\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 24, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm} } \begin{document} \title[\hfilneg EJDE-2004/24\hfil Oscillation of nonlinear equations] {Oscillation of nonlinear impulsive hyperbolic equations with several delays} \author[Anping Liu, Li Xiao, \& Ting Liu\hfil EJDE-2004/24\hfilneg] {Anping Liu, Li Xiao, \& Ting Liu} \address{Department of Mathematics and Physics\\ China University of Geosciences \\ Wuhan, Hubei, 430074, China} \email[Anping Liu]{wh\_apliu@263.net} \date{} \thanks{Submitted December 1, 2003. Published February 19, 2004.} \thanks{Supported by grant 10071026 from the National Natural Science Foundation of China, and \hfill\break\indent by grant 40373003 from the Natural Science Foundation of China.} \subjclass[2000]{35L10, 35R12, 35R10} \keywords{Impulse, hyperbolic differential equation, oscillation, delay} \begin{abstract} In this paper, we study oscillatory properties of solutions to nonlinear impulsive hyperbolic equations with several delays. Sufficient conditions for oscillations of the solutions are established \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \allowdisplaybreaks \section{Introduction} The theory of partial functional differential equations can be applied to fields, such as to biology, population growth, engineering, medicine, physics and chemistry. In the last few years, a few of papers have been published on oscillation theory of partial differential equations. The qualitative theory of this class of equations, however, is still in an initial stage of development. We may easily visualize situations in nature where abrupt changes such as shock and disasters may occur. These phenomena are short-time perturbations. Consequently, it is natural to assume, in modelling these problems, that these perturbations act instantaneously, that is, in the form of impulses. In 1991, the first paper \cite{e1} on this class of equations was published. But for instance, on oscillation theory of impulsive partial differential equations only a few of papers have been published. Recently, Bainov, Minchev, Fu and Luo \cite{b2,b3,f1,f2,l1} investigated the oscillation of solutions of impulsive partial differential equations with or without deviating argument. But there is a scarcity in the study of oscillation theory of nonlinear impulsive hyperbolic equations with several delays. In this paper, we discuss the oscillatory properties of solutions for nonlinear impulsive hyperbolic equations with several delays \eqref{e1}, under the boundary condition \eqref{e4}. It should be noted that the equation we discuss here is nonlinear and that we could not find work for oscillations of this kind of problem. \begin{gather} \begin{aligned} \frac{\partial^2 u}{\partial t^2} &=a(t)h(u)\Delta u+ \sum_{i=1}^{m} a_i(t)h_{i}(u(t-\tau_i,x))\Delta u(t-\tau _i,x) \\ &\quad -q(t,x)f(u(t,x)) -\sum_{j=1}^{n} g_j(t,x)f_{j}(u(t-\sigma_j,x)),\\ &t\neq t_k,\quad (t,x)\in \mathbb{R}_+\times \Omega =G, \end{aligned} \label{e1} \\ u(t_k^{+},x)-u(t_k^{-},x)=q_ku(t_k,x), \label{e2}\\ u_{t}(t_k^{+},x)-u_{t}(t_k^{-},x)=b_ku_{t}(t_k,x),\quad k=1,2,\dots. \label{e3} \end{gather} with the boundary condition \begin{equation} \label{e4} \frac{\partial u}{\partial n}=0,\quad(t,x)\in \mathbb{R}_+ \times \partial \Omega , \end{equation} and the initial condition $u(t,x)=\Phi(t,x)$, $(t,x)\in[-\delta,0] \times\Omega$. Here $\Omega\subset \mathbb{R}^N$ is a bounded domain with boundary $\partial \Omega $ smooth enough and $n$ is a unit exterior normal vector of $\partial \Omega$, $\delta=\max\{ \tau_{i},\sigma_{j}\}$, $\Phi(t,x)\in C^2 ([-\delta,0]\times\Omega,\mathbb{R})$. Assume that the following conditions are fulfilled: \begin{itemize} \item[(H1)] $a(t),a_i(t)\in PC(\mathbb{R}_+,\mathbb{R}_+)$, $\tau _i=\mathrm{const.}>0$, $\sigma_j=\mathrm{const.}>0$, $i=1,2,\dots m$, $ j=1,2,\dots n$, $q(t,x),g_j(t,x)\in C(\mathbb{R}_+\times \overline {\Omega }, (0,\infty))$; where $PC$ denote the class of functions which are piecewise continuous in $t$ with discontinuities of first kind only at $t=t_k$, $k=1,2,\dots$ and left continuous at $t=t_k$, $k=1,2,\dots$. \item[(H2)] $h'(u),h'_{i}(u),f(u),f_{j}(u)\in C(\mathbb{R},\mathbb{R})$; $f(u)/u\geq C=\mathrm{const.}>0$, $f_{j}(u)/u\geq C_{j}=\mathrm{const.}>0$, for $u\neq0$; $q_k>-1$, $b_k>-1$, $b_k0$, $u(t-\tau _i,x)>0$, $i=1,2,\dots ,m,u(t-\sigma _j,x)>0$, $j=1,2,\dots ,n$, for any $(t,x)\in [t_0,\infty )\times \Omega$. For $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, integrating \eqref{e1} with respect to $x$ over $\Omega $ yields \begin{equation} \label{e8} \begin{aligned} \frac {d^2}{dt^2}[\int_\Omega udx] &= a(t)\int_\Omega h(u)\Delta udx + \sum_{i=1}^m a_i(t)\int_\Omega h_{i}(u(t-\tau_{i},x)) \Delta u(t-\tau _i, x)dx \\ &\quad - \int_\Omega q(t,x)f(u(t,x))dx - \sum_{j=1}^{n} \int_\Omega g_j(t,x)f_{j}(u(t-\sigma_j,x)). \end{aligned} \end{equation} By Green's formula and the boundary condition, we have \begin{gather*} \int_\Omega h(u)\Delta udx=\int_{\partial \Omega }h(u)\frac {\partial u}{\partial n}ds-\int_\Omega h'(u)|gradu|^2dx \leq - \int_\Omega h'(u)|gradu|^2dx\leq 0,\\ \int_\Omega h_{i}(u(t-\tau _i,x))\Delta u(t-\tau _i,x)dx\leq 0. \end{gather*} From condition (H2), we can easily obtain \begin{gather*} \int_\Omega q(t,x)f(u(t,x))dx\geq Cp(t) \int_\Omega u(t,x)dx,\\ \int_\Omega q_{j}(t,x)f_{j}(u(t-\sigma_{j},x))dx\geq C_{j}p_{j}(t) \int_\Omega u(t-\sigma_{j},x)dx. \end{gather*} It follows that from above that \begin{equation} \label{e9} v''+Cp(t)v(t)+\sum_{j=1}^{n} C_{j}p_j(t)v(t-\sigma_j) \leq 0,\quad (t\geq t_0,\;t\neq t_k). \end{equation} Where $v(t)>0$. For $t>t_0$, $t=t_k$, $k=1,2,\dots$, we have \begin{gather*} \int_\Omega u(t_k^{+},x)dx- \int_\Omega u(t_k^{-},x)dx= q_k\int_\Omega u(t_k,x)dx,\\ \int_\Omega u_{t}(t_k^{+},x)dx- \int_\Omega u_{t}(t_k^{-},x)dx =b_k\int_\Omega u_{t}(t_k,x)dx. \end{gather*} This implies \begin{gather} v(t_k^{+})=(1+q_k)v(t_k), \label{e10}\\ v'(t^{+}_k)=(1+b_k)v'(t_k)\quad k=1,2,\dots. \label{e11} \end{gather} Hence we obtain that $v(t)>0$ is a positive solution of differential inequality \eqref{e5}--\eqref{e7}. This completes the proof. \end{proof} \noindent\textbf{Definition.} % 2.2. The solution $v(t)$ of differential inequality \eqref{e5}--\eqref{e7} is called eventually positive (negative) if there exists a number $t^{*}$ such that $v(t)>0 (v(t)<0)$ for $ t \geq t^{*}$. \begin{lemma}[{\cite[Theorem 1.4.1]{b4}}] \label{lm2.3} Assume that \begin{itemize} \item[(i)] $m(t)\in PC^{1}[\mathbb{R}^{+},\mathbb{R}]$ is left continuous at $t_k$ for $k=1,2,\dots$, \item[(ii)] For $k=1,2,\dots$ and $t \geq t_0$, \begin{gather*} m'(t)\leq p(t)m(t)+q(t) \quad (t\neq t_k),\\ m(t^{+}_k)\leq d_km(t_k)+e_k. \end{gather*} \end{itemize} where $ p(t),q(t)\in C(\mathbb{R}^{+},R),d_k \geq 0 $ and $ e_k $ are real constants, $ PC^{1}[\mathbb{R}^{+},\mathbb{R}]=\{x:\mathbb{R}^{+}\to \mathbb{R}; x(t)$ is continuous and continuously differentiable everywhere except some $t_k$ at which $x(t^{+}_k),x(t^{-}_k),x'(t^{+}_k) $ and $x'(t^{-}_k)$ exist and $x(t_k)=x(t^{-}_k),x'(t_k)= x'(t^{-}_k)\}$. Then \begin{align*} m(t)&\leq m(t_0)\prod_{t_00(v(t)<0)$ for $t \geq T$. If the following condition holds, \begin{equation} \label{e12} \lim _{t \to + \infty } \int_{t_0}^t \prod_{t_00$, $u(t-\tau _i,x)>0$, $i=1,2,\dots ,m$, $u(t-\sigma _j,x)>0$, $j=1,2,\dots ,n$ for any $(t,x)\in [t_0,\infty )\times \Omega$. From Lemma \ref{lm2.1}, we know that $v(t)$ is a positive solution of \eqref{e5}--\eqref{e7}. Thus from Lemma \ref{lm2.4}, we can find that $v'(t)\geq 0$ for $t \geq t_0$. For $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, define \[ w(t)=\frac{v'(t)}{v(t)},\quad t \geq t_0. \] Then we have $w(t)>0$, $t \geq t_0$, $v'(t)-w(t)v(t)=0$. We may assume that $v(t_0)=1$, thus in view of \eqref{e5}--\eqref{e7} we have that for $t \geq t_0$, \begin{gather} v(t)=\exp(\int_{t_0}^t w(s)ds) \label{e14} \\ v'(t)=w(t)\exp(\int_{t_0}^t w(s)ds) \label{e15}\\ v''(t)=w^2(t)\exp(\int_{t_0}^t w(s)ds)+w'(t)\exp(\int_{t_0}^t w(s)ds) \label{e16} \end{gather} We substitute \eqref{e14}--\eqref{e16} into \eqref{e5} and can obtain \[ w^2(t)\exp(\int_{t_0}^t w(s)ds)+w'(t)\exp(\int_{t_0}^tw(s)ds) +C_{j_0}p_{j_0}(t)exp(\int_{t_0}^ {t-\sigma_{j_0}}w(s)ds) \leq 0. \] Hence, we have \[ w^2(t)+w'(t)+C_{j_0}p_{j_0}(t)exp(-\int_{t-\sigma_{j_0}} ^{t}w(s)ds) \leq 0\,. \] From above and condition $b_k0$, the last inequality contradicts \eqref{e13}. Therefore, the proof is complete. \end{proof} It should be noted that obviously all solutions of problem \eqref{e1}--\eqref{e2} are oscillatory if there exists a subsequence $n_k$ of $n$ such that $q_{n_k}<-1$, for $k=1,2,\dots$. So we discuss only the case of $ q_k>-1$. \begin{thebibliography}{00} \bibitem{b5} D. D. Bainov, Z. Kamont, E. Minchev, \emph{Monotone iterative methods for impulsive hyperbolic differential-functional equations}, J. Comput. Appl. Math. 70(1996), 329-347. \bibitem{b4} D. D. Bainov, V. Lakshmikantham, and P. S. Simeonov, \emph{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{b1} D. Bainov, E. Minchev, \emph{Oscillation of the solutions of impulsive parabolic equations}, J. Comput. and Appl. Math. 69(1996), 207-214. \bibitem{b2} D. Bainov, E. Minchev, \emph{Oscillation of solutions of impulsive nonlinear parabolic differential-difference equations}, Internat. J. Theoret. Phys., 35(1)(1996), 207-215. \bibitem{b3} D. Bainov, E. Minchev, \emph{Forced Oscillation of solutions of impulsive nonlinear parabolic differential -difference equations}, J. Korean Math. Soc.,35(4)(1998), 881-890. \bibitem{b7} D. D. Bainov and P. S. Simeonov, \emph{Impulsive Differential Equations: Periodic Solutions and Applications}, Longman, Harlow, 1993. \bibitem{b6} L. Berezansky, E. Braverman, \emph{Oscillation of a linear delay impulsive differential equations}, Comm. Appl. Nonlinear Anal. 3(1996), 61-77. \bibitem{e1} L. Erbe, H. Freedman, X. Liu, J. H. Wu; \emph{Comparison principles for impulsive parabolic equations with application to models of single species growth}, J. Aust. Soc. Ser. B, 32(1991),382-400. \bibitem{f1} Xilin Fu, Xinzhi Liu, Sivaloganathan, \emph{Oscillation criteria for impulsive parabolic systems}, Appl.Anal.,79(1-2)(2001), 239-255. \bibitem{f2} Xilin Fu, Xinzhi Liu, Sivaloganathan, \emph{Oscillation criteria for impulsive parabolic equations with delay}, J. Math. Anal. Appl., 268(2)(2002), 647-664. \bibitem{h1} Mengxing He, Anping Liu, \emph{Oscillation of hyperbolic partial functional differential equations}, Appl. Math. Comput. 142(2003), 205-224. \bibitem{l4} Anping Liu, \emph{Oscillations of certain hyperbolic delay differential equations with damping term}, Math. Applicate, 9(3) (1996), 321-324. \bibitem{l6} A. P. Liu, \emph{Oscillations of the solutions of parabolic partial differential equations of neutral type}, Acta Analysis Functionalis Applicate, 2(4)(2000), 376-381. \bibitem{l7} Anping Liu, Li Xiao, Ting Liu, \emph{Oscillations of the solutions of hyperbolic partial functional differential equations of neutral type}, Acta Analysis Functionalis Applicate, 4(1)(2002), 69-74. \bibitem{l8} Anping Liu, Xing Li, Keying Liu, \emph{Necessary and sufficient conditions for oscillations of delay hyperbolic partial differential equations}, Chinese J. of Engineering Math. 20(4) (2003), 117-120. \bibitem{l2} Anping Liu, Mengxing He, \emph{Oscillations of the solutions of nonlinear delay hyperbolic partial differential equations of neutral type}, Applied Mathematics and Mechanics, 23(6) (2002), 678-685. \bibitem{l3} Anping Liu, Shaochen Cao, \emph{Oscillations of the solutions of hyperbolic partial differential equations of neutral type}, Chinese Quarterly Journal of Mathematics,17(2)(2002), 7-13. \bibitem{l5} A. P. Liu, W. H. Yu, \emph{Necessary and sufficient conditions for oscillations of nonlinear parabolic partial differential equations}, Pure and Appl.Math.18(1)(2002), 86-89. \bibitem{l1} Jiaowan Luo, \emph{Oscillation of hyperbolic partial differential equations with impulsive}, Appl. Math. Comput. 133(2002), 309-318. \bibitem{y1} N. Yoshida, \emph{Oscillation of nonlinear parabolic equations with functional arguments}, Hiroshima Math. J. 16(2) (1986), 305-314. \end{thebibliography} \end{document}