2, x0

2 =
2, y0 = −1 in the phase space (x1, x2, y). The functions r(t, ε)
and y(t, ε) are approximated respectively by the functions r̄(t),
and ȳ(t) asymptotically until the exit-time t = 4 of the averaged
system.
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y

The solution of (5.4) is denoted by r̄(t). Its satisfies the property r̄(−4y0 − t) =
r̄(t), hence r̄(−4y0) = r̄(0). Since ȳ(−4y0) = −y0, if a trajectory of the averaged
system approaches the cycles of radius 1 for some value y0 < 0, then it remains
near the cycles as long as y0 < ȳ(t) < −y0. Notice that for 0 < ȳ(t) < −y0 the
cycles are unstable : there is a delayed loss of stability for the averaged system
and the entrance-exit function near the cycles is defined by y0 7→ −y0. According
to Theorem 2.2, the solution of (5.1) is approximated by the averaged solution as
long 0 ≤ t < −2y0, that is, as long as y0 ≤ ȳ(t) < 0. The numerical simulations in
Figures 1 and 2 show that the actual solution (r(t, ε), y(t, ε)) is approximated by
the averaged solution (r̄(t), ȳ(t)) even after time t = −2y0 where the cycles become
unstable. This approximation holds asymptotically until the exit-time t = −4y0

of the averaged system. The rolling up of the trajectory (x1(t, ε), x2(t, ε), y(t, ε))
around the cycles Γy still holds for positive values of y, although the cycles became
unstable. If we consider y as a dynamical bifurcation parameter, the delayed loss
of stability phenomenon established by Neishtadt [8] turns to be still available.
Recall that in this example the stability of the cycles is just asymptotic and not
exponential, so that the result of Neishtadt does not apply. This problem deserves
a special investigation.
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5.2. A model from population ecology. Let us consider the following three
trophic levels food chain model

εẋ1 = U(x1)− x2V1(x1),

εẋ2 = α1x2V1(x1)−D2x2 − yV2(x2),

ẏ = α2yV2(x2)−Dy,

(5.5)

where ε is a small positive parameter. The nonnegative variables x1, x2 and y
are the respective densities of the prey, the predator and the superpredator. The
function U(x1) is the growth function of the prey. The functions V1(x1) and V2(x2)
are the functional responses of the predator and the superpredator respectively.
The parameters D2 and D are the respective death rates of the predator and the
superpredator and α1 and α2 are conversion coefficients of the biomass respectively
from the prey to the predator and from the predator to the superpredator. For
more details on this kind of models and these biological constants, all positive, see
for example [1, 10]. Note that the presence of the small parameter ε emphasizes
the fact that the multiplications of the prey and the predator are of same order and
much faster than the growth of the superpredator.

Figure 3. The growth function U and the functional responses
V1 and V2 of the three trophic levels food chain model (5.5).

We assume that the functions U , V1 and V2 are continuous. Nonsmooth right-
hand side of differential equations (and even discontinuous righthand sides) are of
interest in the biological literature (see for example [3]). We assume also that these
functions satisfy the following properties (see Figure 3):

• U(0) = V1(0) = V2(0) = 0,
• there exists K > 0 such that U(K) = 0 and U is positive on ]0,K[ and

negative on ]K, +∞[,
• The functions V1 and V2 are strictly increasing and limx1→+∞ V1(x1) and

limx2→+∞ V2(x2) are finite.
Such properties are satisfied by the model with logistic growth of the prey and
Holling type II functional responses of the predator and the superpredator :

U(x1) = rx1(1− x1/K), V1(x1) =
a1x1

b1 + x1
, V2(x2) =

a2x2

b2 + x2
, (5.6)

where r, K, a1, a2, b1 and b2 are biological positive parameters.
When z = 0, the fast equation associated to (5.5-5.6) is the classical prey-

predator system. For this model, under suitable conditions on the parameters, the
uniqueness and the exponential stability of a limit cycle have been proved in [5].
For z > 0, numerical simulations [4] give strong evidence that the model still have
a limit cycle for certain values of the parameters, but there is no theoretical results
on the existence of a cycle, nor on its stability. More details are given in [16].
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Figure 4. A numerical simulation of model (5.5-5.6) with the
following values of the parameters : r = K = 10, α1 = 0.4, a1 = 5,
b1 = 2.5, D2 = 1, α2 = 0.5, a2 = 10, b2 = 5 and D = 2. The figure
at left corresponds to ε = 0.05 and the figure at right corresponds
to ε = 0.01. The initial condition is x0

1 = 10, x0
2 = 6, y0 = 0.1.
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We return to the general model (5.5) and we assume that the fast equation

x′1 = U(x1)− x2V1(x1),

x′2 = α1x2V1(x1)−D2x2 − yV2(x2),
(5.7)

satisfies Assumption (B). More precisely we assume that there exist α1, α2, D, D2

and a compact interval G of [0,+∞[ with a non empty interior such that, for all
y ∈ G, the fast system (5.7) has a unique cycle Γy which is asymptotically stable
with a uniform basin of attraction over G. Let (x∗1(τ, y), x∗2(τ, y)) be a T (y)-periodic
solution of orbit Γy and define on G0 the function

M(y) =
1

T (y)

∫ T (y)

0

(α2yV2(x∗2(τ, y))−Dy)dτ.

According to Theorem 2.2, it follows that for every initial condition (x0
1, x

0
2, y

0)
such that y0 ∈ G0 and (x0

1, x
0
2) is in the basin of attraction of Γy0 , the evolution

of the superpredator in the model (5.5) is approximated by the solution ȳ(t) of the
reduced problem

ẏ = M(y), y(0) = y0.

More exactly, if ((x1(t, ε), x2(t, ε), y(t, ε)) is the solution of the IVP, we have

lim
ε→0

y(t, ε) = ȳ(t) for all 0 ≤ t ≤ T

lim
ε→0

dis((x1(t, ε), x2(t, ε)),Γȳ(t)) = 0 for all 0 < t ≤ T,

where T is in the positive interval of definition of ȳ(t). An illustration of the results
is presented through numerical simulations of the model (5.5-5.6). Figure 4 shows
how the high-frequency oscillations of the prey-predator subsystem are damped by
increasing the density of the superpredator.
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