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A NOTE ON A 3-DIMENSIONAL STATIONARY
SCHRÖDINGER–POISSON SYSTEM

KHALID BENMLIH

Abstract. In a previous paper we have proved existence of a ground state

for a stationary Schrödinger–Poisson system in the whole space R3 under ap-

propriate assumptions on the data, namely the dopant-density n∗ and the

effective potential Ṽ . In this note we show that the same result remains true
under less restrictive hypotheses.

1. Introduction

We are concerned with existence of standing waves (i.e. solutions of the form
u(t, x) = eiωtu(x) with a real constant ω) for a time-dependent Schrödinger equa-
tion where the electric potential V satisfies a linear Poisson equation. This leads
to solving the stationary Schrödinger–Poisson system

−1
2
∆u+ (V + Ṽ )u+ ωu = 0 in R3 (1.1)

−∆V = |u|2 − n∗ in R3 (1.2)

where the dopant-density n∗ and the effective potential Ṽ are given reals functions.
An existence result of a solution for (1.1)–(1.2) has been established by Lions [3]
in the particular case where Ṽ (x) = −2/|x| and n∗ ≡ 0, by Nier [4] under some
assumptions on the data essentially when ‖Ṽ ‖L2 and ‖n∗‖L2 are small enough and
also recently by the author [1] under appropriate assumptions on Ṽ and n∗.

In this note, we show existence of a ground state of (1.1)–(1.2) as in [1] but
under less restrictive assumptions. More precisely, an adequate modification on the
proof of the main result in [1, theorem 1.3] allows us to avoid the condition where
n∗ ∈ L1(R3).

Let us recall firstly the principal theorem and the several steps of its proof given
in [1]: after solving explicitly the Poisson equation for any fixed u ∈ H1(R3), we
substitute the unique solution then obtained V = V (u) in the Schrödinger equation
(1.1) and show existence of a ground state of

−1
2
∆u+ (V (u) + Ṽ )u+ ωu = 0 in R3. (1.3)
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To this end, we show that the energy functional corresponding to (1.3) is exactly
the expression

E(ϕ) :=
1
4

∫
R3
|∇ϕ|2dx+

1
4

∫
R3
|∇V (ϕ)|2dx+

1
2

∫
R3
Ṽ ϕ2dx+

ω

2

∫
R3
ϕ2dx (1.4)

and a solution of (1.3) is obtained as a minimizer of E on H1(R3).
Before giving the assumptions imposed on Ṽ and n∗ to solve the system (1.1)-

(1.2), we recall the following concepts.

Definition 1.1. We say that g satisfies the decomposition (1.5) if:
(i) g ∈ L1

loc(R3),
(ii) g ≥ 0, and
(iii) There exists q0 ∈ [3/2,∞] such that for all λ > 0 there exists g1λ ∈ Lq0(R3),

qλ ∈]3/2,∞[ and g2λ ∈ Lqλ(R3) such that

g = g1λ + g2λ and lim
λ→0

‖g1λ‖Lq0 = 0. (1.5)

As interesting examples of this definition we may consider g(x) = 1/|x|α for
some 0 < α < 2 or g ∈ Lr(R3) for some r > 3/2 (taking |g| if g is negative).

In what follows we will denote by ‖ · ‖ the norm ‖ · ‖L2 on L2(R3) and by [E ≤ c]
the set {ϕ;E(ϕ) ≤ c}.

Consider now the following hypotheses:

Ṽ + ∈ L1
loc(R3) and Ṽ −satisfies the decomposition (1.5) (1.6)

n∗ ∈ L1 ∩ L6/5(R3) (1.7)

inf
{∫

R3

(
|∇ϕ|2 + %(x)ϕ2

)
dx,

∫
R3
|ϕ|2 = 1

}
< 0 (1.8)

where %(x) := 2Ṽ (x)− 1
2π

∫
R3

n∗(y)
|x− y|

dy.

The main result in [1] is as follows.

Theorem 1.2. Assuming (1.6), (1.7) and (1.8) there exists ω∗ > 0 such that for
all 0 < ω < ω∗ the equation (1.3) has a nonnegative solution u 6≡ 0 which minimizes
the functional E given by (1.4):

E(u) = min
ϕ∈H1(R3)

E(ϕ).

The proof of this theorem is divided into the four following Lemmas.

Lemma 1.3. Let ω ≥ 0 and c ∈ R. If the set [E ≤ c] is bounded in L2(R3) then it
is also bounded in H1(R3).

Lemma 1.4. For all ω > 0 and c ∈ R the set [E ≤ c] is bounded in L2(R3).

Lemma 1.5. For any ω > 0 the functional E is weakly lower semicontinuous on
H1(R3) and attains its minimum on H1(R3) at u ≥ 0.

Lemma 1.6. There exists ω∗ > 0 such that if 0 < ω < ω∗ then E(u) < E(0) and
thus u 6≡ 0.

After analyzing the proofs of the four Lemmas above given in [1], we remark
that theorem 1.2 remains true even if we replace the condition (1.7) by

n∗ ∈ L6/5(R3). (1.9)
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In the sequel we shall minimize the energy functional E on the space

H :=
{
u ∈ H1(R3) :

∫
R3
Ṽ +u2dx <∞

}
which is a Hilbert space, continuously embedded in H1(R3), when endowed it with
its natural scalar product and norm

(ϕ|ψ) :=
∫

R3

(
∇ϕ · ∇ψ + ϕψ + Ṽ +ϕψ

)
dx, ‖ϕ‖H := (ϕ|ϕ)1/2.

Consequently Theorem 1.2 becomes

Theorem 1.7. Assuming (1.6), (1.8) and (1.9) there exists ω∗ > 0 such that for
all 0 < ω < ω∗ the equation (1.3) has a nonnegative solution u 6≡ 0 which minimizes
on the space H the functional E:

E(u) = min
ϕ∈H

E(ϕ).

2. Preliminaries

Here we recall the three following Lemmas which will be useful in the sequel.

Lemma 2.1. Let n∗ ∈ L6/5(R3). For all ϕ ∈ H1(R3) the Poisson equation

−∆V = |ϕ|2 − n∗ in R3 (2.1)

has a unique solution V := V (ϕ) ∈ D1,2(R3) given by

V (ϕ)(x) =
1
4π

∫
R3

(|ϕ|2 − n∗)(y)
|x− y|

dy. (2.2)

Moreover if we denote by

I(ϕ) :=
1
4

∫
R3
|∇V (ϕ)|2dx,

then I is C1 on H1(R3) and its derivative satisfies

〈I ′(ϕ), ψ〉 =
∫

R3
V (ϕ)ϕψdx ∀ψ ∈ H1(R3).

For the proof of this lemma see [1, Lemma 2.1, Lemma 2.2].
This Lemma shows in particular that the energy functional corresponding to

(1.3) is exactly the expression given in (1.4), namely

E(ϕ) :=
1
4

∫
R3
|∇ϕ|2dx+ I(ϕ) +

1
2

∫
R3
Ṽ ϕ2dx+

ω

2

∫
R3
ϕ2dx.

Lemma 2.2. Let θ ∈ Lr(R3) for some r ≥ 3/2 then for all δ > 0 there exists
Cδ > 0 such that∫

R3
θ(x)|ϕ(x)|2dx ≤ δ‖∇ϕ‖2 + Cδ‖ϕ‖2 ∀ϕ ∈ H1(R3).

For the proof of this lemma see [1] or [2].
Remark that since Ṽ − satisfies the decomposition (1.5) then for any fixed λ > 0

we have Ṽ − = Ṽ −1λ + Ṽ −2λ where for i = 1, 2, Ṽ −iλ ∈ Ls(R3) for some s ∈ [3/2,∞]
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(s = q0 or s = qλ). Hence taking θ := Ṽ −iλ the inequality of Lemma 2.2 holds for
i = 1, 2 and consequently for all δ > 0 there exists Cδ > 0 so that∫

R3
Ṽ −(x)|ϕ(x)|2dx ≤ δ‖∇ϕ‖2 + Cδ‖ϕ‖2 ∀ϕ ∈ H1(R3). (2.3)

Lemma 2.3. Let ψ ∈ Lr(R3) for some r > 3/2. If vn ⇀ 0 weakly in H1(R3) then∫
R3
ψ(x)v2

n(x)dx→ 0 as n→ +∞

For the proof of this lemma see [1, Lemma 2.5].

3. Proof of Theorem 1.7

We will use once again the same steps as in [1]. Remark at first that the proofs
given in [1] for Lemma 1.5 and Lemma 1.6 do not require the hypothesis n∗ ∈ L1(R3)
and consequently remain valid assuming (1.9) instead of (1.7).

Proof of Lemma 1.3. We show here that if the set

[E ≤ c] := {ϕ ∈ H;E(ϕ) ≤ c}
is bounded in L2(R3) then it is also bounded in H. Indeed since I(ϕ) and ω are
both nonnegative, the inequality E(ϕ) ≤ c gives in particular

1
4
‖∇ϕ‖2 +

1
2

∫
Ṽ +ϕ2dx− 1

2

∫
Ṽ −ϕ2dx ≤ c.

Now using the estimate (2.3) with δ = 1/4 we get

1
8
‖∇ϕ‖2 +

1
2

∫
Ṽ +ϕ2dx ≤ K0‖ϕ‖2 + c.

for some constant K0 > 0. �

Let us recall that in [1] we have decomposed the expression of E(ϕ) as

E(ϕ) = E1(ϕ)− E2(ϕ) + E3(ϕ) + E(0)

where

E1(ϕ) :=
1
4

∫
|∇ϕ|2 dx+

1
2

∫
Ṽ +ϕ2dx+

ω

2

∫
ϕ2 dx

E2(ϕ) :=
1
2

∫
Ṽ −ϕ2 dx+

1
8π

∫∫
n∗(y)
|x− y|

ϕ2(x) dx dy

E3(ϕ) :=
1

16π

∫∫
ϕ2(x)ϕ2(y)
|x− y|

dx dy

E(0) :=
1

16π

∫∫
n∗(x)n∗(y)
|x− y|

dx dy.

Indeed, for the term I(ϕ) it suffices to multiply the equation (2.1) by V (ϕ), integrate
by parts and use the formula (2.2).

In the proof of the similar lemma [1, Lemma 3.1] we have estimated E2(ϕ)
instead of

∫
Ṽ −ϕ2dx. More precisely we have estimated the second term of E2(ϕ)

by using a certain inequality of type Hardy and the fact that n∗ ∈ L1(R3).
We point out finally that the decomposition of E(ϕ) as above remains useful for

the rest of proofs.
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Proof of Lemma 1.4. Assume by contradiction that there exists a sequence (uj)j ⊂
H such that E(uj) ≤ c and ‖uj‖ −→ +∞ as j → +∞. Let vj := uj/‖uj‖ then
‖vj‖ = 1 and from E(uj) ≤ c we get

1
4

∫
|∇vj |2dx− E2(vj) + E3(vj)‖uj‖2 +

ω

2
≤ c0
‖uj‖2

(3.1)

where c0 = c − E(0). To estimate E2(vj) it suffices to use (2.3) for the first term∫
Ṽ −v2

jdx . As to the second, unlike the proof in [1] we do not require here the
assumption n∗ ∈ L1(R3). Indeed, setting

V ∗(x) :=
∫∫

R3×R3

n∗(y)
|x− y|

dy = −V (0)(x) (3.2)

as denoted in Lemma 2.1 we may write∫∫
R3×R3

n∗(y)
|x− y|

v2
j (x)dxdy =

∫
R3
V ∗(x)v2

j (x)dx.

Knowing that V (0) ∈ L6(R3) we can use once more Lemma 2.2 with θ := V ∗.
On the whole, we obtain in particular

E2(vj) ≤
1
8
‖∇vj‖2 +K0

for some positive constant K0 and consequently we infer from the inequality (3.1)
that

1
8
‖∇vj‖2 + E3(vj)‖uj‖2 +

ω

2
≤ c0
‖uj‖2

+K0.

For the remainder of the proof, we conclude exactly as in of [1, Lemma 3.2]. Pre-
cisely we show first that, up to a subsequence, vj ⇀ 0 weakly in H1(R3). Next,
from (3.1) it follows in particular that

ω

2
− E2(vj) ≤

c0
‖uj‖2

. (3.3)

Using the decomposition Ṽ − = Ṽ −1λ + Ṽ −2λ and (3.2), we show according to Lemma
2.3 that E2(vj) −→ 0 as j →∞. Finally, letting j go to infinity in (3.3) we obtain a
contradiction since ω is positive. Consequently, all (uj)j ⊂ H such that E(uj) ≤ c
is bounded in L2(R3). �
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